ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Porphyrin FRET Acceptors for Apoptosis Induction and Monitoring

View Author Information
# Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada, M5G 1L7
Department of Medical Biophysics, Ontario Cancer Institute, University of Toronto, Toronto, Ontario, Canada, M5G 1L7
Cite this: J. Am. Chem. Soc. 2011, 133, 46, 18580–18582
Publication Date (Web):October 25, 2011
https://doi.org/10.1021/ja2083569
Copyright © 2011 American Chemical Society

    Article Views

    4739

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Photodynamic therapy (PDT) stands to benefit from improved approaches to real-time treatment monitoring. One method is to use activatable photosensitizers that can both induce cell death (via singlet oxygen) and monitor it (via caspase detection). Here, we report porphyrins as caspase-responsive Forster Resonance Energy Transfer (FRET) acceptors to organic fluorophore donors. Compared to porphyrin FRET donor constructs, singlet oxygen generation was unquenched prior to caspase activation, resulting in more efficient photosensitization in HT-29 cancer cells. The donor 5-Carboxy-X-Rhodamine (Rox) formed a robust FRET pair with the pyropheophorbide (Pyro) acceptor. The large dynamic range of the construct enabled ratiometric imaging (with Rox excitation) of caspase activation in live, single cells following induction of cell death (with Pyro excitation) using a single agent. Quantitative, unquenched activatable photosensitizers (QUaPS) hold potential for new feedback-oriented PDT approaches.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Experimental procedures, HPLC-MS analysis of QUaPS, and FRET ratio stability with respect to concentration and light exposure. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 82 publications.

    1. Thanh Chung Pham, Van-Nghia Nguyen, Yeonghwan Choi, Songyi Lee, Juyoung Yoon. Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy. Chemical Reviews 2021, 121 (21) , 13454-13619. https://doi.org/10.1021/acs.chemrev.1c00381
    2. Bo Hu, Qin Zhang, Xiaonan Gao, Kehua Xu, Bo Tang. Monitoring the Activation of Caspases-1/3/4 for Describing the Pyroptosis Pathways of Cancer Cells. Analytical Chemistry 2021, 93 (35) , 12022-12031. https://doi.org/10.1021/acs.analchem.1c02158
    3. Natalia I. Rubtsova, Michael C. Hart, Alejandro D. Arroyo, Sofya A. Osharovich, Benjamin K. Liebov, Joann Miller, Min Yuan, Jeffrey M. Cochran, Sanghoon Chong, Arjun G. Yodh, Theresa M. Busch, E. James Delikatny, Nadia Anikeeva, Anatoliy V. Popov. NIR Fluorescent Imaging and Photodynamic Therapy with a Novel Theranostic Phospholipid Probe for Triple-Negative Breast Cancer Cells. Bioconjugate Chemistry 2021, 32 (8) , 1852-1863. https://doi.org/10.1021/acs.bioconjchem.1c00295
    4. Binlong Chen, Ye Yang, Yaoqi Wang, Yue Yan, Zenghui Wang, Qingqing Yin, Qiang Zhang, Yiguang Wang. Precise Monitoring of Singlet Oxygen in Specific Endocytic Organelles by Super-pH-Resolved Nanosensors. ACS Applied Materials & Interfaces 2021, 13 (16) , 18533-18544. https://doi.org/10.1021/acsami.1c01730
    5. Wenjun Qin, Yu Wu, Yunhong Hu, Yanming Dong, Tonghui Hao, Cheng Zhang. TPE-Based Peptide Micelles for Targeted Tumor Therapy and Apoptosis Monitoring. ACS Applied Bio Materials 2021, 4 (1) , 1038-1044. https://doi.org/10.1021/acsabm.0c01493
    6. Mariia Faustova, Elena Nikolskaya, Maria Sokol, Margarita Fomicheva, Rem Petrov, Nikita Yabbarov. Metalloporphyrins in Medicine: From History to Recent Trends. ACS Applied Bio Materials 2020, 3 (12) , 8146-8171. https://doi.org/10.1021/acsabm.0c00941
    7. Yuyi Li, Xiaobo Zhang, Yue Zhang, Yue Zhang, Yuling He, Ying Liu, Huangxian Ju. Activatable Photodynamic Therapy with Therapeutic Effect Prediction Based on a Self-correction Upconversion Nanoprobe. ACS Applied Materials & Interfaces 2020, 12 (17) , 19313-19323. https://doi.org/10.1021/acsami.0c03432
    8. Qiong Wu, Na Xia, Dan Long, Longfei Tan, Wei Rao, Jie Yu, Changhui Fu, Xiangling Ren, Hongbo Li, Li Gou, Ping Liang, Jun Ren, Laifeng Li, Xianwei Meng. Dual-Functional Supernanoparticles with Microwave Dynamic Therapy and Microwave Thermal Therapy. Nano Letters 2019, 19 (8) , 5277-5286. https://doi.org/10.1021/acs.nanolett.9b01735
    9. Yuanbo Wang, Wenbo Wu, Jingjing Liu, Purnima Naresh Manghnani, Fang Hu, Dou Ma, Cathleen Teh, Bo Wang, Bin Liu. Cancer-Cell-Activated Photodynamic Therapy Assisted by Cu(II)-Based Metal–Organic Framework. ACS Nano 2019, 13 (6) , 6879-6890. https://doi.org/10.1021/acsnano.9b01665
    10. Xiangdong Xue, Aaron Lindstrom, Yuanpei Li. Porphyrin-Based Nanomedicines for Cancer Treatment. Bioconjugate Chemistry 2019, 30 (6) , 1585-1603. https://doi.org/10.1021/acs.bioconjchem.9b00231
    11. Miloslav Machacek, Jiri Demuth, Pavel Cermak, Magda Vavreckova, Lenka Hruba, Adela Jedlickova, Pavel Kubat, Tomas Simunek, Veronika Novakova, and Petr Zimcik . Tetra(3,4-pyrido)porphyrazines Caught in the Cationic Cage: Toward Nanomolar Active Photosensitizers. Journal of Medicinal Chemistry 2016, 59 (20) , 9443-9456. https://doi.org/10.1021/acs.jmedchem.6b01140
    12. Xiao-Qiang Wang, Qi Lei, Jing-Yi Zhu, Wen-Jing Wang, Qian Cheng, Fan Gao, Yun-Xia Sun, and Xian-Zheng Zhang . Cucurbit[8]uril Regulated Activatable Supramolecular Photosensitizer for Targeted Cancer Imaging and Photodynamic Therapy. ACS Applied Materials & Interfaces 2016, 8 (35) , 22892-22899. https://doi.org/10.1021/acsami.6b07507
    13. Ruoyu Zhang, Guangxue Feng, Chong-Jing Zhang, Xiaolei Cai, Xiamin Cheng, and Bin Liu . Real-Time Specific Light-Up Sensing of Transferrin Receptor: Image-Guided Photodynamic Ablation of Cancer Cells through Controlled Cytomembrane Disintegration. Analytical Chemistry 2016, 88 (9) , 4841-4848. https://doi.org/10.1021/acs.analchem.6b00524
    14. Hao-Ran Jia, Hong-Yin Wang, Zhi-Wu Yu, Zhan Chen, and Fu-Gen Wu . Long-Time Plasma Membrane Imaging Based on a Two-Step Synergistic Cell Surface Modification Strategy. Bioconjugate Chemistry 2016, 27 (3) , 782-789. https://doi.org/10.1021/acs.bioconjchem.6b00003
    15. Jingjing Wang, Liwen Zhang, Minglong Chen, Shi Gao, and Lei Zhu . Activatable Ferritin Nanocomplex for Real-Time Monitoring of Caspase-3 Activation during Photodynamic Therapy. ACS Applied Materials & Interfaces 2015, 7 (41) , 23248-23256. https://doi.org/10.1021/acsami.5b07316
    16. Ashley D. Bromby, Samantha N. Keller, Kevin J. A. Bozek, Vance E. Williams, and Todd C. Sutherland . Pi-Extended Ethynyl 21,23-Dithiaporphyrins: A Synthesis and Comparative Study of Electrochemical, Optical, and Self-Assembling Properties. The Journal of Organic Chemistry 2015, 80 (19) , 9401-9409. https://doi.org/10.1021/acs.joc.5b01299
    17. Adam Meares, Andrius Satraitis, Nithya Santhanam, Zhanqian Yu, and Marcin Ptaszek . Deep-Red Emissive BODIPY–Chlorin Arrays Excitable with Green and Red Wavelengths. The Journal of Organic Chemistry 2015, 80 (8) , 3858-3869. https://doi.org/10.1021/acs.joc.5b00119
    18. Kenneth K. Ng, Misa Takada, Cheng C.S. Jin, and Gang Zheng . Self-Sensing Porphysomes for Fluorescence-Guided Photothermal Therapy. Bioconjugate Chemistry 2015, 26 (2) , 345-351. https://doi.org/10.1021/bc500595d
    19. Youyong Yuan, Ryan T. K. Kwok, Ben Zhong Tang, and Bin Liu . Targeted Theranostic Platinum(IV) Prodrug with a Built-In Aggregation-Induced Emission Light-Up Apoptosis Sensor for Noninvasive Early Evaluation of Its Therapeutic Responses in Situ. Journal of the American Chemical Society 2014, 136 (6) , 2546-2554. https://doi.org/10.1021/ja411811w
    20. Haibin Shi, Ryan T. K. Kwok, Jianzhao Liu, Bengang Xing, Ben Zhong Tang, and Bin Liu . Real-Time Monitoring of Cell Apoptosis and Drug Screening Using Fluorescent Light-Up Probe with Aggregation-Induced Emission Characteristics. Journal of the American Chemical Society 2012, 134 (43) , 17972-17981. https://doi.org/10.1021/ja3064588
    21. Shijo Francis, Leena Rajith. Water soluble porphyrin for the determination of Cd2+ metal ion and glucose. Journal of Photochemistry and Photobiology A: Chemistry 2024, 449 , 115352. https://doi.org/10.1016/j.jphotochem.2023.115352
    22. Carla Queirós, Andreia Leite, Nuno M.M. Moura, Ana F.R. Cerqueira, Vanda V. Serra, Maria G.P.M.S. Neves, Augusto C. Tomé, Ana M.G. Silva. Exploring the reactivity of formylporphyrins with 3-(diethylamino)phenol. Synthesis, spectroscopic properties and singlet oxygen generation of a new porphyrin–rosamine conjugate. Dyes and Pigments 2023, 217 , 111431. https://doi.org/10.1016/j.dyepig.2023.111431
    23. Büşra Say, Beytullah Tatar, Betül Üzülmez, Melike Ebrar Bakırcı, Gülcihan Gülseren, Yusuf Cakmak. Caging of Bodipy Photosensitizers through Hydrazone Bond Formation and their Activation Dynamics. ChemMedChem 2023, 18 (13) https://doi.org/10.1002/cmdc.202300199
    24. Mengxue Li, Hanxin Xu, Jinxing Hou, Feihu Yang, Jianxin Sun, Chunxi Hou, Junqiu Liu. Enhanced Energy Transfer in the Co‐assembly of Donor‐Receptor Polymer Nanoparticles: An Artificial Light Capture System to Trigger Effective Photodynamic Antibacterial Processes. ChemistrySelect 2023, 8 (18) https://doi.org/10.1002/slct.202301081
    25. Shijo Francis, Nimisha Sunny, Leena Rajith. Picomolar selective fluorescent detection of creatinine using porphyrin in aqueous medium. Journal of Photochemistry and Photobiology A: Chemistry 2023, 438 , 114534. https://doi.org/10.1016/j.jphotochem.2022.114534
    26. Guo-Qing Jin, Jing-Xiang Wang, Jianhua Lu, Hang Zhang, Yuhang Yao, Yingying Ning, Hua Lu, Song Gao, Jun-Long Zhang. Two birds one stone: β-fluoropyrrolyl-cysteine S N Ar chemistry enabling functional porphyrin bioconjugation. Chemical Science 2023, 14 (8) , 2070-2081. https://doi.org/10.1039/D2SC06209G
    27. Longmeng Li, Aaron R. Lindstrom, Andrew C. Birkeland, Menghuan Tang, Tzu-Yin Lin, Yikai Zhou, Bai Xiang, Xiangdong Xue, Yuanpei Li. Deep tumor-penetrating nano-delivery strategy to improve diagnosis and therapy in patient-derived xenograft (PDX) oral cancer model and patient tissue. Nano Research 2023, 16 (2) , 2927-2937. https://doi.org/10.1007/s12274-022-5047-2
    28. Qian Lei, Xueyan Huang, Lijuan Zheng, Fan Zheng, Jie Dong, Fei Chen, Wenbin Zeng. Biosensors for Caspase-3: From chemical methodologies to biomedical applications. Talanta 2022, 240 , 123198. https://doi.org/10.1016/j.talanta.2021.123198
    29. Miffy Hok Yan Cheng, Yulin Mo, Gang Zheng. Nano versus Molecular: Optical Imaging Approaches to Detect and Monitor Tumor Hypoxia. Advanced Healthcare Materials 2021, 10 (2) https://doi.org/10.1002/adhm.202001549
    30. Weirong Mo, Nayan J. Patel, Yihui Chen, Ravindra Pandey, Ulas Sunar. Mapping fluorescence resonance energy transfer parameters of a bifunctional agent using time‐domain fluorescence diffuse optical tomography. Journal of Biophotonics 2021, 14 (1) https://doi.org/10.1002/jbio.202000291
    31. Yuqiong Shi, Yuxuan Wang, Jinhua Zhu, Wei Liu, Md. Zaved H. Khan, Xiuhua Liu. Molecularly Imprinting Polymers (MIP) Based on Nitrogen Doped Carbon Dots and MIL-101(Fe) for Doxorubicin Hydrochloride Delivery. Nanomaterials 2020, 10 (9) , 1655. https://doi.org/10.3390/nano10091655
    32. Xiaonan Gao, Jia Li, Mingming Luan, Yanhua Li, Wei Pan, Na Li, Bo Tang. Real-time in situ monitoring of signal molecules’ evolution in apoptotic pathway via Au–Se bond constructed nanoprobe. Biosensors and Bioelectronics 2020, 147 , 111755. https://doi.org/10.1016/j.bios.2019.111755
    33. Wenhao Zhai, Yongkang Zhang, Ming Liu, Hao Zhang, Junqing Zhang, Changhua Li. Universal Scaffold for an Activatable Photosensitizer with Completely Inhibited Photosensitivity. Angewandte Chemie International Edition 2019, 58 (46) , 16601-16609. https://doi.org/10.1002/anie.201907510
    34. Wenhao Zhai, Yongkang Zhang, Ming Liu, Hao Zhang, Junqing Zhang, Changhua Li. Universal Scaffold for an Activatable Photosensitizer with Completely Inhibited Photosensitivity. Angewandte Chemie 2019, 131 (46) , 16754-16762. https://doi.org/10.1002/ange.201907510
    35. Wen‐Jing Shi, Dennis K. P. Ng, Shirui Zhao, Pui‐Chi Lo. A Phthalocyanine‐Based Glutathione‐Activated Photosensitizer with a Ferrocenyl Boron Dipyrromethene Dark Quencher for Photodynamic Therapy. ChemPhotoChem 2019, 3 (10) , 1004-1013. https://doi.org/10.1002/cptc.201900115
    36. Hai-Yan Wang, Pei-Pei Cao, Zheng-Ying He, Xi-Wen He, Wen-You Li, Yu-Hao Li, Yu-Kui Zhang. Targeted imaging and targeted therapy of breast cancer cells via fluorescent double template-imprinted polymer coated silicon nanoparticles by an epitope approach. Nanoscale 2019, 11 (36) , 17018-17030. https://doi.org/10.1039/C9NR04655K
    37. Yuting Gao, Xiuxia Wang, Xuewen He, Zhenyan He, Xiang Yang, Sidan Tian, Fanling Meng, Dan Ding, Liang Luo, Ben Zhong Tang. A Dual‐Functional Photosensitizer for Ultraefficient Photodynamic Therapy and Synchronous Anticancer Efficacy Monitoring. Advanced Functional Materials 2019, 29 (32) https://doi.org/10.1002/adfm.201902673
    38. Hong Cheng, Gui-Ling Fan, Jing-Hao Fan, Lin-Ping Zhao, Rong-Rong Zheng, Xi-Yong Yu, Shi-Ying Li. Ratiometric theranostic nanoprobe for pH imaging-guided photodynamic therapy. Nanoscale 2019, 11 (18) , 9008-9014. https://doi.org/10.1039/C9NR00093C
    39. Joseph M. Keca, Michael S. Valic, Miffy H. Y. Cheng, Wenlei Jiang, Marta Overchuk, Juan Chen, Gang Zheng. Mixed and Matched Metallo‐Nanotexaphyrin for Customizable Biomedical Imaging. Advanced Healthcare Materials 2019, 8 (6) https://doi.org/10.1002/adhm.201800857
    40. Benjamin M. Luby, Connor D. Walsh, Gang Zheng. Advanced Photosensitizer Activation Strategies for Smarter Photodynamic Therapy Beacons. Angewandte Chemie 2019, 131 (9) , 2580-2591. https://doi.org/10.1002/ange.201805246
    41. Benjamin M. Luby, Connor D. Walsh, Gang Zheng. Advanced Photosensitizer Activation Strategies for Smarter Photodynamic Therapy Beacons. Angewandte Chemie International Edition 2019, 58 (9) , 2558-2569. https://doi.org/10.1002/anie.201805246
    42. Zhi-Wei Wang, Dan Su, Xiao-Qiang Li, Jing-Jing Cao, De-Chao Yang, Jian-Yong Liu. A H2O2-Responsive Boron Dipyrromethene-Based Photosensitizer for Imaging-Guided Photodynamic Therapy. Molecules 2019, 24 (1) , 32. https://doi.org/10.3390/molecules24010032
    43. I. I. Shepeleva, A. V. Shokurov, N. V. Konovalova, V. V. Arslanov, P. A. Panchenko, S. L. Selektor. Nonradiative energy transfer in mixed Langmuir monolayers and Langmuir–Blodgett films of compounds of different chemical composition and structure. Russian Chemical Bulletin 2018, 67 (12) , 2159-2163. https://doi.org/10.1007/s11172-018-2348-4
    44. Susan Callaghan, Mathias O. Senge. The good, the bad, and the ugly – controlling singlet oxygen through design of photosensitizers and delivery systems for photodynamic therapy. Photochemical & Photobiological Sciences 2018, 17 (11) , 1490-1514. https://doi.org/10.1039/C8PP00008E
    45. Susan Callaghan, Mathias O. Senge. The good, the bad, and the ugly–controlling singlet oxygen through design of photosensitizers and delivery systems for photodynamic therapy. Photochemical & Photobiological Sciences 2018, 17 (11) , 1490-1514. https://doi.org/10.1039/c8pp00008e
    46. Fang Hu, Shidang Xu, Bin Liu. Photosensitizers with Aggregation-Induced Emission: Materials and Biomedical Applications. Advanced Materials 2018, 30 (45) , 1801350. https://doi.org/10.1002/adma.201801350
    47. Fang Hu, Duo Mao, Kenry, Yuxiang Wang, Wenbo Wu, Dan Zhao, Deling Kong, Bin Liu. Metal–Organic Framework as a Simple and General Inert Nanocarrier for Photosensitizers to Implement Activatable Photodynamic Therapy. Advanced Functional Materials 2018, 28 (19) https://doi.org/10.1002/adfm.201707519
    48. Li‐Sen Lin, Jibin Song, Liang Song, Kaimei Ke, Yijing Liu, Zijian Zhou, Zheyu Shen, Juan Li, Zhen Yang, Wei Tang, Gang Niu, Huang‐Hao Yang, Xiaoyuan Chen. Simultaneous Fenton‐like Ion Delivery and Glutathione Depletion by MnO 2 ‐Based Nanoagent to Enhance Chemodynamic Therapy. Angewandte Chemie 2018, 130 (18) , 4996-5000. https://doi.org/10.1002/ange.201712027
    49. Li‐Sen Lin, Jibin Song, Liang Song, Kaimei Ke, Yijing Liu, Zijian Zhou, Zheyu Shen, Juan Li, Zhen Yang, Wei Tang, Gang Niu, Huang‐Hao Yang, Xiaoyuan Chen. Simultaneous Fenton‐like Ion Delivery and Glutathione Depletion by MnO 2 ‐Based Nanoagent to Enhance Chemodynamic Therapy. Angewandte Chemie International Edition 2018, 57 (18) , 4902-4906. https://doi.org/10.1002/anie.201712027
    50. Huangxian Ju. Functional nanomaterials and nanoprobes for amplified biosensing. Applied Materials Today 2018, 10 , 51-71. https://doi.org/10.1016/j.apmt.2017.11.001
    51. Marcin Ptaszek. Hydroporphyrins in Fluorescence In Vivo Imaging. 2018, 21-51. https://doi.org/10.1007/978-3-030-01569-5_2
    52. Xiangfei Kong, Hongkang Gong, Shengping Dai, Wei Yao, Linping Mu, Shufen Zhang, Guixia Wang. Mesogenic complementary absorbing dyads based on porphyrin and perylene units. Journal of Porphyrins and Phthalocyanines 2018, 22 (01n03) , 221-232. https://doi.org/10.1142/S1088424618500165
    53. Wentao Song, Yang Zhou, Jonathan F. Lovell. 12 Theranostic applications of photodynamic molecular beacons. 2017, 249-258. https://doi.org/10.1201/9781315278179-13
    54. Xingshu Li, Safacan Kolemen, Juyoung Yoon, Engin U. Akkaya. Activatable Photosensitizers: Agents for Selective Photodynamic Therapy. Advanced Functional Materials 2017, 27 (5) https://doi.org/10.1002/adfm.201604053
    55. Youyong Yuan, Chong-Jing Zhang, Ryan T. K. Kwok, Duo Mao, Ben Zhong Tang, Bin Liu. Light-up probe based on AIEgens: dual signal turn-on for caspase cascade activation monitoring. Chemical Science 2017, 8 (4) , 2723-2728. https://doi.org/10.1039/C6SC04322D
    56. Shi-Ying Li, Hong Cheng, Bo-Ru Xie, Wen-Xiu Qiu, Li-Lin Song, Ren-Xi Zhuo, Xian-Zheng Zhang. A ratiometric theranostic probe for tumor targeting therapy and self-therapeutic monitoring. Biomaterials 2016, 104 , 297-309. https://doi.org/10.1016/j.biomaterials.2016.07.024
    57. Chi‐Fai Chan, Yan Zhou, Hongyu Guo, Junying Zhang, Lijun Jiang, Wei Chen, Kwok‐Keung Shiu, Wai‐Kwok Wong, Ka‐Leung Wong. pH‐Dependent Cancer‐Directed Photodynamic Therapy by a Water‐Soluble Graphitic‐Phase Carbon Nitride–Porphyrin Nanoprobe. ChemPlusChem 2016, 81 (6) , 535-540. https://doi.org/10.1002/cplu.201600085
    58. Fang Xu, Lai Ding, Wei Tao, Xian-zhu Yang, Hai-sheng Qian, Ri-sheng Yao. Mesoporous-silica-coated upconversion nanoparticles loaded with vitamin B12 for near-infrared-light mediated photodynamic therapy. Materials Letters 2016, 167 , 205-208. https://doi.org/10.1016/j.matlet.2015.12.105
    59. Yizhong Shen, Adam J. Shuhendler, Deju Ye, Jing-Juan Xu, Hong-Yuan Chen. Two-photon excitation nanoparticles for photodynamic therapy. Chemical Society Reviews 2016, 45 (24) , 6725-6741. https://doi.org/10.1039/C6CS00442C
    60. Xiaochun Chen, Shaoming Yu, Liang Yang, Jianping Wang, Changlong Jiang. Fluorescence and visual detection of fluoride ions using a photoluminescent graphene oxide paper sensor. Nanoscale 2016, 8 (28) , 13669-13677. https://doi.org/10.1039/C6NR02878K
    61. Fang Xu, Jin Li, Ting-ting Zhu, Sheng-Song Yu, Chong Zuo, Ri-sheng Yao, Hai-sheng Qian. A new trick (hydroxyl radical generation) of an old vitamin (B 2 ) for near-infrared-triggered photodynamic therapy. RSC Advances 2016, 6 (104) , 102647-102656. https://doi.org/10.1039/C6RA23440B
    62. Youyong Yuan, Ruoyu Zhang, Xiamin Cheng, Shidang Xu, Bin Liu. A FRET probe with AIEgen as the energy quencher: dual signal turn-on for self-validated caspase detection. Chemical Science 2016, 7 (7) , 4245-4250. https://doi.org/10.1039/C6SC00055J
    63. Songeun Beack, Won Ho Kong, Ho Sang Jung, In Hwan Do, Seulgi Han, Hyemin Kim, Ki Su Kim, Seok Hyun Yun, Sei Kwang Hahn. Photodynamic therapy of melanoma skin cancer using carbon dot – chlorin e6 – hyaluronate conjugate. Acta Biomaterialia 2015, 26 , 295-305. https://doi.org/10.1016/j.actbio.2015.08.027
    64. Le Zhai, Ke-Wu Yang. Porphyrin-vancomycin: A highly promising conjugate for the identification and photodynamic inactivation of antibiotic resistant Gram-positive pathogens. Dyes and Pigments 2015, 120 , 228-238. https://doi.org/10.1016/j.dyepig.2015.04.017
    65. Youyong Yuan, Chong-Jing Zhang, Meng Gao, Ruoyu Zhang, Ben Zhong Tang, Bin Liu. Specific Light-Up Bioprobe with Aggregation-Induced Emission and Activatable Photoactivity for the Targeted and Image-Guided Photodynamic Ablation of Cancer Cells. Angewandte Chemie 2015, 127 (6) , 1800-1806. https://doi.org/10.1002/ange.201408476
    66. Youyong Yuan, Chong‐Jing Zhang, Meng Gao, Ruoyu Zhang, Ben Zhong Tang, Bin Liu. Specific Light‐Up Bioprobe with Aggregation‐Induced Emission and Activatable Photoactivity for the Targeted and Image‐Guided Photodynamic Ablation of Cancer Cells. Angewandte Chemie International Edition 2015, 54 (6) , 1780-1786. https://doi.org/10.1002/anie.201408476
    67. T. Wu, S. Kaur, N. R. Branda. Energy transfer between amphiphilic porphyrin polymer shells and upconverting nanoparticle cores in water-dispersible nano-assemblies. Organic & Biomolecular Chemistry 2015, 13 (8) , 2317-2322. https://doi.org/10.1039/C4OB02401J
    68. Lei Zhang, Jianping Lei, Fengjiao Ma, Pinghua Ling, Jintong Liu, Huangxian Ju. A porphyrin photosensitized metal–organic framework for cancer cell apoptosis and caspase responsive theranostics. Chemical Communications 2015, 51 (54) , 10831-10834. https://doi.org/10.1039/C5CC03028E
    69. Lei Zhang, Jianping Lei, Jintong Liu, Fengjiao Ma, Huangxian Ju. In situ activation and monitoring of the evolution of the intracellular caspase family. Chemical Science 2015, 6 (6) , 3365-3372. https://doi.org/10.1039/C5SC00471C
    70. Jianzhang Zhao, Ling Huang, Xiaoneng Cui, Shujing Li, Huijian Wu. Maximizing the thiol-activated photodynamic and fluorescence imaging functionalities of theranostic reagents by modularization of Bodipy-based dyad triplet photosensitizers. Journal of Materials Chemistry B 2015, 3 (47) , 9194-9211. https://doi.org/10.1039/C5TB01857A
    71. Dan Ding, Jing Liang, Haibin Shi, Ryan T. K. Kwok, Meng Gao, Guangxue Feng, Youyong Yuan, Ben Zhong Tang, Bin Liu. Light-up bioprobe with aggregation-induced emission characteristics for real-time apoptosis imaging in target cancer cells. J. Mater. Chem. B 2014, 2 (2) , 231-238. https://doi.org/10.1039/C3TB21495H
    72. Poulomi Majumdar, Xiaolin Yuan, Shengfu Li, Boris Le Guennic, Jie Ma, Caishun Zhang, Denis Jacquemin, Jianzhang Zhao. Cyclometalated Ir( iii ) complexes with styryl-BODIPY ligands showing near IR absorption/emission: preparation, study of photophysical properties and application as photodynamic/luminescence imaging materials. J. Mater. Chem. B 2014, 2 (19) , 2838-2854. https://doi.org/10.1039/C4TB00284A
    73. Jing Liang, Haibin Shi, Ryan T. K. Kwok, Meng Gao, Youyong Yuan, Wenhua Zhang, Ben Zhong Tang, Bin Liu. Distinct optical and kinetic responses from E/Z isomers of caspase probes with aggregation-induced emission characteristics. J. Mater. Chem. B 2014, 2 (27) , 4363-4370. https://doi.org/10.1039/C4TB00405A
    74. Shinsuke Ishihara, Jan Labuta, Wim Van Rossom, Daisuke Ishikawa, Kosuke Minami, Jonathan P. Hill, Katsuhiko Ariga. Porphyrin-based sensor nanoarchitectonics in diverse physical detection modes. Physical Chemistry Chemical Physics 2014, 16 (21) , 9713. https://doi.org/10.1039/c3cp55431g
    75. Kun Lou, Jonathan F. Lovell. Opportunities for New Photodynamic Molecular Beacon Designs. 2014, 733-758. https://doi.org/10.1007/978-1-4471-4372-7_27
    76. Kim E. Sapsford, Bridget Wildt, Angela Mariani, Andrew B. Yeatts, Igor Medintz. Materials for FRET Analysis: Beyond Traditional Dye–Dye Combinations. 2013, 165-268. https://doi.org/10.1002/9783527656028.ch06
    77. Jing Liang, Haibin Shi, Ben Zhong Tang, Bin Liu. Specific Light-Up Bioprobes with Aggregation-Induced Emission Characteristics for Protein Sensing. 2013, 239-258. https://doi.org/10.1002/9781118735183.ch29
    78. Rui-rui Zhang, Lu Li, Li-li Tong, Bo Tang. Enhanced luminescence of photosensitizer-based mesoporous silica nanocomposites via energy transfer from conjugated polymer. Nanotechnology 2013, 24 (1) , 015604. https://doi.org/10.1088/0957-4484/24/1/015604
    79. Yongchao Yang, Qiuli Guo, Huachao Chen, Zhikuan Zhou, Zijian Guo, Zhen Shen. Thienopyrrole-expanded BODIPY as a potential NIR photosensitizer for photodynamic therapy. Chemical Communications 2013, 49 (38) , 3940. https://doi.org/10.1039/c3cc40746b
    80. Jinfeng Zhang, Feifei An, Yanan Li, Caijun Zheng, Yinlong Yang, Xiujuan Zhang, Xiaohong Zhang. Simultaneous enhanced diagnosis and photodynamic therapy of photosensitizer-doped perylene nanoparticles via doping, fluorescence resonance energy transfer, and antenna effect. Chemical Communications 2013, 49 (73) , 8072. https://doi.org/10.1039/c3cc43413c
    81. Jonathan F. Lovell. Optical Imaging of Mitochondria for Cancer Therapy. 2013, 207-217. https://doi.org/10.1007/978-1-4614-9326-6_10
    82. Liang Yao, Feijun Dan, Qiong Cao, Miaofu Mao, Shuzhang Xiao. Non‐aggregated boron–fluorine derivatives with photodynamic activity. Applied Organometallic Chemistry 2012, 26 (12) , 707-711. https://doi.org/10.1002/aoc.2914

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect