ACS Publications. Most Trusted. Most Cited. Most Read
On the Nature of the Oxidative Heterocoupling of Lithium Enolates
My Activity

Figure 1Loading Img
    Communication

    On the Nature of the Oxidative Heterocoupling of Lithium Enolates
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2011, 133, 30, 11492–11495
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja205017e
    Published June 30, 2011
    Copyright © 2011 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The coupling of enolates through single-electron oxidation is one of the most direct routes for generating 1,4-dicarbonyls. Recent work on the intermolecular heterocoupling of equimolar amounts of two different enolates through single-electron oxidation has shown that synthetically useful yields beyond those predicted by statistics can be obtained. To determine the underlying basis for the selective formation of heterocoupled products, kinetic, 7Li NMR, and synthetic studies were performed. The collection of data obtained from these experiments shows that the selective formation of heterocoupled products is a consequence of heteroaggregation of lithium enolates.

    Copyright © 2011 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Experimental procedures and spectral data. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 67 publications.

    1. Li Xu, Xiaoyi Liu, Gregory R. Alvey, Andrey Shatskiy, Jian-Quan Liu, Markus D. Kärkäs, Xiang-Shan Wang. Silver-Catalyzed Controlled Intermolecular Cross-Coupling of Silyl Enol Ethers: Scalable Access to 1,4-Diketones. Organic Letters 2022, 24 (25) , 4513-4518. https://doi.org/10.1021/acs.orglett.2c01477
    2. Ya Dong, Ruining Li, Junliang Zhou, Zhankui Sun. Synthesis of Unsymmetrical 1,4-Dicarbonyl Compounds by Photocatalytic Oxidative Radical Additions. Organic Letters 2021, 23 (16) , 6387-6390. https://doi.org/10.1021/acs.orglett.1c02208
    3. Jincheng Xu, Aishun Ding, Yanbin Zhang, Hao Guo. Photochemical Synthesis of 1,4-Dicarbonyl Bifluorene Compounds via Oxidative Radical Coupling Using TEMPO as the Oxygen Atom Donor. The Journal of Organic Chemistry 2021, 86 (4) , 3656-3666. https://doi.org/10.1021/acs.joc.0c02781
    4. Yasuaki Fukazawa, Vladimir Yu. Vaganov, Sergei A. Shipilovskikh, Aleksandr E. Rubtsov, Andrei V. Malkov. Stereoselective Synthesis of Atropisomeric Bipyridine N,N′-Dioxides by Oxidative Coupling. Organic Letters 2019, 21 (12) , 4798-4802. https://doi.org/10.1021/acs.orglett.9b01687
    5. Peng Zhao, Xia Wu, You Zhou, Xiao Geng, Can Wang, Yan-dong Wu, An-Xin Wu. Direct Synthesis of 2,3-Diaroyl Quinolines and Pyridazino[4,5-b]quinolines via an I2-Promoted One-Pot Multicomponent Reaction. Organic Letters 2019, 21 (8) , 2708-2711. https://doi.org/10.1021/acs.orglett.9b00685
    6. Yuhui Zhou, Janis Jermaks, Ivan Keresztes, Samantha N. MacMillan, David B. Collum. Pseudoephedrine-Derived Myers Enolates: Structures and Influence of Lithium Chloride on Reactivity and Mechanism. Journal of the American Chemical Society 2019, 141 (13) , 5444-5460. https://doi.org/10.1021/jacs.9b00328
    7. Lars A. Leth, Line Næsborg, Gabriel J. Reyes-Rodríguez, Henriette N. Tobiesen, Marc V. Iversen, Karl Anker Jørgensen. Enantioselective Oxidative Coupling of Carboxylic Acids to α-Branched Aldehydes. Journal of the American Chemical Society 2018, 140 (40) , 12687-12690. https://doi.org/10.1021/jacs.8b07394
    8. Takafumi Tanaka, Tsukushi Tanaka, Taro Tsuji, Ryo Yazaki, Takashi Ohshima. Strategy for Catalytic Chemoselective Cross-Enolate Coupling Reaction via a Transient Homocoupling Dimer. Organic Letters 2018, 20 (12) , 3541-3544. https://doi.org/10.1021/acs.orglett.8b01313
    9. Emily E. Robinson and Regan J. Thomson . A Strategy for the Convergent and Stereoselective Assembly of Polycyclic Molecules. Journal of the American Chemical Society 2018, 140 (5) , 1956-1965. https://doi.org/10.1021/jacs.7b13234
    10. Daniel Kaiser, Christopher J. Teskey, Pauline Adler, and Nuno Maulide . Chemoselective Intermolecular Cross-Enolate-Type Coupling of Amides. Journal of the American Chemical Society 2017, 139 (45) , 16040-16043. https://doi.org/10.1021/jacs.7b08813
    11. Michael J. Houghton and David B. Collum . Lithium Enolates Derived from Weinreb Amides: Insights into Five-Membered Chelate Rings. The Journal of Organic Chemistry 2016, 81 (22) , 11057-11064. https://doi.org/10.1021/acs.joc.6b02067
    12. Chieh-Kai Chan, Yi-Ling Chan, Yu-Lin Tsai, and Meng-Yang Chang . One-Pot Synthesis of 2-Cyano-1,4-diketones: Applications to Synthesis of Cyanosubstituted Furans, Pyrroles, and Dihydropyridazines. The Journal of Organic Chemistry 2016, 81 (17) , 8112-8120. https://doi.org/10.1021/acs.joc.6b01672
    13. Michael J. Houghton, Naomi A. Biok, Christopher J. Huck, Russell F. Algera, Ivan Keresztes, Stephen W. Wright, and David B. Collum . Lithium Enolates Derived from Pyroglutaminol: Aggregation, Solvation, and Atropisomerism. The Journal of Organic Chemistry 2016, 81 (10) , 4149-4157. https://doi.org/10.1021/acs.joc.6b00459
    14. Evan H. Tallmadge, Janis Jermaks, and David B. Collum . Structure–Reactivity Relationships in Lithiated Evans Enolates: Influence of Aggregation and Solvation on the Stereochemistry and Mechanism of Aldol Additions. Journal of the American Chemical Society 2016, 138 (1) , 345-355. https://doi.org/10.1021/jacs.5b10980
    15. Evan H. Tallmadge and David B. Collum . Evans Enolates: Solution Structures of Lithiated Oxazolidinone-Derived Enolates. Journal of the American Chemical Society 2015, 137 (40) , 13087-13095. https://doi.org/10.1021/jacs.5b08207
    16. Toru Amaya, Yusuke Maegawa, Takaya Masuda, Yuma Osafune, and Toshikazu Hirao . Selective Intermolecular Oxidative Cross-Coupling of Enolates. Journal of the American Chemical Society 2015, 137 (32) , 10072-10075. https://doi.org/10.1021/jacs.5b05058
    17. Shenlin Huang, Lisa Kötzner, Chandra Kanta De, and Benjamin List . Catalytic Asymmetric Dearomatizing Redox Cross Coupling of Ketones with Aryl Hydrazines Giving 1,4-Diketones. Journal of the American Chemical Society 2015, 137 (10) , 3446-3449. https://doi.org/10.1021/ja511200j
    18. Na Zhang, Shampa R. Samanta, Brad M. Rosen, and Virgil Percec . Single Electron Transfer in Radical Ion and Radical-Mediated Organic, Materials and Polymer Synthesis. Chemical Reviews 2014, 114 (11) , 5848-5958. https://doi.org/10.1021/cr400689s
    19. Brandon R. Rosen, Erik W. Werner, Alexander G. O’Brien, and Phil S. Baran . Total Synthesis of Dixiamycin B by Electrochemical Oxidation. Journal of the American Chemical Society 2014, 136 (15) , 5571-5574. https://doi.org/10.1021/ja5013323
    20. Feng Zhang, Peng Du, Jijun Chen, Hongxiang Wang, Qiang Luo, and Xiaobing Wan . Co-Catalyzed Synthesis of 1,4-Dicarbonyl Compounds Using TBHP Oxidant. Organic Letters 2014, 16 (7) , 1932-1935. https://doi.org/10.1021/ol5004687
    21. Angela M. Bruneau, Lara Liou, and David B. Collum . Solution Structures of Lithium Amino Alkoxides Used in Highly Enantioselective 1,2-Additions. Journal of the American Chemical Society 2014, 136 (7) , 2885-2891. https://doi.org/10.1021/ja412210d
    22. Yun Ma, Craig E. Stivala, Ashley M. Wright, Trevor Hayton, Jun Liang, Ivan Keresztes, Emil Lobkovsky, David B. Collum, and Armen Zakarian . Enediolate–Dilithium Amide Mixed Aggregates in the Enantioselective Alkylation of Arylacetic Acids: Structural Studies and a Stereochemical Model. Journal of the American Chemical Society 2013, 135 (45) , 16853-16864. https://doi.org/10.1021/ja403076u
    23. Hans J. Reich . Role of Organolithium Aggregates and Mixed Aggregates in Organolithium Mechanisms. Chemical Reviews 2013, 113 (9) , 7130-7178. https://doi.org/10.1021/cr400187u
    24. Wei Zhao, Darla M. Fink, Carolyn A. Labutta, and Alexander T. Radosevich . A Csp3–Csp3 Bond Forming Reductive Condensation of α-Keto Esters and Enolizable Carbon Pronucleophiles. Organic Letters 2013, 15 (12) , 3090-3093. https://doi.org/10.1021/ol401276b
    25. Tobias Brückl, Ryan D. Baxter, Yoshihiro Ishihara, and Phil S. Baran . Innate and Guided C–H Functionalization Logic. Accounts of Chemical Research 2012, 45 (6) , 826-839. https://doi.org/10.1021/ar200194b
    26. Kristopher J. Kolonko, Daniel J. Wherritt, and Hans J. Reich . Mechanistic Studies of the Lithium Enolate of 4-Fluoroacetophenone: Rapid-Injection NMR Study of Enolate Formation, Dynamics, and Aldol Reactivity. Journal of the American Chemical Society 2011, 133 (42) , 16774-16777. https://doi.org/10.1021/ja207218f
    27. Wenting Guo, Wenting Wu, Ying Xu, Xiaoqin Pei, Huiyan Wang, Huayou Hu, Weiming Hu, Lei Wang. Palladium‐Catalyzed Cascade Carbonylation/Heck Reaction/Esterification En Route to Benzofuran‐3(2 H )‐One‐Containing γ‐Ketoesters. European Journal of Organic Chemistry 2024, 27 (42) https://doi.org/10.1002/ejoc.202400723
    28. Daria Galaktionova, Xiaoguang Liu, Xiaohong Chen, Justin T. Mohr. Iron‐Catalyzed Gamma‐Gamma Dimerization of Siloxydienes. Chemistry – A European Journal 2024, 30 (5) https://doi.org/10.1002/chem.202302901
    29. Hao-Ran Li, Xue-Yang Guo, Ming-Zhong Guo, Kui Liu, Li-Rong Wen, Ming Li, Lin-Bao Zhang. Electrochemical chemoselective hydrogenation of 1,4-enediones with HFIP as the hydrogen donor: scalable access to 1,4-diketones. Organic & Biomolecular Chemistry 2023, 21 (43) , 8646-8650. https://doi.org/10.1039/D3OB01465G
    30. Zhiyou Su, Jia Zhang, Hou‐Wen Lin, Hongze Liao. Synthesis of 1,4‐Dicarbonyl Compounds via Visible‐Light‐Induced Decarboxylative Radical Cascade Reactions. Advanced Synthesis & Catalysis 2023, 365 (20) , 3444-3449. https://doi.org/10.1002/adsc.202300645
    31. Fengqian Zhao, Xing‐Wei Gu, Robert Franke, Xiao‐Feng Wu. Copper‐Catalyzed 1,2‐Dicarbonylative Cyclization of Alkenes with Alkyl Bromides via Radical Cascade Process. Angewandte Chemie 2022, 134 (49) https://doi.org/10.1002/ange.202214812
    32. Fengqian Zhao, Xing‐Wei Gu, Robert Franke, Xiao‐Feng Wu. Copper‐Catalyzed 1,2‐Dicarbonylative Cyclization of Alkenes with Alkyl Bromides via Radical Cascade Process. Angewandte Chemie International Edition 2022, 61 (49) https://doi.org/10.1002/anie.202214812
    33. Toru Amaya. Oxidative Cross-coupling of Boron and Silicon Enolates. Journal of Synthetic Organic Chemistry, Japan 2022, 80 (7) , 654-663. https://doi.org/10.5059/yukigoseikyokaishi.80.654
    34. Toru Amaya. Vanadium( v )-induced Oxidative Cross-coupling of Enolate Species. 2022, 99-118. https://doi.org/10.1039/9781839164828-00099
    35. Jagadish Khamrai, Saikat Das, Aleksandr Savateev, Markus Antonietti, Burkhard König. Mizoroki–Heck type reactions and synthesis of 1,4-dicarbonyl compounds by heterogeneous organic semiconductor photocatalysis. Green Chemistry 2021, 23 (5) , 2017-2024. https://doi.org/10.1039/D0GC03792C
    36. Wei Chen, Qiang Liu. Recent Advances in the Oxidative Coupling Reaction of Enol Derivatives. Chinese Journal of Organic Chemistry 2021, 41 (9) , 3414. https://doi.org/10.6023/cjoc202104058
    37. Qiang Liu, Rui‐Guo Wang, Hong‐Jian Song, Yu‐Xiu Liu, Qing‐Min Wang. Synthesis of 1,4‐Dicarbonyl Compounds by Visible‐Light‐Mediated Cross‐Coupling Reactions of α‐Chlorocarbonyls and Enol Acetates. Advanced Synthesis & Catalysis 2020, 362 (20) , 4391-4396. https://doi.org/10.1002/adsc.202000791
    38. Yuma Osafune, Yuqing Jin, Toshikazu Hirao, Mamoru Tobisu, Toru Amaya. Oxovanadium( v )-catalyzed oxidative cross-coupling of enolates using O 2 as a terminal oxidant. Chemical Communications 2020, 56 (78) , 11697-11700. https://doi.org/10.1039/D0CC04395H
    39. Xue-Yan Yang, Ruizhe Wang, Lu Wang, Jianjun Li, Shuai Mao, San-Qi Zhang, Nanzheng Chen. K 2 S 2 O 8 -promoted C–Se bond formation to construct α-phenylseleno carbonyl compounds and α,β-unsaturated carbonyl compounds. RSC Advances 2020, 10 (48) , 28902-28905. https://doi.org/10.1039/D0RA05927G
    40. Helin Lu, Guirong Zhu, Tiange Tang, Zhuang Ma, Qin Chen, Zhilong Chen. Anticancer Molecule Discovery via C2-Substituent Promoted Oxidative Coupling of Indole and Enolate. iScience 2019, 22 , 214-228. https://doi.org/10.1016/j.isci.2019.11.021
    41. Ryo Yazaki, Takashi Ohshima. Cross-Dehydrogenative Coupling of Carbonyls for Heterocycle Synthesis. 2019, 213-229. https://doi.org/10.1007/978-981-13-9144-6_6
    42. Antonin Mambrini, Didier Gori, Régis Guillot, Cyrille Kouklovsky, Valérie Alezra. Oxidative coupling of enolates using memory of chirality: an original enantioselective synthesis of quaternary α-amino acid derivatives. Chemical Communications 2018, 54 (90) , 12742-12745. https://doi.org/10.1039/C8CC06864J
    43. Line Næsborg, Lars A. Leth, Gabriel J. Reyes‐Rodríguez, Teresa A. Palazzo, Vasco Corti, Karl Anker Jørgensen. Direct Enantio‐ and Diastereoselective Oxidative Homocoupling of Aldehydes. Chemistry – A European Journal 2018, 24 (55) , 14844-14848. https://doi.org/10.1002/chem.201803506
    44. Farzana Kouser, Vijay Kumar Sharma, Masood Rizvi, Shaista Sultan, Neha Chalotra, Vivek K. Gupta, Utpal Nandi, Bhahwal Ali Shah. Stereoselective synthesis of 3,4-di-substituted mercaptolactones via photoredox-catalyzed radical addition of thiophenols. Tetrahedron Letters 2018, 59 (22) , 2161-2166. https://doi.org/10.1016/j.tetlet.2018.04.046
    45. Xue‐Ting Bai, Qian‐Qian Zhang, Shuai Zhang, Dan‐Yun Chen, Ji‐Ya Fu, Jun‐Yan Zhu, Yan‐Bo Wang, Yan‐Ting Tang. Carbonyl‐Oxygen‐Assisted KOMe‐Mediated Formal Hydration of 4‐Alkynones: Complete Regioselectivity in the One‐Pot Synthesis of 1,4‐Diketones under Mild Conditions. European Journal of Organic Chemistry 2018, 2018 (13) , 1581-1588. https://doi.org/10.1002/ejoc.201800024
    46. Yunhe Lv, Weiya Pu, Jiejie Niu, Qingqing Wang, Qian Chen. nBu4NI-catalyzed C C bond formation to construct 2-carbonyl-1,4-diketones under mild conditions. Tetrahedron Letters 2018, 59 (15) , 1497-1500. https://doi.org/10.1016/j.tetlet.2018.03.011
    47. Pratap R. Jagtap, Ivana Císařová, Ullrich Jahn. Bioinspired total synthesis of tetrahydrofuran lignans by tandem nucleophilic addition/redox isomerization/oxidative coupling and cycloetherification reactions as key steps. Organic & Biomolecular Chemistry 2018, 16 (5) , 750-755. https://doi.org/10.1039/C7OB02848B
    48. Keshaba N Parida, Gulab K Pathe, Shimon Maksymenko, Alex M Szpilman. Cross-coupling of dissimilar ketone enolates via enolonium species to afford non-symmetrical 1,4-diketones. Beilstein Journal of Organic Chemistry 2018, 14 , 992-997. https://doi.org/10.3762/bjoc.14.84
    49. Tobias Stopka, Meike Niggemann, Nuno Maulide. α‐Carbonylkationen in Sulfoxid‐vermittelten oxidativen Cyclisierungen. Angewandte Chemie 2017, 129 (43) , 13454-13458. https://doi.org/10.1002/ange.201705964
    50. Tobias Stopka, Meike Niggemann, Nuno Maulide. α‐Carbonyl Cations in Sulfoxide‐Driven Oxidative Cyclizations. Angewandte Chemie International Edition 2017, 56 (43) , 13270-13274. https://doi.org/10.1002/anie.201705964
    51. Takanari Kato, Koji Yasui, Minami Odagi, Kazuo Nagasawa. Guanidinium Hydroiodide/Cumene Hydroperoxide‐Mediated Intermolecular Oxidative Coupling Reaction of β–Ketoamides with Oxindoles. Advanced Synthesis & Catalysis 2017, 359 (16) , 2881-2889. https://doi.org/10.1002/adsc.201700266
    52. Ai-Fang Wang, Peng Zhou, Yi-Long Zhu, Wen-Juan Hao, Guigen Li, Shu-Jiang Tu, Bo Jiang. Metal-free benzannulation of 1,7-diynes towards unexpected 1-aroyl-2-naphthaldehydes and their application in fused aza-heterocyclic synthesis. Chemical Communications 2017, 53 (23) , 3369-3372. https://doi.org/10.1039/C7CC00323D
    53. Cecilia A. Barrionuevo, Luciana C. Schmidt, Juan E. Argüello. Unexpected formation of 4,4-dimethyl-1,2-disubstituted-dicarbonyl cyclopentanes from ketone enolate anions and 1,3-diiodo-2,2-dimethylpropane. New Journal of Chemistry 2016, 40 (5) , 4550-4555. https://doi.org/10.1039/C5NJ03672K
    54. Srimanta Manna, Andrey P. Antonchick. Copper‐Catalyzed (2+1) Annulation of Acetophenones with Maleimides: Direct Synthesis of Cyclopropanes. Angewandte Chemie 2015, 127 (49) , 15058-15061. https://doi.org/10.1002/ange.201502872
    55. Srimanta Manna, Andrey P. Antonchick. Copper‐Catalyzed (2+1) Annulation of Acetophenones with Maleimides: Direct Synthesis of Cyclopropanes. Angewandte Chemie International Edition 2015, 54 (49) , 14845-14848. https://doi.org/10.1002/anie.201502872
    56. Shuai Mao, Xue‐Qing Zhu, Ya‐Ru Gao, Dong‐Dong Guo, Yong‐Qiang Wang. Silver‐Catalyzed Coupling of Two CH Groups and One‐Pot Synthesis of Tetrasubstituted Furans, Thiophenes, and Pyrroles. Chemistry – A European Journal 2015, 21 (32) , 11335-11339. https://doi.org/10.1002/chem.201501410
    57. Shuai Mao, Ya‐Ru Gao, Shao‐Liang Zhang, Dong‐Dong Guo, Yong‐Qiang Wang. Copper(II)‐Promoted C–C Bond Formation by Oxidative Coupling of Two C(sp 3 )–H Bonds Adjacent to Carbonyl Group to Construct 1,4‐Diketones and Tetrasubstituted Furans. European Journal of Organic Chemistry 2015, 2015 (4) , 876-885. https://doi.org/10.1002/ejoc.201403274
    58. Juan Luo, Qihua Jiang, Hao Chen, Qiang Tang. Catalyst-free formation of 1,4-diketones by addition of silyl enolates to oxyallyl zwitterions in situ generated from α-haloketones. RSC Advances 2015, 5 (83) , 67901-67908. https://doi.org/10.1039/C5RA12244A
    59. B. A. Murray. Reactions of Aldehydes and Ketones and their Derivatives. 2014, 1-66. https://doi.org/10.1002/9781118560273.ch1
    60. M. L. Birsa. Carbanions and Electrophilic Aliphatic Substitution. 2014, 339-360. https://doi.org/10.1002/9781118560273.ch9
    61. K.A. Choquette, R.A. Flowers. 1.09 Samarium and Ytterbium Reagents. 2014, 278-343. https://doi.org/10.1016/B978-0-08-097742-3.00111-7
    62. Brian T. Jones, Christopher T. Avetta, Regan J. Thomson. Total synthesis of propolisbenzofuran B. Chem. Sci. 2014, 5 (5) , 1794-1798. https://doi.org/10.1039/C4SC00356J
    63. Toru Amaya, Takaya Masuda, Yusuke Maegawa, Toshikazu Hirao. Oxovanadium(v)-induced diastereoselective oxidative homocoupling of boron enolates. Chemical Communications 2014, 50 (18) , 2279. https://doi.org/10.1039/c3cc49624d
    64. Fenghai Guo, Michael D. Clift, Regan J. Thomson. Oxidative Coupling of Enolates, Enol Silanes, and Enamines: Methods and Natural Product Synthesis. European Journal of Organic Chemistry 2012, 2012 (26) , 4881-4896. https://doi.org/10.1002/ejoc.201200665
    65. Emanuela Dinca, Philip Hartmann, Jakub Smrček, Ina Dix, Peter G. Jones, Ullrich Jahn. General and Efficient α‐Oxygenation of Carbonyl Compounds by TEMPO Induced by Single‐Electron‐Transfer Oxidation of Their Enolates. European Journal of Organic Chemistry 2012, 2012 (24) , 4461-4482. https://doi.org/10.1002/ejoc.201200736
    66. Michael S. Hill. Alkaline and alkaline earth metals. Annual Reports Section "A" (Inorganic Chemistry) 2012, 108 , 48. https://doi.org/10.1039/c2ic90011d
    67. Youwei Xie, Paul E. Floreancig. Stereoselective heterocycle synthesis through a reversible allylic alcohol transposition and nucleophilic addition sequence. Chemical Science 2011, 2 (12) , 2423. https://doi.org/10.1039/c1sc00570g

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2011, 133, 30, 11492–11495
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja205017e
    Published June 30, 2011
    Copyright © 2011 American Chemical Society

    Article Views

    2558

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.