Quantum Dots as Simultaneous Acceptors and Donors in Time-Gated Förster Resonance Energy Transfer Relays: Characterization and BiosensingClick to copy article linkArticle link copied!
- W. Russ Algar
- David Wegner
- Alan L. Huston
- Juan B. Blanco-Canosa
- Michael H. Stewart
- Anika Armstrong
- Philip E. Dawson
- Niko Hildebrandt
- Igor L. Medintz
Abstract

The unique photophysical properties of semiconductor quantum dot (QD) bioconjugates offer many advantages for active sensing, imaging, and optical diagnostics. In particular, QDs have been widely adopted as either donors or acceptors in Förster resonance energy transfer (FRET)-based assays and biosensors. Here, we expand their utility by demonstrating that QDs can function in a simultaneous role as acceptors and donors within time-gated FRET relays. To achieve this configuration, the QD was used as a central nanoplatform and coassembled with peptides or oligonucleotides that were labeled with either a long lifetime luminescent terbium(III) complex (Tb) or a fluorescent dye, Alexa Fluor 647 (A647). Within the FRET relay, the QD served as a critical intermediary where (1) an excited-state Tb donor transferred energy to the ground-state QD following a suitable microsecond delay and (2) the QD subsequently transferred that energy to an A647 acceptor. A detailed photophysical analysis was undertaken for each step of the FRET relay. The assembly of increasing ratios of Tb/QD was found to linearly increase the magnitude of the FRET-sensitized time-gated QD photoluminescence intensity. Importantly, the Tb was found to sensitize the subsequent QD–A647 donor–acceptor FRET pair without significantly affecting the intrinsic energy transfer efficiency within the second step in the relay. The utility of incorporating QDs into this type of time-gated energy transfer configuration was demonstrated in prototypical bioassays for monitoring protease activity and nucleic acid hybridization; the latter included a dual target format where each orthogonal FRET step transduced a separate binding event. Potential benefits of this time-gated FRET approach include: eliminating background fluorescence, accessing two approximately independent FRET mechanisms in a single QD-bioconjugate, and multiplexed biosensing based on spectrotemporal resolution of QD-FRET without requiring multiple colors of QD.
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 229 publications.
- Juan Medina-Jurado, Hicham Bourakhouadar, YiXu Wang, Alex J. Corkett, David Enseling, Thomas Jüstel, Richard Dronskowski. Topological Photoluminescence and Slow Magnetic Relaxation in a Quasi One-Dimensional Stoichiometric Ternary Tb(III) Cyanamide. Chemistry of Materials 2025, 37
(7)
, 2506-2515. https://doi.org/10.1021/acs.chemmater.4c03264
- Selin E. Donmez, Sisi Wang, Unaisah Vorajee, Geoffrey F. Strouse, Hedi Mattoussi. Investigating Energy-Transfer Interactions in Perovskite Quantum Dot–Dye Assemblies. The Journal of Physical Chemistry C 2025, 129
(8)
, 4134-4145. https://doi.org/10.1021/acs.jpcc.5c00337
- David A. Hastman, Shelby Hooe, Matthew Chiriboga, Sebastián A. Díaz, Kimihiro Susumu, Michael H. Stewart, Christopher M. Green, Niko Hildebrandt, Igor L. Medintz. Multiplexed DNA and Protease Detection with Orthogonal Energy Transfer on a Single Quantum Dot Scaffolded Biosensor. ACS Sensors 2024, 9
(1)
, 157-170. https://doi.org/10.1021/acssensors.3c01812
- Nicolaj Kofod, Thomas Just Sørensen. Tb3+ Photophysics: Mapping Excited State Dynamics of [Tb(H2O)9]3+ Using Molecular Photophysics. The Journal of Physical Chemistry Letters 2022, 13
(51)
, 11968-11973. https://doi.org/10.1021/acs.jpclett.2c03506
- Sylwia Parzyszek, Jacopo Tessarolo, Adrián Pedrazo-Tardajos, Ana M. Ortuño, Maciej Bagiński, Sara Bals, Guido H. Clever, Wiktor Lewandowski. Tunable Circularly Polarized Luminescence via Chirality Induction and Energy Transfer from Organic Films to Semiconductor Nanocrystals. ACS Nano 2022, 16
(11)
, 18472-18482. https://doi.org/10.1021/acsnano.2c06623
- Maha K. Rahim, Jinghui Zhao, Hinesh V. Patel, Hauna A. Lagouros, Rajesh Kota, Irma Fernandez, Enrico Gratton, Jered B. Haun. Phasor Analysis of Fluorescence Lifetime Enables Quantitative Multiplexed Molecular Imaging of Three Probes. Analytical Chemistry 2022, 94
(41)
, 14185-14194. https://doi.org/10.1021/acs.analchem.2c02149
- Hsin-Yun Tsai, W. Russ Algar. A Dendrimer-Based Time-Gated Concentric FRET Configuration for Multiplexed Sensing. ACS Nano 2022, 16
(5)
, 8150-8160. https://doi.org/10.1021/acsnano.2c01473
- W. Russ Algar, Melissa Massey, Kelly Rees, Rehan Higgins, Katherine D. Krause, Ghinwa H. Darwish, William J. Peveler, Zhujun Xiao, Hsin-Yun Tsai, Rupsa Gupta, Kelsi Lix, Michael V. Tran, Hyungki Kim. Photoluminescent Nanoparticles for Chemical and Biological Analysis and Imaging. Chemical Reviews 2021, 121
(15)
, 9243-9358. https://doi.org/10.1021/acs.chemrev.0c01176
- Pei-Pei Jia, Lin Xu, Yi-Xiong Hu, Wei-Jian Li, Xu-Qing Wang, Qing-Hui Ling, Xueliang Shi, Guang-Qiang Yin, Xiaopeng Li, Haitao Sun, Yanrong Jiang, Hai-Bo Yang. Orthogonal Self-Assembly of a Two-Step Fluorescence-Resonance Energy Transfer System with Improved Photosensitization Efficiency and Photooxidation Activity. Journal of the American Chemical Society 2021, 143
(1)
, 399-408. https://doi.org/10.1021/jacs.0c11370
- W. Russ Algar. Heroes or Villains? How Nontraditional Luminescent Materials Do and Do Not Enhance Bioanalysis and Imaging. Chemistry of Materials 2020, 32
(12)
, 4863-4883. https://doi.org/10.1021/acs.chemmater.0c01130
- Corentin Léger, Akram Yahia-Ammar, Kimihiro Susumu, Igor L. Medintz, Agathe Urvoas, Marie Valerio-Lepiniec, Philippe Minard, Niko Hildebrandt. Picomolar Biosensing and Conformational Analysis Using Artificial Bidomain Proteins and Terbium-to-Quantum Dot Förster Resonance Energy Transfer. ACS Nano 2020, 14
(5)
, 5956-5967. https://doi.org/10.1021/acsnano.0c01410
- Chi Chen, Ben Corry, Liang Huang, Niko Hildebrandt. FRET-Modulated Multihybrid Nanoparticles for Brightness-Equalized Single-Wavelength Barcoding. Journal of the American Chemical Society 2019, 141
(28)
, 11123-11141. https://doi.org/10.1021/jacs.9b03383
- Juan Hu, Ming-hao Liu, Chun-yang Zhang. Construction of Tetrahedral DNA-Quantum Dot Nanostructure with the Integration of Multistep Förster Resonance Energy Transfer for Multiplex Enzymes Assay. ACS Nano 2019, 13
(6)
, 7191-7201. https://doi.org/10.1021/acsnano.9b02679
- Scott
A. Walper, Guillermo Lasarte Aragonés, Kim E. Sapsford, Carl W. Brown III, Clare E. Rowland, Joyce C. Breger, Igor L. Medintz. Detecting Biothreat Agents: From Current Diagnostics to Developing Sensor Technologies. ACS Sensors 2018, 3
(10)
, 1894-2024. https://doi.org/10.1021/acssensors.8b00420
- Ye Wang, Philip D. Howes, Eunjung Kim, Christopher D. Spicer, Michael R. Thomas, Yiyang Lin, Spencer W. Crowder, Isaac J. Pence, Molly M. Stevens. Duplex-Specific Nuclease-Amplified Detection of MicroRNA Using Compact Quantum Dot–DNA Conjugates. ACS Applied Materials & Interfaces 2018, 10
(34)
, 28290-28300. https://doi.org/10.1021/acsami.8b07250
- Xue Qiu, Jiajia Guo, Jingyue Xu, Niko Hildebrandt. Three-Dimensional FRET Multiplexing for DNA Quantification with Attomolar Detection Limits. The Journal of Physical Chemistry Letters 2018, 9
(15)
, 4379-4384. https://doi.org/10.1021/acs.jpclett.8b01944
- William
J. Peveler, W. Russ Algar. More Than a Light Switch: Engineering Unconventional Fluorescent Configurations for Biological Sensing. ACS Chemical Biology 2018, 13
(7)
, 1752-1766. https://doi.org/10.1021/acschembio.7b01022
- James
Nicholas Vranish, Mario G. Ancona, Scott A. Walper, Igor L. Medintz. Pursuing the Promise of Enzymatic Enhancement with Nanoparticle Assemblies. Langmuir 2018, 34
(9)
, 2901-2925. https://doi.org/10.1021/acs.langmuir.7b02588
- Kenneth Yin Zhang, Qi Yu, Huanjie Wei, Shujuan Liu, Qiang Zhao, and Wei Huang . Long-Lived Emissive Probes for Time-Resolved Photoluminescence Bioimaging and Biosensing. Chemical Reviews 2018, 118
(4)
, 1770-1839. https://doi.org/10.1021/acs.chemrev.7b00425
- Juan Hu, Yueying Li, Ying Li, Bo Tang, and Chun-yang Zhang . Single Quantum Dot-Based Nanosensor for Sensitive Detection of O-GlcNAc Transferase Activity. Analytical Chemistry 2017, 89
(23)
, 12992-12999. https://doi.org/10.1021/acs.analchem.7b04065
- Yi Han, M. Omair Noor, Abootaleb Sedighi, Uvaraj Uddayasankar, Samer Doughan, and Ulrich J. Krull . Inorganic Nanoparticles as Donors in Resonance Energy Transfer for Solid-Phase Bioassays and Biosensors. Langmuir 2017, 33
(45)
, 12839-12858. https://doi.org/10.1021/acs.langmuir.7b01483
- Xiaolin Huang, Yijing Liu, Bryant Yung, Yonghua Xiong, and Xiaoyuan Chen . Nanotechnology-Enhanced No-Wash Biosensors for in Vitro Diagnostics of Cancer. ACS Nano 2017, 11
(6)
, 5238-5292. https://doi.org/10.1021/acsnano.7b02618
- Sebastián A. Díaz, Guillermo Lasarte Aragonés, Susan Buckhout-White, Xue Qiu, Eunkeu Oh, Kimihiro Susumu, Joseph S. Melinger, Alan L. Huston, Niko Hildebrandt, and Igor L. Medintz . Bridging Lanthanide to Quantum Dot Energy Transfer with a Short-Lifetime Organic Dye. The Journal of Physical Chemistry Letters 2017, 8
(10)
, 2182-2188. https://doi.org/10.1021/acs.jpclett.7b00584
- Jia-nan Liu, Wenbo Bu, and Jianlin Shi . Chemical Design and Synthesis of Functionalized Probes for Imaging and Treating Tumor Hypoxia. Chemical Reviews 2017, 117
(9)
, 6160-6224. https://doi.org/10.1021/acs.chemrev.6b00525
- Wenping Yin, Namhun Kim, Jaehak Jeong, Kil Suk Kim, Heeyeop Chae, and Tae Kyu Ahn . Efficient Heterotransfer between Visible Quantum Dots. The Journal of Physical Chemistry C 2017, 121
(9)
, 4799-4805. https://doi.org/10.1021/acs.jpcc.6b10640
- Niko Hildebrandt, Christopher M. Spillmann, W. Russ Algar, Thomas Pons, Michael H. Stewart, Eunkeu Oh, Kimihiro Susumu, Sebastian A. Díaz, James B. Delehanty, and Igor L. Medintz . Energy Transfer with Semiconductor Quantum Dot Bioconjugates: A Versatile Platform for Biosensing, Energy Harvesting, and Other Developing Applications. Chemical Reviews 2017, 117
(2)
, 536-711. https://doi.org/10.1021/acs.chemrev.6b00030
- W. Russ Algar, Ani Khachatrian, Joseph S. Melinger, Alan L. Huston, Michael H. Stewart, Kimihiro Susumu, Juan B. Blanco-Canosa, Eunkeu Oh, Philip E. Dawson, and Igor L. Medintz . Concurrent Modulation of Quantum Dot Photoluminescence Using a Combination of Charge Transfer and Förster Resonance Energy Transfer: Competitive Quenching and Multiplexed Biosensing Modality. Journal of the American Chemical Society 2017, 139
(1)
, 363-372. https://doi.org/10.1021/jacs.6b11042
- Rachel D. Harris, Stephanie Bettis Homan, Mohamad Kodaimati, Chen He, Alexander B. Nepomnyashchii, Nathaniel K. Swenson, Shichen Lian, Raul Calzada, and Emily A. Weiss . Electronic Processes within Quantum Dot-Molecule Complexes. Chemical Reviews 2016, 116
(21)
, 12865-12919. https://doi.org/10.1021/acs.chemrev.6b00102
- Allison M. Dennis, James B. Delehanty, and Igor L. Medintz . Emerging Physicochemical Phenomena along with New Opportunities at the Biomolecular–Nanoparticle Interface. The Journal of Physical Chemistry Letters 2016, 7
(11)
, 2139-2150. https://doi.org/10.1021/acs.jpclett.6b00570
- Lea Nienhaus, Joshua J. Goings, Duc Nguyen, Sarah Wieghold, Joseph W. Lyding, Xiaosong Li, and Martin Gruebele . Imaging Excited Orbitals of Quantum Dots: Experiment and Electronic Structure Theory. Journal of the American Chemical Society 2015, 137
(46)
, 14743-14750. https://doi.org/10.1021/jacs.5b09272
- Miao Wu, Melissa Massey, Eleonora Petryayeva, and W. Russ Algar . Energy Transfer Pathways in a Quantum Dot-Based Concentric FRET Configuration. The Journal of Physical Chemistry C 2015, 119
(46)
, 26183-26195. https://doi.org/10.1021/acs.jpcc.5b08612
- Juan Zhou, Yong Yang, and Chun-yang Zhang . Toward Biocompatible Semiconductor Quantum Dots: From Biosynthesis and Bioconjugation to Biomedical Application. Chemical Reviews 2015, 115
(21)
, 11669-11717. https://doi.org/10.1021/acs.chemrev.5b00049
- Lu Tian, Zhichao Dai, Xiangli Liu, Bo Song, Zhiqiang Ye, and Jingli Yuan . Ratiometric Time-Gated Luminescence Probe for Nitric Oxide Based on an Apoferritin-Assembled Lanthanide Complex-Rhodamine Luminescence Resonance Energy Transfer System. Analytical Chemistry 2015, 87
(21)
, 10878-10885. https://doi.org/10.1021/acs.analchem.5b02347
- Xue Qiu and Niko Hildebrandt . Rapid and Multiplexed MicroRNA Diagnostic Assay Using Quantum Dot-Based Förster Resonance Energy Transfer. ACS Nano 2015, 9
(8)
, 8449-8457. https://doi.org/10.1021/acsnano.5b03364
- Miao Wu and W. Russ Algar . Concentric Förster Resonance Energy Transfer Imaging. Analytical Chemistry 2015, 87
(16)
, 8078-8083. https://doi.org/10.1021/acs.analchem.5b01946
- Uvaraj Uddayasankar and Ulrich J. Krull . Energy Transfer Assays Using Quantum Dot–Gold Nanoparticle Complexes: Optimizing Oligonucleotide Assay Configuration Using Monovalently Conjugated Quantum Dots. Langmuir 2015, 31
(29)
, 8194-8204. https://doi.org/10.1021/acs.langmuir.5b01932
- Melissa Massey, Mario G. Ancona, Igor L. Medintz, and W. Russ Algar . Time-Gated DNA Photonic Wires with Förster Resonance Energy Transfer Cascades Initiated by a Luminescent Terbium Donor. ACS Photonics 2015, 2
(5)
, 639-652. https://doi.org/10.1021/acsphotonics.5b00052
- Wei Wan, Ming-Qiang Zhu, Zhiyuan Tian, and Alexander D. Q. Li . Antiphase Dual-Color Correlation in a Reactant–Product Pair Imparts Ultrasensitivity in Reaction-Linked Double-Photoswitching Fluorescence Imaging. Journal of the American Chemical Society 2015, 137
(13)
, 4312-4315. https://doi.org/10.1021/jacs.5b01007
- De Nyago Tafen and Oleg V. Prezhdo . Size and Temperature Dependence of Electron Transfer between CdSe Quantum Dots and a TiO2 Nanobelt. The Journal of Physical Chemistry C 2015, 119
(10)
, 5639-5647. https://doi.org/10.1021/jp5110278
- Miao Wu, Eleonora Petryayeva, and W. Russ Algar . Quantum Dot-Based Concentric FRET Configuration for the Parallel Detection of Protease Activity and Concentration. Analytical Chemistry 2014, 86
(22)
, 11181-11188. https://doi.org/10.1021/ac502600a
- Joyce C. Breger, Kim E. Sapsford, Jessica Ganek, Kimihiro Susumu, Michael H. Stewart, and Igor L. Medintz . Detecting Kallikrein Proteolytic Activity with Peptide-Quantum Dot Nanosensors. ACS Applied Materials & Interfaces 2014, 6
(14)
, 11529-11535. https://doi.org/10.1021/am502135h
- K. David Wegner, Frank Morgner, Eunkeu Oh, Ramasis Goswami, Kimihiro Susumu, Michael H. Stewart, Igor L. Medintz, and Niko Hildebrandt . Three-Dimensional Solution-Phase Förster Resonance Energy Transfer Analysis of Nanomolar Quantum Dot Bioconjugates with Subnanometer Resolution. Chemistry of Materials 2014, 26
(14)
, 4299-4312. https://doi.org/10.1021/cm502021m
- Hyungki Kim, Cheryl Y.W. Ng, and W. Russ Algar . Quantum Dot-Based Multidonor Concentric FRET System and Its Application to Biosensing Using an Excitation Ratio. Langmuir 2014, 30
(19)
, 5676-5685. https://doi.org/10.1021/la501102x
- Jonathan C. Claussen, Niko Hildebrandt, Kimihiro Susumu, Mario G. Ancona, and Igor L. Medintz . Complex Logic Functions Implemented with Quantum Dot Bionanophotonic Circuits. ACS Applied Materials & Interfaces 2014, 6
(6)
, 3771-3778. https://doi.org/10.1021/am404659f
- Daniel Geißler, Stina Linden, Konstanze Liermann, K. David Wegner, Loïc J. Charbonnière, and Niko Hildebrandt . Lanthanides and Quantum Dots as Förster Resonance Energy Transfer Agents for Diagnostics and Cellular Imaging. Inorganic Chemistry 2014, 53
(4)
, 1824-1838. https://doi.org/10.1021/ic4017883
- Fuan Wang, Chun-Hua Lu, Xiaoqing Liu, Lina Freage, and Itamar Willner . Amplified and Multiplexed Detection of DNA Using the Dendritic Rolling Circle Amplified Synthesis of DNAzyme Reporter Units. Analytical Chemistry 2014, 86
(3)
, 1614-1621. https://doi.org/10.1021/ac4033033
- Christopher E. Bradburne, James B. Delehanty, Kelly Boeneman Gemmill, Bing C. Mei, Hedi Mattoussi, Kimihiro Susumu, Juan B. Blanco-Canosa, Philip E. Dawson, and Igor L. Medintz . Cytotoxicity of Quantum Dots Used for In Vitro Cellular Labeling: Role of QD Surface Ligand, Delivery Modality, Cell Type, and Direct Comparison to Organic Fluorophores. Bioconjugate Chemistry 2013, 24
(9)
, 1570-1583. https://doi.org/10.1021/bc4001917
- Christopher M. Spillmann, Mario G. Ancona, Susan Buckhout-White, W. Russ Algar, Michael H. Stewart, Kimihiro Susumu, Alan L. Huston, Ellen R. Goldman, and Igor L. Medintz . Achieving Effective Terminal Exciton Delivery in Quantum Dot Antenna-Sensitized Multistep DNA Photonic Wires. ACS Nano 2013, 7
(8)
, 7101-7118. https://doi.org/10.1021/nn402468t
- K. David Wegner, Zongwen Jin, Stina Lindén, Travis L. Jennings, and Niko Hildebrandt . Quantum-Dot-Based Förster Resonance Energy Transfer Immunoassay for Sensitive Clinical Diagnostics of Low-Volume Serum Samples. ACS Nano 2013, 7
(8)
, 7411-7419. https://doi.org/10.1021/nn403253y
- Kelly Boeneman, James B. Delehanty, Juan B. Blanco-Canosa, Kimihiro Susumu, Michael H. Stewart, Eunkeu Oh, Alan L. Huston, Glyn Dawson, Sampat Ingale, Ryan Walters, Miriam Domowicz, Jeffrey R. Deschamps, W. Russ Algar, Stassi DiMaggio, Janet Manono, Christopher M. Spillmann, Darren Thompson, Travis L. Jennings, Philip E. Dawson, and Igor L. Medintz . Selecting Improved Peptidyl Motifs for Cytosolic Delivery of Disparate Protein and Nanoparticle Materials. ACS Nano 2013, 7
(5)
, 3778-3796. https://doi.org/10.1021/nn400702r
- Yucheng Wang, Rui Hu, Guimiao Lin, Indrajit Roy, and Ken-Tye Yong . Functionalized Quantum Dots for Biosensing and Bioimaging and Concerns on Toxicity. ACS Applied Materials & Interfaces 2013, 5
(8)
, 2786-2799. https://doi.org/10.1021/am302030a
- K. David Wegner, Phung Thi Lanh, Travis Jennings, Eunkeu Oh, Vaibhav Jain, Simon M. Fairclough, Jason M. Smith, Emerson Giovanelli, Nicolas Lequeux, Thomas Pons, and Niko Hildebrandt . Influence of Luminescence Quantum Yield, Surface Coating, and Functionalization of Quantum Dots on the Sensitivity of Time-Resolved FRET Bioassays. ACS Applied Materials & Interfaces 2013, 5
(8)
, 2881-2892. https://doi.org/10.1021/am3030728
- Anthony S. Stender, Kyle Marchuk, Chang Liu, Suzanne Sander, Matthew W. Meyer, Emily A. Smith, Bhanu Neupane, Gufeng Wang, Junjie Li, Ji-Xin Cheng, Bo Huang, and Ning Fang . Single Cell Optical Imaging and Spectroscopy. Chemical Reviews 2013, 113
(4)
, 2469-2527. https://doi.org/10.1021/cr300336e
- Harri Härmä, Sari Pihlasalo, Piotr J. Cywinski, Piia Mikkonen, Tommy Hammann, Hans-Gerd Löhmannsröben, and Pekka Hänninen . Protein Quantification Using Resonance Energy Transfer between Donor Nanoparticles and Acceptor Quantum Dots. Analytical Chemistry 2013, 85
(5)
, 2921-2926. https://doi.org/10.1021/ac303586n
- Sebastián A. Díaz, Luciana Giordano, Julio C. Azcárate, Thomas M. Jovin, and Elizabeth A. Jares-Erijman . Quantum Dots as Templates for Self-Assembly of Photoswitchable Polymers: Small, Dual-Color Nanoparticles Capable of Facile Photomodulation. Journal of the American Chemical Society 2013, 135
(8)
, 3208-3217. https://doi.org/10.1021/ja3117813
- Juan Hu and Chun-yang Zhang . Simple and Accurate Quantification of Quantum Yield at the Single-Molecule/Particle Level. Analytical Chemistry 2013, 85
(4)
, 2000-2004. https://doi.org/10.1021/ac3036487
- Juan Zhou, Qiang-xin Wang, and Chun-yang Zhang . Liposome–Quantum Dot Complexes Enable Multiplexed Detection of Attomolar DNAs without Target Amplification. Journal of the American Chemical Society 2013, 135
(6)
, 2056-2059. https://doi.org/10.1021/ja3110329
- W. Russ Algar, Mario G. Ancona, Anthony P. Malanoski, Kimihiro Susumu, and Igor L. Medintz . Assembly of a Concentric Förster Resonance Energy Transfer Relay on a Quantum Dot Scaffold: Characterization and Application to Multiplexed Protease Sensing. ACS Nano 2012, 6
(12)
, 11044-11058. https://doi.org/10.1021/nn304736j
- W. Russ Algar, Anthony P. Malanoski, Kimihiro Susumu, Michael H. Stewart, Niko Hildebrandt, and Igor L. Medintz . Multiplexed Tracking of Protease Activity Using a Single Color of Quantum Dot Vector and a Time-Gated Förster Resonance Energy Transfer Relay. Analytical Chemistry 2012, 84
(22)
, 10136-10146. https://doi.org/10.1021/ac3028068
- Eleonora Petryayeva and Ulrich J. Krull . Quantum Dot and Gold Nanoparticle Immobilization for Biosensing Applications using Multidentate Imidazole Surface Ligands. Langmuir 2012, 28
(39)
, 13943-13951. https://doi.org/10.1021/la302985x
- Run Long, Niall J. English, and Oleg V. Prezhdo . Photo-induced Charge Separation across the Graphene–TiO2 Interface Is Faster than Energy Losses: A Time-Domain ab Initio Analysis. Journal of the American Chemical Society 2012, 134
(34)
, 14238-14248. https://doi.org/10.1021/ja3063953
- Sebastián A. Díaz, Luciana Giordano, Thomas M. Jovin, and Elizabeth A. Jares-Erijman . Modulation of a Photoswitchable Dual-Color Quantum Dot containing a Photochromic FRET Acceptor and an Internal Standard. Nano Letters 2012, 12
(7)
, 3537-3544. https://doi.org/10.1021/nl301093s
- Michael H. Stewart, Alan L. Huston, Amy M. Scott, Alexander L. Efros, Joseph S. Melinger, Kelly Boeneman Gemmill, Scott A. Trammell, Juan B. Blanco-Canosa, Philip E. Dawson, and Igor L. Medintz . Complex Förster Energy Transfer Interactions between Semiconductor Quantum Dots and a Redox-Active Osmium Assembly. ACS Nano 2012, 6
(6)
, 5330-5347. https://doi.org/10.1021/nn301177h
- Miguel A. Garcia-Garibay (Associate Editor). Advances at the Frontiers of Photochemical Sciences. Journal of the American Chemical Society 2012, 134
(20)
, 8289-8292. https://doi.org/10.1021/ja301329b
- Katrin Pechstedt Tracy Melvin . Colloidal Quantum Dots: The Opportunities and the Pitfalls for DNA Analysis Applications. 2012, 323-363. https://doi.org/10.1021/bk-2012-1113.ch013
- Neha Soleja, Mohd. Mohsin. Exploring the landscape of FRET-based molecular sensors: Design strategies and recent advances in emerging applications. Biotechnology Advances 2024, 77 , 108466. https://doi.org/10.1016/j.biotechadv.2024.108466
- Naoya Tate, Seiya Yamaguchi, Shunichi Sakai, Suguru Shimomura, Takahiro Nishimura, Jun Kozuka, Yusuke Ogura, Jun Tanida. Demonstration of quantum dot reservoir computing based on spatio-temporal optical processing. Applied Optics 2024, 63
(28)
, G30. https://doi.org/10.1364/AO.523828
- S. H. Mohamed, Ali A. Alhazime. Induced red emission and diamagnetic maintenance in cubic Sb2O3 nanostructures via nitrogen insertion. Optical and Quantum Electronics 2024, 56
(5)
https://doi.org/10.1007/s11082-024-06694-z
- Nicolaj Kofod, Margrete Juel Henrichsen, Thomas Just Sørensen. Mapping the distribution of electronic states within the
5
D
4
and
7
F
6
levels of Tb
3+
complexes with optical spectroscopy. Dalton Transactions 2024, 53
(10)
, 4461-4470. https://doi.org/10.1039/D3DT03657J
- Shu Xie, Fei Li, Fengyi Liu, Quanqing Xu, Xufeng Zhang. Tough lanthanide luminescent hydrogel for nitroaromatics detection. Journal of Rare Earths 2024, 42
(2)
, 293-302. https://doi.org/10.1016/j.jre.2022.10.001
- Pradyut Roy, Adhra S. Sury, Pramod P. Pillai. Resonance energy transfer in electrostatically assembled donor-acceptor system based on blue-emitting InP quantum dots. Chemical Physics Impact 2023, 7 , 100334. https://doi.org/10.1016/j.chphi.2023.100334
- Mikkel Baldtzer Liisberg, Tom Vosch. Time gated Fourier transform spectroscopy as a technique for disentangling short- and long-lived luminescence. Communications Materials 2023, 4
(1)
https://doi.org/10.1038/s43246-023-00386-z
- Fengping Hou, Shiqi Sun, Sahibzada Waheed Abdullah, Yu Tang, Xiongxiong Li, Huichen Guo. The application of nanoparticles in point-of-care testing (POCT) immunoassays. Analytical Methods 2023, 15
(18)
, 2154-2180. https://doi.org/10.1039/D3AY00182B
- Sultan Şahin, Özge Ergüder, Levent Trabzon, Caner Ünlü. Quantum dots for sensing applications. 2023, 443-473. https://doi.org/10.1016/B978-0-323-88431-0.00025-9
- Chi Chen, Xingfei Wei, Molly F. Parsons, Jiajia Guo, James L. Banal, Yinong Zhao, Madelyn N. Scott, Gabriela S. Schlau-Cohen, Rigoberto Hernandez, Mark Bathe. Nanoscale 3D spatial addressing and valence control of quantum dots using wireframe DNA origami. Nature Communications 2022, 13
(1)
https://doi.org/10.1038/s41467-022-32662-w
- Milad Mohammadi Rasooll, Hassan Sepehrmansourie, Mahmoud Zarei, Mohammad Ali Zolfigol, Sadegh Rostamnia. Phosphonic acid tagged carbon quantum dots encapsulated in SBA-15 as a novel catalyst for the preparation of N-heterocycles with pyrazolo, barbituric acid and indole moieties. Scientific Reports 2022, 12
(1)
https://doi.org/10.1038/s41598-022-24553-3
- Matteo Bruschi, Federico Gallina, Barbara Fresch. Simulating action-2D electronic spectroscopy of quantum dots: insights on the exciton and biexciton interplay from detection-mode and time-gating. Physical Chemistry Chemical Physics 2022, 24
(45)
, 27645-27659. https://doi.org/10.1039/D2CP04270C
- Hisaki Oka. Functional Separation of Energy Transfer and Photon Absorption of Excitons Formed in Circular Nanoantennae. physica status solidi (b) 2022, 259
(11)
https://doi.org/10.1002/pssb.202200206
- Clémence Cheignon, Ali A. Kassir, Lohona K. Soro, Loïc J. Charbonnière. Dye-sensitized lanthanide containing nanoparticles for luminescence based applications. Nanoscale 2022, 14
(38)
, 13915-13949. https://doi.org/10.1039/D1NR06464A
- David Milićević, Jan Hlaváč. Triple-FRET multi-purpose fluorescent probe for three-protease detection. RSC Advances 2022, 12
(44)
, 28780-28787. https://doi.org/10.1039/D2RA05125G
- Xiaotong Shen, Wei Xu, Jin Ouyang, Na Na. Fluorescence resonance energy transfer-based nanomaterials for the sensing in biological systems. Chinese Chemical Letters 2022, 33
(10)
, 4505-4516. https://doi.org/10.1016/j.cclet.2021.12.061
- Qian Zhang, Xinyi Zhang, Fei Ma, Chun-yang Zhang. Advances in quantum dot-based biosensors for DNA-modifying enzymes assay. Coordination Chemistry Reviews 2022, 469 , 214674. https://doi.org/10.1016/j.ccr.2022.214674
- W. Russ Algar, Katherine D. Krause. Developing FRET Networks for Sensing. Annual Review of Analytical Chemistry 2022, 15
(1)
, 17-36. https://doi.org/10.1146/annurev-anchem-061020-014925
- Naoya Tate, Yuki Miyata, Shun-ichi Sakai, Akihiro Nakamura, Suguru Shimomura, Takahiro Nishimura, Jun Kozuka, Yusuke Ogura, Jun Tanida. Quantitative analysis of nonlinear optical input/output of a quantum-dot network based on the echo state property. Optics Express 2022, 30
(9)
, 14669. https://doi.org/10.1364/OE.450132
- Valeriya Trusova, Uliana Tarabara, Olga Zhytniakivska, Kateryna Vus, Galyna Gorbenko. Fӧrster resonance energy transfer analysis of amyloid state of proteins. BBA Advances 2022, 2 , 100059. https://doi.org/10.1016/j.bbadva.2022.100059
- Jason Pan, Tommy Kmieciak, Yen-Ting Liu, Matthew Wildenradt, Yun-Sheng Chen, Yang Zhao. Quantifying molecular- to cellular-level forces in living cells. Journal of Physics D: Applied Physics 2021, 54
(48)
, 483001. https://doi.org/10.1088/1361-6463/ac2170
- Rosana A. Gonçalves, Herick H. da Silva Barros, Luana S. Araujo, Erica F. Antunes, Antje Quade, Marcio D. Teodoro, Maurício R. Baldan, Olivia M. Berengue. Suppression of vapor-liquid-solid (VLS) mechanism in the growth of α-Sb2O4 nanobelts by a vapor-deposition approach. Materials Science in Semiconductor Processing 2021, 134 , 106006. https://doi.org/10.1016/j.mssp.2021.106006
- Clémence Cheignon, Margaux Heurté, Richard C. Knighton, Ali A. Kassir, Alexandre Lecointre, Aline Nonat, Anne Boos, Câline Christine, Zouhair Asfari, Loïc J. Charbonnière. Investigation of the Supramolecular Assembly of Luminescent Lanthanide Nanoparticles Surface Functionalized by
p‐
Sulfonato‐Calix[4]arenes with Charged Aromatic Compounds. European Journal of Inorganic Chemistry 2021, 2021
(36)
, 3761-3770. https://doi.org/10.1002/ejic.202100546
- Galyna Gorbenko, Olga Zhytniakivska, Kateryna Vus, Uliana Tarabara, Valeriya Trusova. Three-step Förster resonance energy transfer on an amyloid fibril scaffold. Physical Chemistry Chemical Physics 2021, 23
(27)
, 14746-14754. https://doi.org/10.1039/D1CP01359A
- Junyang Chen, Shan Jiang, Mengke Wang, Xiaolei Xie, Xingguang Su. Self-assembled dual-emissive nanoprobe with metal−organic frameworks as scaffolds for enhanced ascorbic acid and ascorbate oxidase sensing. Sensors and Actuators B: Chemical 2021, 339 , 129910. https://doi.org/10.1016/j.snb.2021.129910
- Yang Feng, Yingying Su, Rui Liu, Yi Lv. Engineering activatable nanoprobes based on time-resolved luminescence for chemo/biosensing. TrAC Trends in Analytical Chemistry 2021, 140 , 116283. https://doi.org/10.1016/j.trac.2021.116283
- Yu Cheng, Si Da Ling, Yuhao Geng, Yundong Wang, Jianhong Xu. Microfluidic synthesis of quantum dots and their applications in bio-sensing and bio-imaging. Nanoscale Advances 2021, 3
(8)
, 2180-2195. https://doi.org/10.1039/D0NA00933D
- Xiaoqi Tao, Ziyi Liao, Yaqing Zhang, Fei Fu, Mengqi Hao, Yang Song, Erqun Song. Aptamer-quantum dots and teicoplanin-gold nanoparticles constructed FRET sensor for sensitive detection of Staphylococcus aureus. Chinese Chemical Letters 2021, 32
(2)
, 791-795. https://doi.org/10.1016/j.cclet.2020.07.020
- Sultan Şahin, Caner Ünlü, Levent Trabzon. Affinity biosensors developed with quantum dots in microfluidic systems. Emergent Materials 2021, 4
(1)
, 187-209. https://doi.org/10.1007/s42247-021-00195-5
- Mohd Sajid Lone, Parvaiz Ahmad Bhat, Saima Afzal, Oyais Ahmad Chat, Aijaz Ahmad Dar. Energy transduction through FRET in self-assembled soft nanostructures based on surfactants/polymers: current scenario and prospects. Soft Matter 2021, 17
(3)
, 425-446. https://doi.org/10.1039/D0SM01625J
- Marcelina Cardoso Dos Santos, Ingrid Colin, Gabriel Ribeiro Dos Santos, Kimihiro Susumu, Michaël Demarque, Igor L. Medintz, Niko Hildebrandt. Time‐Gated FRET Nanoprobes for Autofluorescence‐Free Long‐Term In Vivo Imaging of Developing Zebrafish. Advanced Materials 2020, 32
(39)
https://doi.org/10.1002/adma.202003912
- Tooba Hallaj, Mohammad Amjadi, Xue Qiu, Kimihiro Susumu, Igor L. Medintz, Niko Hildebrandt. Terbium-to-quantum dot Förster resonance energy transfer for homogeneous and sensitive detection of histone methyltransferase activity. Nanoscale 2020, 12
(25)
, 13719-13730. https://doi.org/10.1039/D0NR03383A
- Anirban Samanta, Igor L. Medintz. Bioluminescence-Based Energy Transfer Using Semiconductor Quantum Dots as Acceptors. Sensors 2020, 20
(10)
, 2909. https://doi.org/10.3390/s20102909
- Jihong Li, Xiaolong Liu, Jianxi Yao. The Enhanced Photovoltaic Performance of Sb
2
S
3
Solar Cells by Thermal Decomposition of Antimony Ethyl Xanthate with Thiourea Doping. Energy Technology 2020, 8
(4)
https://doi.org/10.1002/ente.201900841
- Suguru Shimomura, Takahiro Nishimura, Yuki Miyata, Naoya Tate, Yusuke Ogura, Jun Tanida. Spectral and temporal optical signal generation using randomly distributed quantum dots. Optical Review 2020, 27
(2)
, 264-269. https://doi.org/10.1007/s10043-020-00588-7
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.