ACS Publications. Most Trusted. Most Cited. Most Read
Development of a Far-Red to Near-Infrared Fluorescence Probe for Calcium Ion and its Application to Multicolor Neuronal Imaging
My Activity

Figure 1Loading Img
    Communication

    Development of a Far-Red to Near-Infrared Fluorescence Probe for Calcium Ion and its Application to Multicolor Neuronal Imaging
    Click to copy article linkArticle link copied!

    View Author Information
    Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
    Other Access OptionsSupporting Information (2)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2011, 133, 36, 14157–14159
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja205809h
    Published August 9, 2011
    Copyright © 2011 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    To improve optical imaging of Ca2+ and to make available a distinct color window for multicolor imaging, we designed and synthesized CaSiR-1, a far-red to near-infrared fluorescence probe for Ca2+, using Si-rhodamine (SiR) as the fluorophore and the well-known Ca2+ chelator BAPTA. This wavelength region is advantageous, affording higher tissue penetration, lower background autofluorescence, and lower phototoxicity in comparison with the UV to visible range. CaSiR-1 has a high fluorescence off/on ratio of over 1000. We demonstrate its usefulness for multicolor fluorescence imaging of action potentials (visualized as increases in intracellular Ca2+) in brain slices loaded with sulforhodamine 101 (red color; specific for astrocytes) that were prepared from transgenic mice in which some neurons expressed green fluorescent protein.

    Copyright © 2011 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Synthesis, experimental details, characterization of CaSiR-1 and another fluorescence probe for Ca2+, complete ref 5, and a movie (AVI) showing the optical imaging of spontaneous neuronal firing in mouse cerebral cortex loaded with CaSiR-1 AM (speeded up by a factor of 10). This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 173 publications.

    1. Kyohhei Fujita, Yasuteru Urano. Activity-Based Fluorescence Diagnostics for Cancer. Chemical Reviews 2024, 124 (7) , 4021-4078. https://doi.org/10.1021/acs.chemrev.3c00612
    2. Yiming Zhang, Zexi Zhang, Miaomiao Wu, Run Zhang. Advances and Perspectives of Responsive Probes for Measuring γ-Glutamyl Transpeptidase. ACS Measurement Science Au 2024, 4 (1) , 54-75. https://doi.org/10.1021/acsmeasuresciau.3c00045
    3. Rei Kumada, Akihiro Sakama, Yutaka Shindo, Yuzuka Kuronuma, Naoko Iwasawa, Daniel Citterio, Kotaro Oka, Yuki Hiruta. Development of Phosphinate Ligand-Based Low-Affinity Ca2+ Fluorescent Probes and Application to Intracellular Ca2+ Imaging. Analytical Chemistry 2023, 95 (45) , 16683-16691. https://doi.org/10.1021/acs.analchem.3c03266
    4. Uroob Haris, Husain N. Kagalwala, Yujin Lisa Kim, Alexander R. Lippert. Seeking Illumination: The Path to Chemiluminescent 1,2-Dioxetanes for Quantitative Measurements and In Vivo Imaging. Accounts of Chemical Research 2021, 54 (13) , 2844-2857. https://doi.org/10.1021/acs.accounts.1c00185
    5. Casey J. Adams, Ruby Krueger, Thomas J. Meade. A Multimodal Ca(II) Responsive Near IR-MR Contrast Agent Exhibiting High Cellular Uptake. ACS Chemical Biology 2020, 15 (2) , 334-341. https://doi.org/10.1021/acschembio.9b00638
    6. Weijie Chi, Qingkai Qi, Richmond Lee, Zhaochao Xu, Xiaogang Liu. A Unified Push–Pull Model for Understanding the Ring-Opening Mechanism of Rhodamine Dyes. The Journal of Physical Chemistry C 2020, 124 (6) , 3793-3801. https://doi.org/10.1021/acs.jpcc.9b11673
    7. Osamu Murata, Yutaka Shindo, Yuma Ikeda, Naoko Iwasawa, Daniel Citterio, Kotaro Oka, Yuki Hiruta. Near-Infrared Fluorescent Probes for Imaging of Intracellular Mg2+ and Application to Multi-Color Imaging of Mg2+, ATP, and Mitochondrial Membrane Potential. Analytical Chemistry 2020, 92 (1) , 966-974. https://doi.org/10.1021/acs.analchem.9b03872
    8. Juan Yue, Li Li, Lei Cao, Minghui Zan, Dian Yang, Zheng Wang, Zhimin Chang, Qian Mei, Peng Miao, Wen-Fei Dong. Two-Step Hydrothermal Preparation of Carbon Dots for Calcium Ion Detection. ACS Applied Materials & Interfaces 2019, 11 (47) , 44566-44572. https://doi.org/10.1021/acsami.9b13737
    9. Qinsi Zheng, Anthony X. Ayala, Inhee Chung, Aubrey V. Weigel, Anand Ranjan, Natalie Falco, Jonathan B. Grimm, Ariana N. Tkachuk, Carl Wu, Jennifer Lippincott-Schwartz, Robert H. Singer, Luke D. Lavis. Rational Design of Fluorogenic and Spontaneously Blinking Labels for Super-Resolution Imaging. ACS Central Science 2019, 5 (9) , 1602-1613. https://doi.org/10.1021/acscentsci.9b00676
    10. Dongxia Chen, Jingjin Zhao, Liangliang Zhang, Rongjun Liu, Yong Huang, Chuanqing Lan, Shulin Zhao. Capsicum-Derived Biomass Quantum Dots Coupled with Alizarin Red S as an Inner-Filter-Mediated Illuminant Nanosystem for Imaging of Intracellular Calcium Ions. Analytical Chemistry 2018, 90 (21) , 13059-13064. https://doi.org/10.1021/acs.analchem.8b04055
    11. Shodai Takahashi, Yu Kagami, Kenjiro Hanaoka, Takuya Terai, Toru Komatsu, Tasuku Ueno, Masanobu Uchiyama, Ikuko Koyama-Honda, Noboru Mizushima, Tomohiko Taguchi, Hiroyuki Arai, Tetsuo Nagano, Yasuteru Urano. Development of a Series of Practical Fluorescent Chemical Tools To Measure pH Values in Living Samples. Journal of the American Chemical Society 2018, 140 (18) , 5925-5933. https://doi.org/10.1021/jacs.8b00277
    12. Ryota Sato, Jun Kozuka, Masahiro Ueda, Reiko Mishima, Yutaro Kumagai, Akimasa Yoshimura, Masafumi Minoshima, Shin Mizukami, and Kazuya Kikuchi . Intracellular Protein-Labeling Probes for Multicolor Single-Molecule Imaging of Immune Receptor–Adaptor Molecular Dynamics. Journal of the American Chemical Society 2017, 139 (48) , 17397-17404. https://doi.org/10.1021/jacs.7b08262
    13. Flavien Ponsot, Weida Shen, Pichandi Ashokkumar, Etienne Audinat, Andrey S. Klymchenko, and Mayeul Collot . PEGylated Red-Emitting Calcium Probe with Improved Sensing Properties for Neuroscience. ACS Sensors 2017, 2 (11) , 1706-1712. https://doi.org/10.1021/acssensors.7b00665
    14. Jonathan B. Grimm, Timothy A. Brown, Ariana N. Tkachuk, and Luke D. Lavis . General Synthetic Method for Si-Fluoresceins and Si-Rhodamines. ACS Central Science 2017, 3 (9) , 975-985. https://doi.org/10.1021/acscentsci.7b00247
    15. Hua Chen, Baoli Dong, Yonghe Tang, and Weiying Lin . A Unique “Integration” Strategy for the Rational Design of Optically Tunable Near-Infrared Fluorophores. Accounts of Chemical Research 2017, 50 (6) , 1410-1422. https://doi.org/10.1021/acs.accounts.7b00087
    16. Jing Liu, Yuan-Qiang Sun, Hongxing Zhang, Heping Shi, Yawei Shi, and Wei Guo . Sulfone-Rhodamines: A New Class of Near-Infrared Fluorescent Dyes for Bioimaging. ACS Applied Materials & Interfaces 2016, 8 (35) , 22953-22962. https://doi.org/10.1021/acsami.6b08338
    17. Kosuke Usui, Stephan Irle, and Daisuke Yokogawa . Understanding of the Off–On Response Mechanism in Caged Fluorophores Based on Quantum and Statistical Mechanics. The Journal of Physical Chemistry B 2016, 120 (19) , 4449-4456. https://doi.org/10.1021/acs.jpcb.6b02298
    18. Keith W. MacRenaris, Zhidong Ma, Ruby L. Krueger, Christiane E. Carney, and Thomas J. Meade . Cell-Permeable Esterase-Activated Ca(II)-Sensitive MRI Contrast Agent. Bioconjugate Chemistry 2016, 27 (2) , 465-473. https://doi.org/10.1021/acs.bioconjchem.5b00561
    19. Yanfen Wei, Dan Cheng, Tianbing Ren, Yinhui Li, Zebing Zeng, and Lin Yuan . Design of NIR Chromenylium-Cyanine Fluorophore Library for “Switch-ON” and Ratiometric Detection of Bio-Active Species In Vivo. Analytical Chemistry 2016, 88 (3) , 1842-1849. https://doi.org/10.1021/acs.analchem.5b04169
    20. Quinn A. Best, Amanda E. Johnson, Bijeta Prasai, Alexandra Rouillere, and Robin L. McCarley . Environmentally Robust Rhodamine Reporters for Probe-based Cellular Detection of the Cancer-linked Oxidoreductase hNQO1. ACS Chemical Biology 2016, 11 (1) , 231-240. https://doi.org/10.1021/acschembio.5b00792
    21. Iuliia A. Karpenko, Mayeul Collot, Ludovic Richert, Christel Valencia, Pascal Villa, Yves Mély, Marcel Hibert, Dominique Bonnet, and Andrey S. Klymchenko . Fluorogenic Squaraine Dimers with Polarity-Sensitive Folding As Bright Far-Red Probes for Background-Free Bioimaging. Journal of the American Chemical Society 2015, 137 (1) , 405-412. https://doi.org/10.1021/ja5111267
    22. Sooyeon Kim, Takashi Tachikawa, Mamoru Fujitsuka, and Tetsuro Majima . Far-Red Fluorescence Probe for Monitoring Singlet Oxygen during Photodynamic Therapy. Journal of the American Chemical Society 2014, 136 (33) , 11707-11715. https://doi.org/10.1021/ja504279r
    23. Joseph M. Amatrudo, Jeremy P. Olson, G. Lur, Chiayu Q. Chiu, Michael J. Higley, and Graham C. R. Ellis-Davies . Wavelength-Selective One- and Two-Photon Uncaging of GABA. ACS Chemical Neuroscience 2014, 5 (1) , 64-70. https://doi.org/10.1021/cn400185r
    24. Xiaohua Li, Xinghui Gao, Wen Shi, and Huimin Ma . Design Strategies for Water-Soluble Small Molecular Chromogenic and Fluorogenic Probes. Chemical Reviews 2014, 114 (1) , 590-659. https://doi.org/10.1021/cr300508p
    25. Wael Alata, Sarah Paris-Robidas, Vincent Emond, Fanchon Bourasset, and Frédéric Calon . Brain Uptake of a Fluorescent Vector Targeting the Transferrin Receptor: A Novel Application of in Situ Brain Perfusion. Molecular Pharmaceutics 2014, 11 (1) , 243-253. https://doi.org/10.1021/mp400421a
    26. Hannah W. Mbatia and Shawn C. Burdette . Photochemical Tools for Studying Metal Ion Signaling and Homeostasis. Biochemistry 2012, 51 (37) , 7212-7224. https://doi.org/10.1021/bi3001769
    27. Mayeul Collot, Christina Loukou, Aleksey V. Yakovlev, Christian D. Wilms, Dongdong Li, Alexis Evrard, Alsu Zamaleeva, Laurent Bourdieu, Jean-François Léger, Nicole Ropert, Jens Eilers, Martin Oheim, Anne Feltz, and Jean-Maurice Mallet . Calcium Rubies: A Family of Red-Emitting Functionalizable Indicators Suitable for Two-Photon Ca2+ Imaging. Journal of the American Chemical Society 2012, 134 (36) , 14923-14931. https://doi.org/10.1021/ja304018d
    28. Martha Sibrian-Vazquez, Jorge O. Escobedo, Mark Lowry, Frank R. Fronczek, and Robert M. Strongin . Field Effects Induce Bathochromic Shifts in Xanthene Dyes. Journal of the American Chemical Society 2012, 134 (25) , 10502-10508. https://doi.org/10.1021/ja302445w
    29. Lin Yuan, Weiying Lin, Yueting Yang, and Hua Chen . A Unique Class of Near-Infrared Functional Fluorescent Dyes with Carboxylic-Acid-Modulated Fluorescence ON/OFF Switching: Rational Design, Synthesis, Optical Properties, Theoretical Calculations, and Applications for Fluorescence Imaging in Living Animals. Journal of the American Chemical Society 2012, 134 (2) , 1200-1211. https://doi.org/10.1021/ja209292b
    30. Rokia Osman, Uroob Haris, Maidileyvis C. Cabello, Ralph P. Mason, Alexander R. Lippert. A silicon rhodamine 1,2-dioxetane chemiluminophore for in vivo near-infrared imaging. Organic & Biomolecular Chemistry 2025, 118 https://doi.org/10.1039/D4OB02002B
    31. Xing‐Xing Zhang, Feiyu Yang, Xinyu Zhao, Qian Wu, Long He, Zhe Li, Zhixuan Zhou, Tian‐Bing Ren, Xiao‐Bing Zhang, Lin Yuan. Dihydropyridopyrazine Functionalized Xanthene: Generating Stable NIR Dyes with Small‐Molecular Weight by Enhanced Charge Separation. Angewandte Chemie International Edition 2024, 146 https://doi.org/10.1002/anie.202410666
    32. Xing‐Xing Zhang, Feiyu Yang, Xinyu Zhao, Qian Wu, Long He, Zhe Li, Zhixuan Zhou, Tian‐Bing Ren, Xiao‐Bing Zhang, Lin Yuan. Dihydropyridopyrazine Functionalized Xanthene: Generating Stable NIR Dyes with Small‐Molecular Weight by Enhanced Charge Separation. Angewandte Chemie 2024, 146 https://doi.org/10.1002/ange.202410666
    33. Zhifeng Li, Qinglong Qiao, Ning Xu, Kai An, Wenchao Jiang, Yi Tao, Pengjun Bao, Yinchan Zhang, Zhaochao Xu. The remarkable effect of amino hydrogen on membrane permeability and organelle staining of 1,8-naphthalimide dyes. Chinese Chemical Letters 2024, 35 (2) , 108824. https://doi.org/10.1016/j.cclet.2023.108824
    34. Pingfan Song, Herman Verinaz Jadan, Carmel L. Howe, Amanda J. Foust, Pier Luigi Dragotti. Model-Based Explainable Deep Learning for Light-Field Microscopy Imaging. IEEE Transactions on Image Processing 2024, 33 , 3059-3074. https://doi.org/10.1109/TIP.2024.3387297
    35. Shota Takaku, Ryo Nishimura, Masakazu Morimoto. A turn-on mode fluorescent diarylethene having an azacrown ether receptor: Metal-ion-gated enhancement of the photoreactivity and fluorescence. Dyes and Pigments 2023, 216 , 111354. https://doi.org/10.1016/j.dyepig.2023.111354
    36. Hongjiang Chen, Xiaoyu Tang, Guangshuai Nie, Zhen Wang, Jia Hu, Jun Hu, Huan Qin. Quantitative tracing of bioprobes by simultaneously monitoring radiative and nonradiative relaxations. Journal of Innovative Optical Health Sciences 2023, 16 (04) https://doi.org/10.1142/S1793545822430027
    37. Yuuta Fujikawa, Masaya Mori, Minami Tsukada, Seiya Miyahara, Honoka Sato‐Fukushima, Eita Watanabe, Yuko Murakami‐Tonami, Hideshi Inoue. Pi‐Class Glutathione S ‐transferase (GSTP1)‐Selective Fluorescent Probes for Multicolour Imaging with Various Cancer‐Associated Enzymes. ChemBioChem 2022, 23 (21) https://doi.org/10.1002/cbic.202200443
    38. Xiaoke Bi, Connor Beck, Yiyang Gong. A kinetic-optimized CoChR variant with enhanced high-frequency spiking fidelity. Biophysical Journal 2022, 121 (21) , 4166-4178. https://doi.org/10.1016/j.bpj.2022.09.024
    39. Fang Yang, Junlie Yao, Fang Zheng, Hao Peng, Shaohua Jiang, Chenyang Yao, Hui Du, Bo Jiang, Stefan G. Stanciu, Aiguo Wu. Guarding food safety with conventional and up-conversion near-infrared fluorescent sensors. Journal of Advanced Research 2022, 41 , 129-144. https://doi.org/10.1016/j.jare.2022.01.011
    40. Mingqiao Liu, Junwei Zhang, Zhixing Chen. Emerging Trends in Fluorescence Bioimaging of Divalent Metal Cations Using Small‐Molecule Indicators. Chemistry – A European Journal 2022, 28 (45) https://doi.org/10.1002/chem.202200587
    41. Sebastian Junge, Felix Schmieder, Philipp Sasse, Jürgen Czarske, Maria Leilani Torres‐Mapa, Alexander Heisterkamp. Holographic optogenetic stimulation with calcium imaging as an all optical tool for cardiac electrophysiology. Journal of Biophotonics 2022, 15 (7) https://doi.org/10.1002/jbio.202100352
    42. Qingtao Meng, Miaomiao Wu, Zhuye Shang, Zhiqiang Zhang, Run Zhang. Responsive gadolinium(III) complex-based small molecule magnetic resonance imaging probes: Design, mechanism and application. Coordination Chemistry Reviews 2022, 457 , 214398. https://doi.org/10.1016/j.ccr.2021.214398
    43. Haidong Li, Heejeong Kim, Feng Xu, Jingjing Han, Qichao Yao, Jingyun Wang, Kanyi Pu, Xiaojun Peng, Juyoung Yoon. Activity-based NIR fluorescent probes based on the versatile hemicyanine scaffold: design strategy, biomedical applications, and outlook. Chemical Society Reviews 2022, 51 (5) , 1795-1835. https://doi.org/10.1039/D1CS00307K
    44. . Reactions of N-[(9-chloro-2,3-dihydro-1H-(chromen)xanthen-4-yl)methylene]-N-methylmethanaminium perchlorates with aromatic amines. Voprosy Khimii i Khimicheskoi Tekhnologii 2022, 24-29. https://doi.org/10.32434/0321-4095-2022-141-2-24-29
    45. Junwei Zhang, Xiaohong Peng, Yunxiang Wu, Huixia Ren, Jingfu Sun, Shiyan Tong, Tianyan Liu, Yiwen Zhao, Shusen Wang, Chao Tang, Liangyi Chen, Zhixing Chen. Red‐ and Far‐Red‐Emitting Zinc Probes with Minimal Phototoxicity for Multiplexed Recording of Orchestrated Insulin Secretion. Angewandte Chemie 2021, 133 (49) , 26050-26059. https://doi.org/10.1002/ange.202109510
    46. Junwei Zhang, Xiaohong Peng, Yunxiang Wu, Huixia Ren, Jingfu Sun, Shiyan Tong, Tianyan Liu, Yiwen Zhao, Shusen Wang, Chao Tang, Liangyi Chen, Zhixing Chen. Red‐ and Far‐Red‐Emitting Zinc Probes with Minimal Phototoxicity for Multiplexed Recording of Orchestrated Insulin Secretion. Angewandte Chemie International Edition 2021, 60 (49) , 25846-25855. https://doi.org/10.1002/anie.202109510
    47. Anna Kanegae, Yusuke Takata, Ippei Takashima, Shohei Uchinomiya, Ryosuke Kawagoe, Kazuteru Usui, Akira Yamashita, Jirarut Wongkongkatep, Manabu Sugimoto, Akio Ojida. A multicolor and ratiometric fluorescent sensing platform for metal ions based on arene–metal-ion contact. Communications Chemistry 2021, 4 (1) https://doi.org/10.1038/s42004-021-00541-y
    48. Mengting Fan, Haiyan An, Chuanfeng Wang, Shuhui Huo, Ting Wang, Xiaoyan Cui, Dazhi Zhang. STED Imaging the Dynamics of Lysosomes by Dually Fluorogenic Si‐Rhodamine. Chemistry – A European Journal 2021, 27 (37) , 9620-9626. https://doi.org/10.1002/chem.202100623
    49. Ang Li, Xuejun Li, Jianxun Yi, Jianjie Ma, Jingsong Zhou. Butyrate Feeding Reverses CypD-Related Mitoflash Phenotypes in Mouse Myofibers. International Journal of Molecular Sciences 2021, 22 (14) , 7412. https://doi.org/10.3390/ijms22147412
    50. Heesang Ahn, Soojung Kim, Yoonhee Kim, Seungchul Kim, Jong-ryul Choi, Kyujung Kim. Plasmonic sensing, imaging, and stimulation techniques for neuron studies. Biosensors and Bioelectronics 2021, 182 , 113150. https://doi.org/10.1016/j.bios.2021.113150
    51. Yuki Hiruta, Yutaka Shindo, Kotaro Oka, Daniel Citterio. Small Molecule-based Alkaline-earth Metal Ion Fluorescent Probes for Imaging Intracellular and Intercellular Multiple Signals. Chemistry Letters 2021, 50 (5) , 870-887. https://doi.org/10.1246/cl.200917
    52. Lei Yang, Jiaxin Wen, Kunjian Li, Lu Liu, Wei Wang. Carbon quantum dots: Comprehensively understanding of the internal quenching mechanism and application for catechol detection. Sensors and Actuators B: Chemical 2021, 333 , 129557. https://doi.org/10.1016/j.snb.2021.129557
    53. Marie Auvray, Frédéric Bolze, Gilles Clavier, Florence Mahuteau-Betzer. Silafluorene as a promising core for cell-permeant, highly bright and two-photon excitable fluorescent probes for live-cell imaging. Dyes and Pigments 2021, 187 , 109083. https://doi.org/10.1016/j.dyepig.2020.109083
    54. Elizabeth S. Li, Margaret S. Saha. Optimizing Calcium Detection Methods in Animal Systems: A Sandbox for Synthetic Biology. Biomolecules 2021, 11 (3) , 343. https://doi.org/10.3390/biom11030343
    55. Yosuke Niko, Shigeru Watanabe. Fluorescent Chemosensors. 2021, 377-408. https://doi.org/10.1007/978-981-33-4392-4_11
    56. Xiaoyun Chai, Weiwei Zhu, Qingguo Meng, Ting Wang. Si-rhodamine based water-soluble fluorescent probe for bioimaging of Cu+. Chinese Chemical Letters 2021, 32 (1) , 210-213. https://doi.org/10.1016/j.cclet.2020.11.032
    57. Ying Gao, Chao Wang, Weijie Chi, Xiaogang Liu. Molecular Origins of Heteroatom Engineering on the Emission Wavelength Tuning, Quantum Yield Variations and Fluorogenicity of NBD‐like SCOTfluors. Chemistry – An Asian Journal 2020, 15 (23) , 4082-4086. https://doi.org/10.1002/asia.202000966
    58. Koji Numasawa, Kenjiro Hanaoka, Takayuki Ikeno, Honami Echizen, Tomoe Ishikawa, Masakazu Morimoto, Toru Komatsu, Tasuku Ueno, Yuji Ikegaya, Tetsuo Nagano, Yasuteru Urano. A cytosolically localized far-red to near-infrared rhodamine-based fluorescent probe for calcium ions. The Analyst 2020, 145 (23) , 7736-7740. https://doi.org/10.1039/D0AN01739F
    59. Thomas Schwarze, Tobias Sprenger, Janine Riemer. 1,2,3‐Triazol‐1,4‐diyl‐Fluoroionophores for Zn 2+ , Mg 2+ and Ca 2+ based on Fluorescence Intensity Enhancements in Water. ChemistrySelect 2020, 5 (41) , 12727-12735. https://doi.org/10.1002/slct.202003695
    60. Xue-Xiang Zhang, Huan Qi, Ya-Lan Liu, Song-Qiu Yang, Peng Li, Yan Qiao, Pei-Yu Zhang, Shu-Hao Wen, Hai-long Piao, Ke-Li Han. A fluorophore's electron-deficiency does matter in designing high-performance near-infrared fluorescent probes. Chemical Science 2020, 11 (41) , 11205-11213. https://doi.org/10.1039/D0SC04411C
    61. Abed Saady, Pagidi Sudhakar, Molhm Nassir, Aharon Gedanken. Ultrasonic assisted synthesis of styrylpyridinium dyes: Optical properties and DFT calculations. Ultrasonics Sonochemistry 2020, 67 , 105182. https://doi.org/10.1016/j.ultsonch.2020.105182
    62. Mingning Zhu, Dongdong Lu, Qing Lian, Shanglin Wu, Wenkai Wang, L. Andrew Lyon, Weiguang Wang, Paulo Bártolo, Mark Dickinson, Brian R. Saunders. Highly swelling pH-responsive microgels for dual mode near infra-red fluorescence reporting and imaging. Nanoscale Advances 2020, 2 (9) , 4261-4271. https://doi.org/10.1039/D0NA00581A
    63. Dazhuang Xu, Lei Li, Chengchao Chu, Xiaoyong Zhang, Gang Liu. Advances and perspectives in near‐infrared fluorescent organic probes for surgical oncology. WIREs Nanomedicine and Nanobiotechnology 2020, 12 (5) https://doi.org/10.1002/wnan.1635
    64. Yunzhen Li, Fabio Falleroni, Simone Mortal, Ulisse Bocchero, Dan Cojoc, Vincent Torre. Calcium flares and compartmentalization in rod photoreceptors. Proceedings of the National Academy of Sciences 2020, 117 (35) , 21701-21710. https://doi.org/10.1073/pnas.2004909117
    65. Ulisse Bocchero, Fabio Falleroni, Simone Mortal, Yunzhen Li, Dan Cojoc, Trevor Lamb, Vincent Torre, . Mechanosensitivity is an essential component of phototransduction in vertebrate rods. PLOS Biology 2020, 18 (7) , e3000750. https://doi.org/10.1371/journal.pbio.3000750
    66. Linfang Wang, Jing Liu, Shengwei Zhao, Hongxing Zhang, Yuanqiang Sun, Aihua Wei, Wei Guo. Fluorescence imaging of hypochlorous acid and peroxynitrite in vitro and in vivo with emission wavelength beyond 750 nm. Chemical Communications 2020, 56 (56) , 7718-7721. https://doi.org/10.1039/D0CC02322A
    67. Zhonghui Zhang, Zhichao Liu, Yang Tian. A DNA-Based FLIM Reporter for Simultaneous Quantification of Lysosomal pH and Ca2+ during Autophagy Regulation. iScience 2020, 23 (7) , 101344. https://doi.org/10.1016/j.isci.2020.101344
    68. Haiyuan Ding, Longpeng Peng, Gangqiang Yuan, Liyi Zhou. Design, synthesis and bioimaging application of a novel two-photon xanthene fluorescence probe for ratiometric visualization of endogenous peroxynitrite in living cells and zebrafish. Dyes and Pigments 2020, 176 , 108232. https://doi.org/10.1016/j.dyepig.2020.108232
    69. Ahm Mohsinul Reza, Javad Tavakoli, Yabin Zhou, Jianguang Qin, Youhong Tang. Synthetic fluorescent probes to apprehend calcium signalling in lipid droplet accumulation in microalgae—an updated review. Science China Chemistry 2020, 63 (3) , 308-324. https://doi.org/10.1007/s11426-019-9664-7
    70. Xin Lin, Yanling Hu, Dongliang Yang, Bo Chen. Cyanine-coumarin composite NIR dye based instantaneous -response probe for biothiols detection and oxidative stress assessment of mitochondria. Dyes and Pigments 2020, 174 , 107956. https://doi.org/10.1016/j.dyepig.2019.107956
    71. Min Li, Chuanfeng Wang, Ting Wang, Mengting Fan, Ning Wang, Danying Ma, Ting Hu, Xiaoyan Cui. Asymmetric Si-rhodamine scaffolds: rational design of pH-durable protease-activated NIR probes in vivo. Chemical Communications 2020, 56 (16) , 2455-2458. https://doi.org/10.1039/C9CC09666C
    72. Shodai Takahashi, Kenjiro Hanaoka, Yohei Okubo, Honami Echizen, Takayuki Ikeno, Toru Komatsu, Tasuku Ueno, Kenzo Hirose, Masamitsu Iino, Tetsuo Nagano, Yasuteru Urano. Rational Design of a Near‐infrared Fluorescence Probe for Ca 2+ Based on Phosphorus‐substituted Rhodamines Utilizing Photoinduced Electron Transfer. Chemistry – An Asian Journal 2020, 15 (4) , 524-530. https://doi.org/10.1002/asia.201901689
    73. Ismail Ismail, Zhuoyue Chen, Xiuru Ji, Lu Sun, Long Yi, Zhen Xi. A Fast-Response Red Shifted Fluorescent Probe for Detection of H2S in Living Cells. Molecules 2020, 25 (3) , 437. https://doi.org/10.3390/molecules25030437
    74. Xin Lv, Chunmei Gao, Taihe Han, Hu Shi, Wei Guo. Improving the quantum yields of fluorophores by inhibiting twisted intramolecular charge transfer using electron-withdrawing group-functionalized piperidine auxochromes. Chemical Communications 2020, 56 (5) , 715-718. https://doi.org/10.1039/C9CC09138F
    75. Mei Zhao, Yu-Shuang Guo, Wei-Na Xu, Yan-Fang Zhao, Han-Yi Xie, Hui-Juan Li, Xiang-Feng Chen, Ru-Song Zhao, Dian-Shun Guo. Far-red to near-infrared fluorescent probes based on silicon-substituted xanthene dyes for sensing and imaging. TrAC Trends in Analytical Chemistry 2020, 122 , 115704. https://doi.org/10.1016/j.trac.2019.115704
    76. S. Jaswal, J. Kumar. Review on fluorescent donor–acceptor conjugated system as molecular probes. Materials Today: Proceedings 2020, 26 , 566-580. https://doi.org/10.1016/j.matpr.2019.12.161
    77. Roopa, Naresh Kumar, Manoj Kumar, Vandana Bhalla. Design and Applications of Small Molecular Probes for Calcium Detection. Chemistry – An Asian Journal 2019, 14 (24) , 4493-4505. https://doi.org/10.1002/asia.201901149
    78. Guo-Jiang Mao, Zhen-Zhen Liang, Guang-Qi Gao, Ying-Ying Wang, Xin-Yu Guo, Li Su, Hua Zhang, Qiu-Juan Ma, Guisheng Zhang. A photostable Si-rhodamine-based near-infrared fluorescent probe for monitoring lysosomal pH during heat stroke. Analytica Chimica Acta 2019, 1092 , 117-125. https://doi.org/10.1016/j.aca.2019.09.053
    79. Tsuyoshi Fukushima, Yosuke Tanaka, Fiona K. Hamey, Chih-Hsiang Chang, Toshihiko Oki, Shuhei Asada, Yasutaka Hayashi, Takeshi Fujino, Taishi Yonezawa, Reina Takeda, Kimihito Cojin Kawabata, Tomofusa Fukuyama, Terumasa Umemoto, Keiyo Takubo, Hitoshi Takizawa, Susumu Goyama, Yasushi Ishihama, Hiroaki Honda, Berthold Göttgens, Toshio Kitamura. Discrimination of Dormant and Active Hematopoietic Stem Cells by G0 Marker Reveals Dormancy Regulation by Cytoplasmic Calcium. Cell Reports 2019, 29 (12) , 4144-4158.e7. https://doi.org/10.1016/j.celrep.2019.11.061
    80. Yuichiro Koide, Ryosuke Kojima, Kenjiro Hanaoka, Koji Numasawa, Toru Komatsu, Tetsuo Nagano, Hisataka Kobayashi, Yasuteru Urano. Design strategy for germanium-rhodamine based pH-activatable near-infrared fluorescence probes suitable for biological applications. Communications Chemistry 2019, 2 (1) https://doi.org/10.1038/s42004-019-0194-4
    81. Kyeong Hwan Kim, Subhankar Singha, Yong Woong Jun, Ye Jin Reo, Hye Rim Kim, Hye Gun Ryu, Snehasis Bhunia, Kyo Han Ahn. Far-red/near-infrared emitting, two-photon absorbing, and bio-stable amino-Si-pyronin dyes. Chemical Science 2019, 10 (39) , 9028-9037. https://doi.org/10.1039/C9SC02287B
    82. Fei Deng, Zhaochao Xu. Heteroatom-substituted rhodamine dyes: Structure and spectroscopic properties. Chinese Chemical Letters 2019, 30 (10) , 1667-1681. https://doi.org/10.1016/j.cclet.2018.12.012
    83. Min Li, Yuntao Li, Xijing Wang, Xiaoyan Cui, Ting Wang. Synthesis and application of near-infrared substituted rhodamines. Chinese Chemical Letters 2019, 30 (10) , 1682-1688. https://doi.org/10.1016/j.cclet.2019.06.036
    84. Xiuqi Kong, Min Li, Baoli Dong, Nan Zhang, Wenhui Song, Yaru Lu, Weiying Lin. A near-infrared and two-photon dual-mode fluorescent probe for the colorimetric monitoring of SO 2 in vitro and in vivo. The Analyst 2019, 144 (14) , 4371-4379. https://doi.org/10.1039/C9AN00515C
    85. Asaithambi Gomathi, Periasamy Viswanathamurthi. Near-infrared fluorogenic switches for the detection of Hg( ii ) ions: applications in real samples and living cells. Analytical Methods 2019, 11 (21) , 2769-2777. https://doi.org/10.1039/C9AY00241C
    86. Hong Zhang, Kun Li, Ling-Ling Li, Kang-Kang Yu, Xin-Yao Liu, Meng-Yang Li, Nan Wang, Yan-Hong Liu, Xiao-Qi Yu. Pyridine-Si-xanthene: A novel near-infrared fluorescent platform for biological imaging. Chinese Chemical Letters 2019, 30 (5) , 1063-1066. https://doi.org/10.1016/j.cclet.2019.03.017
    87. Navjeevan S Soor, Peter Quicke, Carmel L Howe, Kuin T Pang, Mark A A Neil, Simon R Schultz, Amanda J Foust. All-optical crosstalk-free manipulation and readout of Chronos-expressing neurons. Journal of Physics D: Applied Physics 2019, 52 (10) , 104002. https://doi.org/10.1088/1361-6463/aaf944
    88. Zoe T. Cook, Nicole L. Brockway, Zachary J. C. Tobias, Joy Pajarla, Isaac S. Boardman, Helen Ippolito, Sylvia Nkombo Nkoula, Tamily A. Weissman, . Combining near-infrared fluorescence with Brainbow to visualize expression of specific genes within a multicolor context. Molecular Biology of the Cell 2019, 30 (4) , 491-505. https://doi.org/10.1091/mbc.E18-06-0340
    89. Stefan Schramm, Dieter Weiß. Fluorescent heterocycles: Recent trends and new developments. 2019, 103-179. https://doi.org/10.1016/bs.aihch.2018.10.003
    90. Jessica Matthias, Thines Kanagasundaram, Klaus Kopka, Carsten S Kramer. Synthesis of a dihalogenated pyridinyl silicon rhodamine for mitochondrial imaging by a halogen dance rearrangement. Beilstein Journal of Organic Chemistry 2019, 15 , 2333-2343. https://doi.org/10.3762/bjoc.15.226
    91. Thines Kanagasundaram, Antje Timmermann, Carsten S Kramer, Klaus Kopka. A new approach to silicon rhodamines by Suzuki–Miyaura coupling – scope and limitations. Beilstein Journal of Organic Chemistry 2019, 15 , 2569-2576. https://doi.org/10.3762/bjoc.15.250
    92. Aurélien Ducrot, Arnaud Tron, Robin Bofinger, Ingrid Sanz Beguer, Jean-Luc Pozzo, Nathan D McClenaghan. Photoreversible stretching of a BAPTA chelator marshalling Ca 2+ -binding in aqueous media. Beilstein Journal of Organic Chemistry 2019, 15 , 2801-2811. https://doi.org/10.3762/bjoc.15.273
    93. Marco Matos, Anthony Bosson, Ilse Riebe, Clare Reynell, Joanne Vallée, Isabel Laplante, Aude Panatier, Richard Robitaille, Jean-Claude Lacaille. Astrocytes detect and upregulate transmission at inhibitory synapses of somatostatin interneurons onto pyramidal cells. Nature Communications 2018, 9 (1) https://doi.org/10.1038/s41467-018-06731-y
    94. Genichiro Tsuji, Takayuki Hattori, Masashi Kato, Wataru Hakamata, Hideshi Inoue, Mikihiko Naito, Masaaki Kurihara, Yosuke Demizu, Takuji Shoda. Design and synthesis of cell-permeable fluorescent nitrilotriacetic acid derivatives. Bioorganic & Medicinal Chemistry 2018, 26 (20) , 5494-5498. https://doi.org/10.1016/j.bmc.2018.09.028
    95. Qing Wang, Kun Huang, Songtao Cai, Chang Liu, Xiaojie Jiao, Song He, Liancheng Zhao, Xianshun Zeng. Synthesis of near-infrared fluorescent rhodamines via an S N Ar H reaction and their biological applications. Organic & Biomolecular Chemistry 2018, 16 (39) , 7163-7169. https://doi.org/10.1039/C8OB01701H
    96. Taniyuki Furuyama, Daichi Tamura, Hajime Maeda, Masahito Segi. Synthesis and peripheral substituent effects of bay-annulated indigo derivatives. Tetrahedron Letters 2018, 59 (30) , 2913-2916. https://doi.org/10.1016/j.tetlet.2018.06.036
    97. Hongxing Zhang, Jing Liu, Linfang Wang, Minjia Sun, Xiaohan Yan, Juanjuan Wang, Jian-Ping Guo, Wei Guo. Amino-Si-rhodamines: A new class of two-photon fluorescent dyes with intrinsic targeting ability for lysosomes. Biomaterials 2018, 158 , 10-22. https://doi.org/10.1016/j.biomaterials.2017.12.013
    98. Jidong Zhang, Zhan Yan, Shen Wang, Mengyao She, Zhao Zhang, Wangzhao Cai, Ping Liu, Jianli Li. Water soluble chemosensor for Ca 2+ based on aggregation-induced emission characteristics and its fluorescence imaging in living cells. Dyes and Pigments 2018, 150 , 112-120. https://doi.org/10.1016/j.dyepig.2017.11.012
    99. Christian Fischer, Christof Sparr. Direkte Umwandlung von Estern in heterocyclische Fluorophore. Angewandte Chemie 2018, 130 (9) , 2461-2465. https://doi.org/10.1002/ange.201711296
    100. Christian Fischer, Christof Sparr. Direct Transformation of Esters into Heterocyclic Fluorophores. Angewandte Chemie International Edition 2018, 57 (9) , 2436-2440. https://doi.org/10.1002/anie.201711296
    Load all citations

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2011, 133, 36, 14157–14159
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja205809h
    Published August 9, 2011
    Copyright © 2011 American Chemical Society

    Article Views

    9306

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.