ACS Publications. Most Trusted. Most Cited. Most Read
Lithium Peroxide Surfaces Are Metallic, While Lithium Oxide Surfaces Are Not
My Activity

Figure 1Loading Img
    Article

    Lithium Peroxide Surfaces Are Metallic, While Lithium Oxide Surfaces Are Not
    Click to copy article linkArticle link copied!

    View Author Information
    ‡ § ∥ Department of Physics, Mechanical Engineering Department, §Applied Physics Program, and Michigan Energy Institute, University of Michigan, Ann Arbor, Michigan 48109-2125, United States
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2012, 134, 2, 1093–1103
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja208944x
    Published December 8, 2011
    Copyright © 2011 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The thermodynamic stability and electronic structure of 40 surfaces of lithium peroxide (Li2O2) and lithium oxide (Li2O) were characterized using first-principles calculations. As these compounds constitute potential discharge products in Li–oxygen batteries, their surface properties are expected to play a key role in understanding electrochemical behavior in these systems. Stable surfaces were identified by comparing 23 distinct Li2O2 surfaces and 17 unique Li2O surfaces; crystallite areal fractions were determined through application of the Wulff construction. Accounting for the oxygen overbinding error in density functional theory results in the identification of several new Li2O2 oxygen-rich {0001} and {11̅00} terminations that are more stable than those previously reported. Although oxygen-rich facets predominate in Li2O2, in Li2O stoichiometric surfaces are preferred, consistent with prior studies. Surprisingly, surface-state analyses reveal that the stable surfaces of Li2O2 are half-metallic, despite the fact that Li2O2 is a bulk insulator. Surface oxygens in these facets are ferromagnetic with magnetic moments ranging from 0.2 to 0.5 μB. In contrast, the stable surfaces of Li2O are insulating and nonmagnetic. The distinct surface properties of these compounds may explain observations of electrochemical reversibility for systems in which Li2O2 is the discharge product and the irreversibility of systems that discharge to Li2O. Moreover, the presence of conductive surface pathways in Li2O2 could offset capacity limitations expected to arise from limited electron transport through the bulk.

    Copyright © 2011 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Sensitivity of the results with respect to O2 overbinding correction, electronic structure of half-metallic surface states, and ball and stick figures for all surface structures examined in this study. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 344 publications.

    1. Umar Latif. Comprehensive Review of Li-Oxygen Batteries: Electrolytes, Electrodes, Redox Mediators, and Thermodynamics. ACS Applied Energy Materials 2025, 8 (8) , 4838-4883. https://doi.org/10.1021/acsaem.4c03144
    2. Zehui Zhao, Xu Xiao, Zhuojun Zhang, Aijing Yan, Yasen Hao, Tenghui Qiu, Peng Tan. Capacity Enhancement in Quasi-Solid-State Lithium–Oxygen Batteries via Self-Constructing Li+ Transport Channels. Nano Letters 2025, 25 (15) , 6260-6267. https://doi.org/10.1021/acs.nanolett.5c00870
    3. Giovanni Orlandi, Jun Li, Steven D. Kenny, Enrique Martinez. Atomic Structure of the Lithium–Lithium Oxide Interface from First Principles. ACS Applied Materials & Interfaces 2025, 17 (14) , 21958-21964. https://doi.org/10.1021/acsami.4c22106
    4. Xueping Zhang, Yunjian Liu, Xiaohua Zhao, Zhu Cheng, Xiaowei Mu. Recent Advances and Perspectives of High-Entropy Alloys as Electrocatalysts for Metal-Air Batteries. Energy & Fuels 2024, 38 (20) , 19236-19252. https://doi.org/10.1021/acs.energyfuels.4c03386
    5. Kiho Nishioka, Mizuki Tanaka, Terumi Goto, Ronja Haas, Anja Henss, Shota Azuma, Morihiro Saito, Shoichi Matsuda, Wei Yu, Hirotomo Nishihara, Hayato Fujimoto, Mamoru Tobisu, Yoshiharu Mukouyama, Shuji Nakanishi. Fluorinated Amide-Based Electrolytes Induce a Sustained Low-Charging Voltage Plateau under Conditions Verifying the Feasibility of Achieving 500 Wh kg–1 Class Li–O2 Batteries. ACS Applied Materials & Interfaces 2024, 16 (35) , 46259-46269. https://doi.org/10.1021/acsami.4c08067
    6. Kangli Wang, Jürgen Janek, Doreen Mollenhauer. Insight into the Li/LiPON Interface at the Molecular Level: Interfacial Decomposition and Reconfiguration. Chemistry of Materials 2024, 36 (10) , 5133-5141. https://doi.org/10.1021/acs.chemmater.4c00377
    7. Chung-Hao Liao, Ching-Yu Chiang, Kevin Iputera, Shu-Fen Hu, Ru-Shi Liu. Homogeneous Catalytic Process of a Heterogeneous Ru Catalyst in Li–O2 via X-ray Nanodiffraction Observation. ACS Applied Materials & Interfaces 2024, 16 (7) , 8783-8790. https://doi.org/10.1021/acsami.3c16966
    8. Li-Na Song, Li-Jun Zheng, Xiao-Xue Wang, De-Chen Kong, Yi-Feng Wang, Yue Wang, Jia-Yi Wu, Yu Sun, Ji-Jing Xu. Aprotic Lithium–Oxygen Batteries Based on Nonsolid Discharge Products. Journal of the American Chemical Society 2024, 146 (2) , 1305-1317. https://doi.org/10.1021/jacs.3c08656
    9. Lixin Xiong, Neil Qiang Su, Wei-Hai Fang. The Role of Self-Catalysis Induced by Co Doping in Nonaqueous Li–O2 Batteries. The Journal of Physical Chemistry Letters 2023, 14 (33) , 7526-7540. https://doi.org/10.1021/acs.jpclett.3c02041
    10. Hongjiao Li, Tobias Schlöder, Wolfgang Wenzel. Molecular Conformational Ensemble of Solvated LiO2 Determines the Growth of Li2O2 Crystals in Li–Air Batteries. The Journal of Physical Chemistry C 2023, 127 (31) , 15169-15176. https://doi.org/10.1021/acs.jpcc.3c03004
    11. Alex Von Gunten, Kunal Velinkar, Eranda Nikolla, Jeffrey Greeley. Elucidation of Parasitic Reaction Mechanisms at Interfaces in Na–O2 Batteries. Chemistry of Materials 2023, 35 (15) , 5945-5952. https://doi.org/10.1021/acs.chemmater.3c00850
    12. Francesca Fasulo, Arianna Massaro, Ana B. Muñoz-García, Michele Pavone. New Insights on Singlet Oxygen Release from Li-Air Battery Cathode: Periodic DFT Versus CASPT2 Embedded Cluster Calculations. Journal of Chemical Theory and Computation 2023, 19 (15) , 5210-5220. https://doi.org/10.1021/acs.jctc.3c00393
    13. Arjun S. Kulathuvayal, Yanqing Su. Ionic Transport through the Solid Electrolyte Interphase in Lithium-Ion Batteries: A Review from First-Principles Perspectives. ACS Applied Energy Materials 2023, 6 (11) , 5628-5645. https://doi.org/10.1021/acsaem.3c00287
    14. Hao Yan, Wei-Wei Wang, Tai-Rui Wu, Yu Gu, Kai-Xuan Li, De-Yin Wu, MingSen Zheng, Quanfeng Dong, Jiawei Yan, Bing-Wei Mao. Morphology-Dictated Mechanism of Efficient Reaction Sites for Li2O2 Decomposition. Journal of the American Chemical Society 2023, 145 (22) , 11959-11968. https://doi.org/10.1021/jacs.2c12267
    15. Chengyang Xu, Aimin Ge, Koki Kannari, Baoxu Peng, Min Xue, Bing Ding, Ken-ichi Inoue, Xiaogang Zhang, Shen Ye. The Decisive Role of Li2O2 Desorption for Oxygen Reduction Reaction in Li–O2 Batteries. ACS Energy Letters 2023, 8 (3) , 1289-1299. https://doi.org/10.1021/acsenergylett.2c02714
    16. Zhuojun Zhang, Xu Xiao, Wentao Yu, Zhongxi Zhao, Peng Tan. Reacquainting the Sudden-Death and Reaction Routes of Li–O2 Batteries by Ex Situ Observation of Li2O2 Distribution Inside a Highly Ordered Air Electrode. Nano Letters 2022, 22 (18) , 7527-7534. https://doi.org/10.1021/acs.nanolett.2c02516
    17. Feng Hao, Bairav S. Vishnugopi, Hua Wang, Partha P. Mukherjee. Chemomechanical Interactions Dictate Lithium Surface Diffusion Kinetics in the Solid Electrolyte Interphase. Langmuir 2022, 38 (18) , 5472-5480. https://doi.org/10.1021/acs.langmuir.2c00017
    18. Jaclyn R. Lunger, Naomi Lutz, Jiayu Peng, Michal Bajdich, Yang Shao-Horn. Cation-Dependent Multielectron Kinetics of Metal Oxide Splitting. Chemistry of Materials 2022, 34 (8) , 3872-3881. https://doi.org/10.1021/acs.chemmater.2c00602
    19. Peng Zhang, Zhongxiao Wang, Peng Wang, Xiaobin Hui, Danyang Zhao, Zhiwei Zhang, Longwei Yin. Heteroatom Doping-Induced Defected Co3O4 Electrode for High-Performance Lithium Oxygen Battery. ACS Applied Energy Materials 2022, 5 (3) , 3359-3368. https://doi.org/10.1021/acsaem.1c03984
    20. Xingzi Zheng, Mengwei Yuan, Donghua Guo, Caiying Wen, Xingyu Li, Xianqiang Huang, Huifeng Li, Genban Sun. Theoretical Design and Structural Modulation of a Surface-Functionalized Ti3C2Tx MXene-Based Heterojunction Electrocatalyst for a Li–Oxygen Battery. ACS Nano 2022, 16 (3) , 4487-4499. https://doi.org/10.1021/acsnano.1c10890
    21. Chuan Tan, Deqing Cao, Lei Zheng, Yanbin Shen, Liwei Chen, Yuhui Chen. True Reaction Sites on Discharge in Li–O2 Batteries. Journal of the American Chemical Society 2022, 144 (2) , 807-815. https://doi.org/10.1021/jacs.1c09916
    22. Tiantian Wang, Youwei Wang, Xiaolin Zhao, Erhong Song, Jianjun Liu. Critical Role of Interfacial Charge Transfer in Reducing Charge Potential of Li–O2 Battery. The Journal of Physical Chemistry C 2021, 125 (43) , 23758-23763. https://doi.org/10.1021/acs.jpcc.1c07372
    23. Yingying Yang, Jian Chen, Jikun Tang, Fei Xing, Man Yao. Investigation on the Structure–Performance Correlation of TiC MXenes as Cathode Catalysts for Li-O2 Batteries. The Journal of Physical Chemistry C 2021, 125 (39) , 21453-21459. https://doi.org/10.1021/acs.jpcc.1c06355
    24. Henry A. Cortes, Jhon F. Zapata, María A. Barral, Verónica L. Vildosola. Understanding the Effect of Doping on the Charging Performance of Li–O2 Batteries: The Role of Hole Polarons and Lithium Vacancies. The Journal of Physical Chemistry C 2021, 125 (35) , 19156-19163. https://doi.org/10.1021/acs.jpcc.1c05313
    25. Hao Wang, Ning Zhao, Zhijie Bi, Shenghan Gao, Qiushi Dai, Tingting Yang, Jiawei Wang, Zhiqing Jia, Zhangquan Peng, Jianyu Huang, Yong Wan, Xiangxin Guo. Clear Representation of Surface Pathway Reactions at Ag Nanowire Cathodes in All-Solid Li–O2 Batteries. ACS Applied Materials & Interfaces 2021, 13 (33) , 39157-39164. https://doi.org/10.1021/acsami.1c02923
    26. Min Feng, Jie Pan, Yue Qi. Impact of Electronic Properties of Grain Boundaries on the Solid Electrolyte Interphases (SEIs) in Li-ion Batteries. The Journal of Physical Chemistry C 2021, 125 (29) , 15821-15829. https://doi.org/10.1021/acs.jpcc.1c03186
    27. Xinyi Sun, Zhenpeng Hou, Ping He, Haoshen Zhou. Recent Advances in Rechargeable Li–CO2 Batteries. Energy & Fuels 2021, 35 (11) , 9165-9186. https://doi.org/10.1021/acs.energyfuels.1c00635
    28. Behnaz Rahmani Didar, Lada Yashina, Axel Groß. First-Principles Study of the Surfaces and Equilibrium Shape of Discharge Products in Li–Air Batteries. ACS Applied Materials & Interfaces 2021, 13 (21) , 24984-24994. https://doi.org/10.1021/acsami.1c05863
    29. Weihua Zhang, Zhuang Hu, Changling Fan, Zhixiao Liu, Shaochang Han, Jinshui Liu. Construction and Theoretical Calculation of an Ultra-High-Performance LiVPO4F/C Cathode by B-Doped Pyrolytic Carbon from Poly(vinylidene Fluoride). ACS Applied Materials & Interfaces 2021, 13 (13) , 15190-15204. https://doi.org/10.1021/acsami.0c22958
    30. Yongsheng Yao, Juexian Cao, Wenjin Yin, Qi Zhang, Liwen Yang, Xiaolin Wei. Modified Graphene Sheets as Promising Cathode Catalysts for Li–O2 Batteries: A First-Principles Study. The Journal of Physical Chemistry C 2021, 125 (8) , 4363-4370. https://doi.org/10.1021/acs.jpcc.0c09616
    31. Justin B. Haskins, Hieu H. Pham, Abhishek Khetan, Venkatasubramanian Viswanathan, John W. Lawson. Lithium Peroxide Growth in Li–O2 Batteries via Chemical Disproportionation and Electrochemical Mechanisms: A Potential-Dependent Ab Initio Study with Implicit Solvation. The Journal of Physical Chemistry C 2021, 125 (1) , 436-445. https://doi.org/10.1021/acs.jpcc.0c08610
    32. Kentaro Tomita, Hidenori Noguchi, Kohei Uosaki. Electrochemical Growth of Very Long (∼80 μm) Crystalline Li2O2 Nanowires on Single-Layer Graphene Covered Gold and Their Growth Mechanism. Journal of the American Chemical Society 2020, 142 (46) , 19502-19509. https://doi.org/10.1021/jacs.0c05392
    33. Jeffrey S. Lowe, Donald J. Siegel. Modeling the Interface between Lithium Metal and Its Native Oxide. ACS Applied Materials & Interfaces 2020, 12 (41) , 46015-46026. https://doi.org/10.1021/acsami.0c12468
    34. Tao Liu, J. Padmanabhan Vivek, Evan Wenbo Zhao, Jiang Lei, Nuria Garcia-Araez, Clare P. Grey. Current Challenges and Routes Forward for Nonaqueous Lithium–Air Batteries. Chemical Reviews 2020, 120 (14) , 6558-6625. https://doi.org/10.1021/acs.chemrev.9b00545
    35. Xiaolin Zhao, Feng Gu, Youwei Wang, Zhangquan Peng, Jianjun Liu. Surface Electronegativity as an Activity Descriptor to Screen Oxygen Evolution Reaction Catalysts of Li–O2 Battery. ACS Applied Materials & Interfaces 2020, 12 (24) , 27166-27175. https://doi.org/10.1021/acsami.0c04814
    36. Gregory Houchins, Vikram Pande, Venkatasubramanian Viswanathan. Mechanism for Singlet Oxygen Production in Li-Ion and Metal–Air Batteries. ACS Energy Letters 2020, 5 (6) , 1893-1899. https://doi.org/10.1021/acsenergylett.0c00595
    37. Ana E. Torres, Estrella Ramos, Perla B. Balbuena. LiOH Formation from Lithium Peroxide Clusters and the Role of Iodide Additive. The Journal of Physical Chemistry C 2020, 124 (19) , 10280-10287. https://doi.org/10.1021/acs.jpcc.9b11980
    38. Wenrui Dai, Xinhang Cui, Xiao Chi, Yin Zhou, Jinlin Yang, Xu Lian, Qi Zhang, Wenhao Dong, Wei Chen. Potassium Doping Facilitated Formation of Tunable Superoxides in Li2O2 for Improved Electrochemical Kinetics. ACS Applied Materials & Interfaces 2020, 12 (4) , 4558-4564. https://doi.org/10.1021/acsami.9b21554
    39. Awan Zahoor, Zafar Khan Ghouri, Saud Hashmi, Faizan Raza, Shagufta Ishtiaque, Saad Nadeem, Inayat Ullah, Kee Suk Nahm. Electrocatalysts for Lithium–Air Batteries: Current Status and Challenges. ACS Sustainable Chemistry & Engineering 2019, 7 (17) , 14288-14320. https://doi.org/10.1021/acssuschemeng.8b06351
    40. Tohru Shiga, Yuichi Kato, Masae Inoue, Yoko Hase. Bifunctional Catalytic Activity of Iodine Species for Lithium–Carbon Dioxide Battery. ACS Sustainable Chemistry & Engineering 2019, 7 (16) , 14280-14287. https://doi.org/10.1021/acssuschemeng.9b03949
    41. Yingying Yang, Man Yao, Xudong Wang, Hao Huang. Theoretical Prediction of Catalytic Activity of Ti2C MXene as Cathode for Li–O2 Batteries. The Journal of Physical Chemistry C 2019, 123 (28) , 17466-17471. https://doi.org/10.1021/acs.jpcc.9b05698
    42. Donghoon Lee, Hyeokjun Park, Youngmin Ko, Hayoung Park, Taeghwan Hyeon, Kisuk Kang, Jungwon Park. Direct Observation of Redox Mediator-Assisted Solution-Phase Discharging of Li–O2 Battery by Liquid-Phase Transmission Electron Microscopy. Journal of the American Chemical Society 2019, 141 (20) , 8047-8052. https://doi.org/10.1021/jacs.9b02332
    43. Ajaykrishna Ramasubramanian, Vitaliy Yurkiv, Tara Foroozan, Marco Ragone, Reza Shahbazian-Yassar, Farzad Mashayek. Lithium Diffusion Mechanism through Solid–Electrolyte Interphase in Rechargeable Lithium Batteries. The Journal of Physical Chemistry C 2019, 123 (16) , 10237-10245. https://doi.org/10.1021/acs.jpcc.9b00436
    44. Gayatree Barik, Sourav Pal. Energy Gap-Modulated Blue Phosphorene as Flexible Anodes for Lithium- and Sodium-Ion Batteries. The Journal of Physical Chemistry C 2019, 123 (5) , 2808-2819. https://doi.org/10.1021/acs.jpcc.8b11512
    45. Lance Kavalsky, Sankha Mukherjee, Chandra Veer Singh. Phosphorene as a Catalyst for Highly Efficient Nonaqueous Li–Air Batteries. ACS Applied Materials & Interfaces 2019, 11 (1) , 499-510. https://doi.org/10.1021/acsami.8b13505
    46. Yingying Yang, Yuan Qin, Xiaowan Xue, Xudong Wang, Man Yao, Hao Huang. Intrinsic Properties Affecting the Catalytic Activity of 3d Transition-Metal Carbides in Li–O2 Battery. The Journal of Physical Chemistry C 2018, 122 (31) , 17812-17819. https://doi.org/10.1021/acs.jpcc.8b04285
    47. Yedilfana S. Mekonnen, Rune Christensen, Juan M. Garcia-Lastra, Tejs Vegge. Thermodynamic and Kinetic Limitations for Peroxide and Superoxide Formation in Na–O2 Batteries. The Journal of Physical Chemistry Letters 2018, 9 (15) , 4413-4419. https://doi.org/10.1021/acs.jpclett.8b01790
    48. Keren Raz, Polina Tereshchuk, Diana Golodnitsky, Amir Natan. Adsorption of Li2O2, Na2O2, and NaO2 on TiC(111) Surface for Metal–Air Rechargeable Batteries: A Theoretical Study. The Journal of Physical Chemistry C 2018, 122 (29) , 16473-16480. https://doi.org/10.1021/acs.jpcc.8b01983
    49. Anirudha Jena, Ri-Xin Ye, Ho Chang, Tai-Feng Hung, Wen-Sheng Chang, Ru-Shi Liu. Synergistic Improvement in Charge Overpotential of Li–O2 Batteries by Oxidized Carbon Nanotubes and Cobalt Nitride Composites. The Journal of Physical Chemistry C 2018, 122 (25) , 13416-13423. https://doi.org/10.1021/acs.jpcc.7b11172
    50. Misun Hong, Chunzhen Yang, Raymond A. Wong, Aiko Nakao, Hee Cheul Choi, Hye Ryung Byon. Determining the Facile Routes for Oxygen Evolution Reaction by In Situ Probing of Li–O2 Cells with Conformal Li2O2 Films. Journal of the American Chemical Society 2018, 140 (20) , 6190-6193. https://doi.org/10.1021/jacs.8b02003
    51. Yuanda Li, Aliza Khurram, Betar M. Gallant. A High-Capacity Lithium–Gas Battery Based on Sulfur Fluoride Conversion. The Journal of Physical Chemistry C 2018, 122 (13) , 7128-7138. https://doi.org/10.1021/acs.jpcc.8b00569
    52. Guruprakash Karkera, A. S. Prakash. An Inorganic Electrolyte Li–O2 Battery with High Rate and Improved Performance. ACS Applied Energy Materials 2018, 1 (3) , 1381-1388. https://doi.org/10.1021/acsaem.8b00095
    53. Ziyuan Zhao, Lulu Liu, Tong Yu, Guochun Yang, and Aitor Bergara . Pressure-Induced Stable Li5P for High-Performance Lithium-Ion Batteries. The Journal of Physical Chemistry C 2017, 121 (39) , 21199-21205. https://doi.org/10.1021/acs.jpcc.7b07161
    54. Tianshuai Wang, Naiqin Zhao, Chunsheng Shi, Liying Ma, Fang He, Chunnian He, Jiajun Li, and Enzuo Liu . Interface and Doping Effects on Li Ion Storage Behavior of Graphene/Li2O. The Journal of Physical Chemistry C 2017, 121 (36) , 19559-19567. https://doi.org/10.1021/acs.jpcc.7b04642
    55. Jeffrey G. Smith, Junichi Naruse, Hidehiko Hiramatsu, and Donald J. Siegel . Intrinsic Conductivity in Magnesium–Oxygen Battery Discharge Products: MgO and MgO2. Chemistry of Materials 2017, 29 (7) , 3152-3163. https://doi.org/10.1021/acs.chemmater.7b00217
    56. Shunning Li, Jianbo Liu, and Baixin Liu . First-Principles Study of the Charge Transport Mechanisms in Lithium Superoxide. Chemistry of Materials 2017, 29 (5) , 2202-2210. https://doi.org/10.1021/acs.chemmater.6b05022
    57. Bryan D. McCloskey and Dan Addison . A Viewpoint on Heterogeneous Electrocatalysis and Redox Mediation in Nonaqueous Li-O2 Batteries. ACS Catalysis 2017, 7 (1) , 772-778. https://doi.org/10.1021/acscatal.6b02866
    58. Yinghui Yin, Caroline Gaya, Amangeldi Torayev, Vigneshwaran Thangavel, and Alejandro A. Franco . Impact of Li2O2 Particle Size on Li–O2 Battery Charge Process: Insights from a Multiscale Modeling Perspective. The Journal of Physical Chemistry Letters 2016, 7 (19) , 3897-3902. https://doi.org/10.1021/acs.jpclett.6b01823
    59. Chun Xia, Russel Fernandes, Franklin H. Cho, Niranjan Sudhakar, Brandon Buonacorsi, Sean Walker, Meng Xu, Jonathan Baugh, and Linda F. Nazar . Direct Evidence of Solution-Mediated Superoxide Transport and Organic Radical Formation in Sodium-Oxygen Batteries. Journal of the American Chemical Society 2016, 138 (35) , 11219-11226. https://doi.org/10.1021/jacs.6b05382
    60. Le Shi, Tianshou Zhao, Ao Xu, and Zhaohuan Wei . Unraveling the Catalytic Mechanism of Rutile RuO2 for the Oxygen Reduction Reaction and Oxygen Evolution Reaction in Li–O2 Batteries. ACS Catalysis 2016, 6 (9) , 6285-6293. https://doi.org/10.1021/acscatal.6b01778
    61. Swapna Ganapathy, Jouke R. Heringa, Maria S. Anastasaki, Brian D. Adams, Martijn van Hulzen, Shibabrata Basak, Zhaolong Li, Jonathan P. Wright, Linda F. Nazar, Niels H. van Dijk, and Marnix Wagemaker . Operando Nanobeam Diffraction to Follow the Decomposition of Individual Li2O2 Grains in a Nonaqueous Li–O2 Battery. The Journal of Physical Chemistry Letters 2016, 7 (17) , 3388-3394. https://doi.org/10.1021/acs.jpclett.6b01368
    62. Swapna Ganapathy, Zhaolong Li, Maria S. Anastasaki, Shibabrata Basak, Xue-Fei Miao, Kees Goubitz, Henny W. Zandbergen, Fokko M. Mulder, and Marnix Wagemaker . Use of Nano Seed Crystals To Control Peroxide Morphology in a Nonaqueous Li–O2 Battery. The Journal of Physical Chemistry C 2016, 120 (33) , 18421-18427. https://doi.org/10.1021/acs.jpcc.6b04732
    63. Won-Hee Ryu, Forrest S. Gittleson, Jinyang Li, Xiao Tong, and André D. Taylor . A New Design Strategy for Observing Lithium Oxide Growth-Evolution Interactions Using Geometric Catalyst Positioning. Nano Letters 2016, 16 (8) , 4799-4806. https://doi.org/10.1021/acs.nanolett.6b00856
    64. Rui-Tao Wen, Miguel A. Arvizu, Michael Morales-Luna, Claes G. Granqvist, and Gunnar A. Niklasson . Ion Trapping and Detrapping in Amorphous Tungsten Oxide Thin Films Observed by Real-Time Electro-Optical Monitoring. Chemistry of Materials 2016, 28 (13) , 4670-4676. https://doi.org/10.1021/acs.chemmater.6b01503
    65. Shoichi Matsuda, Yoshimi Kubo, Kohei Uosaki, Kazuhito Hashimoto, and Shuji Nakanishi . Improved Energy Capacity of Aprotic Li–O2 Batteries by Forming Cl-Incorporated Li2O2 as the Discharge Product. The Journal of Physical Chemistry C 2016, 120 (25) , 13360-13365. https://doi.org/10.1021/acs.jpcc.6b03083
    66. Zhuojian Liang and Yi-Chun Lu . Critical Role of Redox Mediator in Suppressing Charging Instabilities of Lithium–Oxygen Batteries. Journal of the American Chemical Society 2016, 138 (24) , 7574-7583. https://doi.org/10.1021/jacs.6b01821
    67. Yang Sun and Haoshen Zhou . Facilitating the Oxygen Evolution Reaction of Lithium Peroxide via Molecular Adsorption. The Journal of Physical Chemistry C 2016, 120 (19) , 10237-10243. https://doi.org/10.1021/acs.jpcc.6b00413
    68. David G. Kwabi, Michał Tułodziecki, Nir Pour, Daniil M. Itkis, Carl V. Thompson, and Yang Shao-Horn . Controlling Solution-Mediated Reaction Mechanisms of Oxygen Reduction Using Potential and Solvent for Aprotic Lithium–Oxygen Batteries. The Journal of Physical Chemistry Letters 2016, 7 (7) , 1204-1212. https://doi.org/10.1021/acs.jpclett.6b00323
    69. Le Shi, Ao Xu, and Tianshou Zhao . RuO2 Monolayer: A Promising Bifunctional Catalytic Material for Nonaqueous Lithium–Oxygen Batteries. The Journal of Physical Chemistry C 2016, 120 (12) , 6356-6362. https://doi.org/10.1021/acs.jpcc.6b00014
    70. H. R. Jiang, T. S. Zhao, L. Shi, P. Tan, and L. An . First-Principles Study of Nitrogen-, Boron-Doped Graphene and Co-Doped Graphene as the Potential Catalysts in Nonaqueous Li–O2 Batteries. The Journal of Physical Chemistry C 2016, 120 (12) , 6612-6618. https://doi.org/10.1021/acs.jpcc.6b00136
    71. Yu Wang, Zhuojian Liang, Qingli Zou, Guangtao Cong, and Yi-Chun Lu . Mechanistic Insights into Catalyst-Assisted Nonaqueous Oxygen Evolution Reaction in Lithium–Oxygen Batteries. The Journal of Physical Chemistry C 2016, 120 (12) , 6459-6466. https://doi.org/10.1021/acs.jpcc.6b00984
    72. Rui-Tao Wen, Gunnar A. Niklasson, and Claes G. Granqvist . Eliminating Electrochromic Degradation in Amorphous TiO2 through Li-Ion Detrapping. ACS Applied Materials & Interfaces 2016, 8 (9) , 5777-5782. https://doi.org/10.1021/acsami.6b00457
    73. Jeffrey G. Smith, Junichi Naruse, Hidehiko Hiramatsu, and Donald J. Siegel . Theoretical Limiting Potentials in Mg/O2 Batteries. Chemistry of Materials 2016, 28 (5) , 1390-1401. https://doi.org/10.1021/acs.chemmater.5b04501
    74. Vincent Giordani, Dylan Tozier, Hongjin Tan, Colin M. Burke, Betar M. Gallant, Jasim Uddin, Julia R. Greer, Bryan D. McCloskey, Gregory V. Chase, and Dan Addison . A Molten Salt Lithium–Oxygen Battery. Journal of the American Chemical Society 2016, 138 (8) , 2656-2663. https://doi.org/10.1021/jacs.5b11744
    75. Dipan Kundu, Robert Black, Brian Adams, and Linda F. Nazar . A Highly Active Low Voltage Redox Mediator for Enhanced Rechargeability of Lithium–Oxygen Batteries. ACS Central Science 2015, 1 (9) , 510-515. https://doi.org/10.1021/acscentsci.5b00267
    76. Zhenyu Wang, Xin Chen, Yonghong Cheng, and Chunming Niu . Adsorption and Deposition of Li2O2 on the Pristine and Oxidized TiC Surface by First-principles Calculation. The Journal of Physical Chemistry C 2015, 119 (46) , 25684-25695. https://doi.org/10.1021/acs.jpcc.5b06492
    77. Jakub Staszak-Jirkovský, Ram Subbaraman, Dusan Strmcnik, Katharine L. Harrison, Charles E. Diesendruck, Rajeev Assary, Otakar Frank, Lukáš Kobr, Gustav K. H. Wiberg, Bostjan Genorio, Justin G. Connell, Pietro P. Lopes, Vojislav R. Stamenkovic, Larry Curtiss, Jeffrey S. Moore, Kevin R. Zavadil, and Nenad M. Markovic . Water as a Promoter and Catalyst for Dioxygen Electrochemistry in Aqueous and Organic Media. ACS Catalysis 2015, 5 (11) , 6600-6607. https://doi.org/10.1021/acscatal.5b01779
    78. Jinzhen Zhu, Fan Wang, Beizhou Wang, Youwei Wang, Jianjun Liu, Wenqing Zhang, and Zhaoyin Wen . Surface Acidity as Descriptor of Catalytic Activity for Oxygen Evolution Reaction in Li-O2 Battery. Journal of the American Chemical Society 2015, 137 (42) , 13572-13579. https://doi.org/10.1021/jacs.5b07792
    79. Mara Olivares-Marín, Andrea Sorrentino, Rung-Chuan Lee, Eva Pereiro, Nae-Lih Wu, and Dino Tonti . Spatial Distributions of Discharged Products of Lithium–Oxygen Batteries Revealed by Synchrotron X-ray Transmission Microscopy. Nano Letters 2015, 15 (10) , 6932-6938. https://doi.org/10.1021/acs.nanolett.5b02862
    80. Sampson Lau and Lynden A. Archer . Nucleation and Growth of Lithium Peroxide in the Li–O2 Battery. Nano Letters 2015, 15 (9) , 5995-6002. https://doi.org/10.1021/acs.nanolett.5b02149
    81. Rune Christensen, Jens S. Hummelshøj, Heine A. Hansen, and Tejs Vegge . Reducing Systematic Errors in Oxide Species with Density Functional Theory Calculations. The Journal of Physical Chemistry C 2015, 119 (31) , 17596-17601. https://doi.org/10.1021/acs.jpcc.5b05968
    82. Nagore Ortiz-Vitoriano, Thomas P. Batcho, David G. Kwabi, Binghong Han, Nir Pour, Koffi Pierre Claver Yao, Carl V. Thompson, and Yang Shao-Horn . Rate-Dependent Nucleation and Growth of NaO2 in Na–O2 Batteries. The Journal of Physical Chemistry Letters 2015, 6 (13) , 2636-2643. https://doi.org/10.1021/acs.jpclett.5b00919
    83. Yu Jing and Zhen Zhou . Computational Insights into Oxygen Reduction Reaction and Initial Li2O2 Nucleation on Pristine and N-Doped Graphene in Li–O2 Batteries. ACS Catalysis 2015, 5 (7) , 4309-4317. https://doi.org/10.1021/acscatal.5b00332
    84. Sheng Yang and Donald J. Siegel . Intrinsic Conductivity in Sodium–Air Battery Discharge Phases: Sodium Superoxide vs Sodium Peroxide. Chemistry of Materials 2015, 27 (11) , 3852-3860. https://doi.org/10.1021/acs.chemmater.5b00285
    85. Oier Arcelus, Chunmei Li, Teófilo Rojo, and Javier Carrasco . Electronic Structure of Sodium Superoxide Bulk, (100) Surface, and Clusters using Hybrid Density Functional: Relevance for Na–O2 Batteries. The Journal of Physical Chemistry Letters 2015, 6 (11) , 2027-2031. https://doi.org/10.1021/acs.jpclett.5b00814
    86. Marshall A. Schroeder, Nitin Kumar, Alexander J. Pearse, Chanyuan Liu, Sang Bok Lee, Gary W. Rubloff, Kevin Leung, and Malachi Noked . DMSO–Li2O2 Interface in the Rechargeable Li–O2 Battery Cathode: Theoretical and Experimental Perspectives on Stability. ACS Applied Materials & Interfaces 2015, 7 (21) , 11402-11411. https://doi.org/10.1021/acsami.5b01969
    87. Yongping Zheng, Kyeongse Song, Jaepyeong Jung, Chenzhe Li, Yoon-Uk Heo, Min-Sik Park, Maenghyo Cho, Yong-Mook Kang, and Kyeongjae Cho . Critical Descriptor for the Rational Design of Oxide-Based Catalysts in Rechargeable Li–O2 Batteries: Surface Oxygen Density. Chemistry of Materials 2015, 27 (9) , 3243-3249. https://doi.org/10.1021/acs.chemmater.5b00056
    88. Nitin Kumar, Maxwell D. Radin, Brandon C. Wood, Tadashi Ogitsu, and Donald J. Siegel . Surface-Mediated Solvent Decomposition in Li–Air Batteries: Impact of Peroxide and Superoxide Surface Terminations. The Journal of Physical Chemistry C 2015, 119 (17) , 9050-9060. https://doi.org/10.1021/acs.jpcc.5b00256
    89. Lucas D. Griffith, Alice E.S. Sleightholme, John F. Mansfield, Donald J. Siegel, and Charles W. Monroe . Correlating Li/O2 Cell Capacity and Product Morphology with Discharge Current. ACS Applied Materials & Interfaces 2015, 7 (14) , 7670-7678. https://doi.org/10.1021/acsami.5b00574
    90. Rui Gao, Jinzhen Zhu, Xiaoling Xiao, Zhongbo Hu, Jianjun Liu, and Xiangfeng Liu . Facet-Dependent Electrocatalytic Performance of Co3O4 for Rechargeable Li–O2 Battery. The Journal of Physical Chemistry C 2015, 119 (9) , 4516-4523. https://doi.org/10.1021/jp511363p
    91. Haesun Park, Hyun Seung Koh, and Donald J. Siegel . First-Principles Study of Redox End Members in Lithium–Sulfur Batteries. The Journal of Physical Chemistry C 2015, 119 (9) , 4675-4683. https://doi.org/10.1021/jp513023v
    92. James A. Dawson, Hungru Chen, and Isao Tanaka . First-Principles Calculations of Oxygen Vacancy Formation and Metallic Behavior at a β-MnO2 Grain Boundary. ACS Applied Materials & Interfaces 2015, 7 (3) , 1726-1734. https://doi.org/10.1021/am507273c
    93. W. T. Geng and T. Ohno . Li2O2 Wetting on the (110) Surface of RuO2, TiO2, and SnO2: An Initiating Force for Polycrystalline Growth. The Journal of Physical Chemistry C 2015, 119 (2) , 1024-1031. https://doi.org/10.1021/jp508896s
    94. Jinzhen Zhu, Xiaodong Ren, Jianjun Liu, Wenqing Zhang, and Zhaoyin Wen . Unraveling the Catalytic Mechanism of Co3O4 for the Oxygen Evolution Reaction in a Li–O2 Battery. ACS Catalysis 2015, 5 (1) , 73-81. https://doi.org/10.1021/cs5014442
    95. Alan C. Luntz and Bryan D. McCloskey . Nonaqueous Li–Air Batteries: A Status Report. Chemical Reviews 2014, 114 (23) , 11721-11750. https://doi.org/10.1021/cr500054y
    96. Yang He, Daniela Molina Piper, Meng Gu, Jonathan J. Travis, Steven M. George, Se-Hee Lee, Arda Genc, Lee Pullan, Jun Liu, Scott X. Mao, Ji-Guang Zhang, Chunmei Ban, and Chongmin Wang . In Situ Transmission Electron Microscopy Probing of Native Oxide and Artificial Layers on Silicon Nanoparticles for Lithium Ion Batteries. ACS Nano 2014, 8 (11) , 11816-11823. https://doi.org/10.1021/nn505523c
    97. Forrest S. Gittleson, Won-Hee Ryu, and André D. Taylor . Operando Observation of the Gold–Electrolyte Interface in Li–O2 Batteries. ACS Applied Materials & Interfaces 2014, 6 (21) , 19017-19025. https://doi.org/10.1021/am504900k
    98. Zhenyu Wang, Jianwei Sun, Yonghong Cheng, and Chunming Niu . Adsorption and Deposition of Li2O2 on TiC{111} Surface. The Journal of Physical Chemistry Letters 2014, 5 (21) , 3919-3923. https://doi.org/10.1021/jz501775a
    99. David A. Tompsett and M. Saiful Islam . Surfaces of Rutile MnO2 Are Electronically Conducting, Whereas the Bulk Material Is Insulating. The Journal of Physical Chemistry C 2014, 118 (43) , 25009-25015. https://doi.org/10.1021/jp507189n
    100. Xiaodong Ren, Jinzhen Zhu, Fuming Du, Jianjun Liu, and Wenqing Zhang . B-Doped Graphene as Catalyst To Improve Charge Rate of Lithium–Air Battery. The Journal of Physical Chemistry C 2014, 118 (39) , 22412-22418. https://doi.org/10.1021/jp505876z
    Load more citations

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2012, 134, 2, 1093–1103
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja208944x
    Published December 8, 2011
    Copyright © 2011 American Chemical Society

    Article Views

    6751

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.