ACS Publications. Most Trusted. Most Cited. Most Read
Quantum Dots as Simultaneous Acceptors and Donors in Time-Gated Förster Resonance Energy Transfer Relays: Characterization and Biosensing
My Activity

Figure 1Loading Img
    Article

    Quantum Dots as Simultaneous Acceptors and Donors in Time-Gated Förster Resonance Energy Transfer Relays: Characterization and Biosensing
    Click to copy article linkArticle link copied!

    View Author Information
    Center for Bio/Molecular Science and Engineering, Code 6900, Optical Sciences Division, Code 5611, U.S. Naval Research Laboratory, Washington DC 20375, United States
    § College of Science, George Mason University, Fairfax, Virginia 22030, United States
    Institut d’Electronique Fondamentale, Université Paris-Sud, 91405 Orsay Cedex, France
    Departments of Chemistry and Cell Biology, The Scripps Research Institute La Jolla, California 92037, United States
    # Sotera Defense Solutions, Crofton, Maryland 21114, United States
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2012, 134, 3, 1876–1891
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja210162f
    Published January 5, 2012
    Copyright © 2012 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The unique photophysical properties of semiconductor quantum dot (QD) bioconjugates offer many advantages for active sensing, imaging, and optical diagnostics. In particular, QDs have been widely adopted as either donors or acceptors in Förster resonance energy transfer (FRET)-based assays and biosensors. Here, we expand their utility by demonstrating that QDs can function in a simultaneous role as acceptors and donors within time-gated FRET relays. To achieve this configuration, the QD was used as a central nanoplatform and coassembled with peptides or oligonucleotides that were labeled with either a long lifetime luminescent terbium(III) complex (Tb) or a fluorescent dye, Alexa Fluor 647 (A647). Within the FRET relay, the QD served as a critical intermediary where (1) an excited-state Tb donor transferred energy to the ground-state QD following a suitable microsecond delay and (2) the QD subsequently transferred that energy to an A647 acceptor. A detailed photophysical analysis was undertaken for each step of the FRET relay. The assembly of increasing ratios of Tb/QD was found to linearly increase the magnitude of the FRET-sensitized time-gated QD photoluminescence intensity. Importantly, the Tb was found to sensitize the subsequent QD–A647 donor–acceptor FRET pair without significantly affecting the intrinsic energy transfer efficiency within the second step in the relay. The utility of incorporating QDs into this type of time-gated energy transfer configuration was demonstrated in prototypical bioassays for monitoring protease activity and nucleic acid hybridization; the latter included a dual target format where each orthogonal FRET step transduced a separate binding event. Potential benefits of this time-gated FRET approach include: eliminating background fluorescence, accessing two approximately independent FRET mechanisms in a single QD-bioconjugate, and multiplexed biosensing based on spectrotemporal resolution of QD-FRET without requiring multiple colors of QD.

    Copyright © 2012 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Detailed descriptions of reagents, labeling chemistry, bioconjugate and assay preparation, instrumentation, data analysis, equations for calculation of FRET efficiencies, FRET ratios, FRET rates, additional PL intensity and PL decay data, further discussion of peptide design, characterization of QD-oligonucleotide conjugates, further description of the two-plex hybridization assay, and alternate analysis methods. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 229 publications.

    1. Juan Medina-Jurado, Hicham Bourakhouadar, YiXu Wang, Alex J. Corkett, David Enseling, Thomas Jüstel, Richard Dronskowski. Topological Photoluminescence and Slow Magnetic Relaxation in a Quasi One-Dimensional Stoichiometric Ternary Tb(III) Cyanamide. Chemistry of Materials 2025, 37 (7) , 2506-2515. https://doi.org/10.1021/acs.chemmater.4c03264
    2. Selin E. Donmez, Sisi Wang, Unaisah Vorajee, Geoffrey F. Strouse, Hedi Mattoussi. Investigating Energy-Transfer Interactions in Perovskite Quantum Dot–Dye Assemblies. The Journal of Physical Chemistry C 2025, 129 (8) , 4134-4145. https://doi.org/10.1021/acs.jpcc.5c00337
    3. David A. Hastman, Shelby Hooe, Matthew Chiriboga, Sebastián A. Díaz, Kimihiro Susumu, Michael H. Stewart, Christopher M. Green, Niko Hildebrandt, Igor L. Medintz. Multiplexed DNA and Protease Detection with Orthogonal Energy Transfer on a Single Quantum Dot Scaffolded Biosensor. ACS Sensors 2024, 9 (1) , 157-170. https://doi.org/10.1021/acssensors.3c01812
    4. Nicolaj Kofod, Thomas Just Sørensen. Tb3+ Photophysics: Mapping Excited State Dynamics of [Tb(H2O)9]3+ Using Molecular Photophysics. The Journal of Physical Chemistry Letters 2022, 13 (51) , 11968-11973. https://doi.org/10.1021/acs.jpclett.2c03506
    5. Sylwia Parzyszek, Jacopo Tessarolo, Adrián Pedrazo-Tardajos, Ana M. Ortuño, Maciej Bagiński, Sara Bals, Guido H. Clever, Wiktor Lewandowski. Tunable Circularly Polarized Luminescence via Chirality Induction and Energy Transfer from Organic Films to Semiconductor Nanocrystals. ACS Nano 2022, 16 (11) , 18472-18482. https://doi.org/10.1021/acsnano.2c06623
    6. Maha K. Rahim, Jinghui Zhao, Hinesh V. Patel, Hauna A. Lagouros, Rajesh Kota, Irma Fernandez, Enrico Gratton, Jered B. Haun. Phasor Analysis of Fluorescence Lifetime Enables Quantitative Multiplexed Molecular Imaging of Three Probes. Analytical Chemistry 2022, 94 (41) , 14185-14194. https://doi.org/10.1021/acs.analchem.2c02149
    7. Hsin-Yun Tsai, W. Russ Algar. A Dendrimer-Based Time-Gated Concentric FRET Configuration for Multiplexed Sensing. ACS Nano 2022, 16 (5) , 8150-8160. https://doi.org/10.1021/acsnano.2c01473
    8. W. Russ Algar, Melissa Massey, Kelly Rees, Rehan Higgins, Katherine D. Krause, Ghinwa H. Darwish, William J. Peveler, Zhujun Xiao, Hsin-Yun Tsai, Rupsa Gupta, Kelsi Lix, Michael V. Tran, Hyungki Kim. Photoluminescent Nanoparticles for Chemical and Biological Analysis and Imaging. Chemical Reviews 2021, 121 (15) , 9243-9358. https://doi.org/10.1021/acs.chemrev.0c01176
    9. Pei-Pei Jia, Lin Xu, Yi-Xiong Hu, Wei-Jian Li, Xu-Qing Wang, Qing-Hui Ling, Xueliang Shi, Guang-Qiang Yin, Xiaopeng Li, Haitao Sun, Yanrong Jiang, Hai-Bo Yang. Orthogonal Self-Assembly of a Two-Step Fluorescence-Resonance Energy Transfer System with Improved Photosensitization Efficiency and Photooxidation Activity. Journal of the American Chemical Society 2021, 143 (1) , 399-408. https://doi.org/10.1021/jacs.0c11370
    10. W. Russ Algar. Heroes or Villains? How Nontraditional Luminescent Materials Do and Do Not Enhance Bioanalysis and Imaging. Chemistry of Materials 2020, 32 (12) , 4863-4883. https://doi.org/10.1021/acs.chemmater.0c01130
    11. Corentin Léger, Akram Yahia-Ammar, Kimihiro Susumu, Igor L. Medintz, Agathe Urvoas, Marie Valerio-Lepiniec, Philippe Minard, Niko Hildebrandt. Picomolar Biosensing and Conformational Analysis Using Artificial Bidomain Proteins and Terbium-to-Quantum Dot Förster Resonance Energy Transfer. ACS Nano 2020, 14 (5) , 5956-5967. https://doi.org/10.1021/acsnano.0c01410
    12. Chi Chen, Ben Corry, Liang Huang, Niko Hildebrandt. FRET-Modulated Multihybrid Nanoparticles for Brightness-Equalized Single-Wavelength Barcoding. Journal of the American Chemical Society 2019, 141 (28) , 11123-11141. https://doi.org/10.1021/jacs.9b03383
    13. Juan Hu, Ming-hao Liu, Chun-yang Zhang. Construction of Tetrahedral DNA-Quantum Dot Nanostructure with the Integration of Multistep Förster Resonance Energy Transfer for Multiplex Enzymes Assay. ACS Nano 2019, 13 (6) , 7191-7201. https://doi.org/10.1021/acsnano.9b02679
    14. Scott A. Walper, Guillermo Lasarte Aragonés, Kim E. Sapsford, Carl W. Brown III, Clare E. Rowland, Joyce C. Breger, Igor L. Medintz. Detecting Biothreat Agents: From Current Diagnostics to Developing Sensor Technologies. ACS Sensors 2018, 3 (10) , 1894-2024. https://doi.org/10.1021/acssensors.8b00420
    15. Ye Wang, Philip D. Howes, Eunjung Kim, Christopher D. Spicer, Michael R. Thomas, Yiyang Lin, Spencer W. Crowder, Isaac J. Pence, Molly M. Stevens. Duplex-Specific Nuclease-Amplified Detection of MicroRNA Using Compact Quantum Dot–DNA Conjugates. ACS Applied Materials & Interfaces 2018, 10 (34) , 28290-28300. https://doi.org/10.1021/acsami.8b07250
    16. Xue Qiu, Jiajia Guo, Jingyue Xu, Niko Hildebrandt. Three-Dimensional FRET Multiplexing for DNA Quantification with Attomolar Detection Limits. The Journal of Physical Chemistry Letters 2018, 9 (15) , 4379-4384. https://doi.org/10.1021/acs.jpclett.8b01944
    17. William J. Peveler, W. Russ Algar. More Than a Light Switch: Engineering Unconventional Fluorescent Configurations for Biological Sensing. ACS Chemical Biology 2018, 13 (7) , 1752-1766. https://doi.org/10.1021/acschembio.7b01022
    18. James Nicholas Vranish, Mario G. Ancona, Scott A. Walper, Igor L. Medintz. Pursuing the Promise of Enzymatic Enhancement with Nanoparticle Assemblies. Langmuir 2018, 34 (9) , 2901-2925. https://doi.org/10.1021/acs.langmuir.7b02588
    19. Kenneth Yin Zhang, Qi Yu, Huanjie Wei, Shujuan Liu, Qiang Zhao, and Wei Huang . Long-Lived Emissive Probes for Time-Resolved Photoluminescence Bioimaging and Biosensing. Chemical Reviews 2018, 118 (4) , 1770-1839. https://doi.org/10.1021/acs.chemrev.7b00425
    20. Juan Hu, Yueying Li, Ying Li, Bo Tang, and Chun-yang Zhang . Single Quantum Dot-Based Nanosensor for Sensitive Detection of O-GlcNAc Transferase Activity. Analytical Chemistry 2017, 89 (23) , 12992-12999. https://doi.org/10.1021/acs.analchem.7b04065
    21. Yi Han, M. Omair Noor, Abootaleb Sedighi, Uvaraj Uddayasankar, Samer Doughan, and Ulrich J. Krull . Inorganic Nanoparticles as Donors in Resonance Energy Transfer for Solid-Phase Bioassays and Biosensors. Langmuir 2017, 33 (45) , 12839-12858. https://doi.org/10.1021/acs.langmuir.7b01483
    22. Xiaolin Huang, Yijing Liu, Bryant Yung, Yonghua Xiong, and Xiaoyuan Chen . Nanotechnology-Enhanced No-Wash Biosensors for in Vitro Diagnostics of Cancer. ACS Nano 2017, 11 (6) , 5238-5292. https://doi.org/10.1021/acsnano.7b02618
    23. Sebastián A. Díaz, Guillermo Lasarte Aragonés, Susan Buckhout-White, Xue Qiu, Eunkeu Oh, Kimihiro Susumu, Joseph S. Melinger, Alan L. Huston, Niko Hildebrandt, and Igor L. Medintz . Bridging Lanthanide to Quantum Dot Energy Transfer with a Short-Lifetime Organic Dye. The Journal of Physical Chemistry Letters 2017, 8 (10) , 2182-2188. https://doi.org/10.1021/acs.jpclett.7b00584
    24. Jia-nan Liu, Wenbo Bu, and Jianlin Shi . Chemical Design and Synthesis of Functionalized Probes for Imaging and Treating Tumor Hypoxia. Chemical Reviews 2017, 117 (9) , 6160-6224. https://doi.org/10.1021/acs.chemrev.6b00525
    25. Wenping Yin, Namhun Kim, Jaehak Jeong, Kil Suk Kim, Heeyeop Chae, and Tae Kyu Ahn . Efficient Heterotransfer between Visible Quantum Dots. The Journal of Physical Chemistry C 2017, 121 (9) , 4799-4805. https://doi.org/10.1021/acs.jpcc.6b10640
    26. Niko Hildebrandt, Christopher M. Spillmann, W. Russ Algar, Thomas Pons, Michael H. Stewart, Eunkeu Oh, Kimihiro Susumu, Sebastian A. Díaz, James B. Delehanty, and Igor L. Medintz . Energy Transfer with Semiconductor Quantum Dot Bioconjugates: A Versatile Platform for Biosensing, Energy Harvesting, and Other Developing Applications. Chemical Reviews 2017, 117 (2) , 536-711. https://doi.org/10.1021/acs.chemrev.6b00030
    27. W. Russ Algar, Ani Khachatrian, Joseph S. Melinger, Alan L. Huston, Michael H. Stewart, Kimihiro Susumu, Juan B. Blanco-Canosa, Eunkeu Oh, Philip E. Dawson, and Igor L. Medintz . Concurrent Modulation of Quantum Dot Photoluminescence Using a Combination of Charge Transfer and Förster Resonance Energy Transfer: Competitive Quenching and Multiplexed Biosensing Modality. Journal of the American Chemical Society 2017, 139 (1) , 363-372. https://doi.org/10.1021/jacs.6b11042
    28. Rachel D. Harris, Stephanie Bettis Homan, Mohamad Kodaimati, Chen He, Alexander B. Nepomnyashchii, Nathaniel K. Swenson, Shichen Lian, Raul Calzada, and Emily A. Weiss . Electronic Processes within Quantum Dot-Molecule Complexes. Chemical Reviews 2016, 116 (21) , 12865-12919. https://doi.org/10.1021/acs.chemrev.6b00102
    29. Allison M. Dennis, James B. Delehanty, and Igor L. Medintz . Emerging Physicochemical Phenomena along with New Opportunities at the Biomolecular–Nanoparticle Interface. The Journal of Physical Chemistry Letters 2016, 7 (11) , 2139-2150. https://doi.org/10.1021/acs.jpclett.6b00570
    30. Lea Nienhaus, Joshua J. Goings, Duc Nguyen, Sarah Wieghold, Joseph W. Lyding, Xiaosong Li, and Martin Gruebele . Imaging Excited Orbitals of Quantum Dots: Experiment and Electronic Structure Theory. Journal of the American Chemical Society 2015, 137 (46) , 14743-14750. https://doi.org/10.1021/jacs.5b09272
    31. Miao Wu, Melissa Massey, Eleonora Petryayeva, and W. Russ Algar . Energy Transfer Pathways in a Quantum Dot-Based Concentric FRET Configuration. The Journal of Physical Chemistry C 2015, 119 (46) , 26183-26195. https://doi.org/10.1021/acs.jpcc.5b08612
    32. Juan Zhou, Yong Yang, and Chun-yang Zhang . Toward Biocompatible Semiconductor Quantum Dots: From Biosynthesis and Bioconjugation to Biomedical Application. Chemical Reviews 2015, 115 (21) , 11669-11717. https://doi.org/10.1021/acs.chemrev.5b00049
    33. Lu Tian, Zhichao Dai, Xiangli Liu, Bo Song, Zhiqiang Ye, and Jingli Yuan . Ratiometric Time-Gated Luminescence Probe for Nitric Oxide Based on an Apoferritin-Assembled Lanthanide Complex-Rhodamine Luminescence Resonance Energy Transfer System. Analytical Chemistry 2015, 87 (21) , 10878-10885. https://doi.org/10.1021/acs.analchem.5b02347
    34. Xue Qiu and Niko Hildebrandt . Rapid and Multiplexed MicroRNA Diagnostic Assay Using Quantum Dot-Based Förster Resonance Energy Transfer. ACS Nano 2015, 9 (8) , 8449-8457. https://doi.org/10.1021/acsnano.5b03364
    35. Miao Wu and W. Russ Algar . Concentric Förster Resonance Energy Transfer Imaging. Analytical Chemistry 2015, 87 (16) , 8078-8083. https://doi.org/10.1021/acs.analchem.5b01946
    36. Uvaraj Uddayasankar and Ulrich J. Krull . Energy Transfer Assays Using Quantum Dot–Gold Nanoparticle Complexes: Optimizing Oligonucleotide Assay Configuration Using Monovalently Conjugated Quantum Dots. Langmuir 2015, 31 (29) , 8194-8204. https://doi.org/10.1021/acs.langmuir.5b01932
    37. Melissa Massey, Mario G. Ancona, Igor L. Medintz, and W. Russ Algar . Time-Gated DNA Photonic Wires with Förster Resonance Energy Transfer Cascades Initiated by a Luminescent Terbium Donor. ACS Photonics 2015, 2 (5) , 639-652. https://doi.org/10.1021/acsphotonics.5b00052
    38. Wei Wan, Ming-Qiang Zhu, Zhiyuan Tian, and Alexander D. Q. Li . Antiphase Dual-Color Correlation in a Reactant–Product Pair Imparts Ultrasensitivity in Reaction-Linked Double-Photoswitching Fluorescence Imaging. Journal of the American Chemical Society 2015, 137 (13) , 4312-4315. https://doi.org/10.1021/jacs.5b01007
    39. De Nyago Tafen and Oleg V. Prezhdo . Size and Temperature Dependence of Electron Transfer between CdSe Quantum Dots and a TiO2 Nanobelt. The Journal of Physical Chemistry C 2015, 119 (10) , 5639-5647. https://doi.org/10.1021/jp5110278
    40. Miao Wu, Eleonora Petryayeva, and W. Russ Algar . Quantum Dot-Based Concentric FRET Configuration for the Parallel Detection of Protease Activity and Concentration. Analytical Chemistry 2014, 86 (22) , 11181-11188. https://doi.org/10.1021/ac502600a
    41. Joyce C. Breger, Kim E. Sapsford, Jessica Ganek, Kimihiro Susumu, Michael H. Stewart, and Igor L. Medintz . Detecting Kallikrein Proteolytic Activity with Peptide-Quantum Dot Nanosensors. ACS Applied Materials & Interfaces 2014, 6 (14) , 11529-11535. https://doi.org/10.1021/am502135h
    42. K. David Wegner, Frank Morgner, Eunkeu Oh, Ramasis Goswami, Kimihiro Susumu, Michael H. Stewart, Igor L. Medintz, and Niko Hildebrandt . Three-Dimensional Solution-Phase Förster Resonance Energy Transfer Analysis of Nanomolar Quantum Dot Bioconjugates with Subnanometer Resolution. Chemistry of Materials 2014, 26 (14) , 4299-4312. https://doi.org/10.1021/cm502021m
    43. Hyungki Kim, Cheryl Y.W. Ng, and W. Russ Algar . Quantum Dot-Based Multidonor Concentric FRET System and Its Application to Biosensing Using an Excitation Ratio. Langmuir 2014, 30 (19) , 5676-5685. https://doi.org/10.1021/la501102x
    44. Jonathan C. Claussen, Niko Hildebrandt, Kimihiro Susumu, Mario G. Ancona, and Igor L. Medintz . Complex Logic Functions Implemented with Quantum Dot Bionanophotonic Circuits. ACS Applied Materials & Interfaces 2014, 6 (6) , 3771-3778. https://doi.org/10.1021/am404659f
    45. Daniel Geißler, Stina Linden, Konstanze Liermann, K. David Wegner, Loïc J. Charbonnière, and Niko Hildebrandt . Lanthanides and Quantum Dots as Förster Resonance Energy Transfer Agents for Diagnostics and Cellular Imaging. Inorganic Chemistry 2014, 53 (4) , 1824-1838. https://doi.org/10.1021/ic4017883
    46. Fuan Wang, Chun-Hua Lu, Xiaoqing Liu, Lina Freage, and Itamar Willner . Amplified and Multiplexed Detection of DNA Using the Dendritic Rolling Circle Amplified Synthesis of DNAzyme Reporter Units. Analytical Chemistry 2014, 86 (3) , 1614-1621. https://doi.org/10.1021/ac4033033
    47. Christopher E. Bradburne, James B. Delehanty, Kelly Boeneman Gemmill, Bing C. Mei, Hedi Mattoussi, Kimihiro Susumu, Juan B. Blanco-Canosa, Philip E. Dawson, and Igor L. Medintz . Cytotoxicity of Quantum Dots Used for In Vitro Cellular Labeling: Role of QD Surface Ligand, Delivery Modality, Cell Type, and Direct Comparison to Organic Fluorophores. Bioconjugate Chemistry 2013, 24 (9) , 1570-1583. https://doi.org/10.1021/bc4001917
    48. Christopher M. Spillmann, Mario G. Ancona, Susan Buckhout-White, W. Russ Algar, Michael H. Stewart, Kimihiro Susumu, Alan L. Huston, Ellen R. Goldman, and Igor L. Medintz . Achieving Effective Terminal Exciton Delivery in Quantum Dot Antenna-Sensitized Multistep DNA Photonic Wires. ACS Nano 2013, 7 (8) , 7101-7118. https://doi.org/10.1021/nn402468t
    49. K. David Wegner, Zongwen Jin, Stina Lindén, Travis L. Jennings, and Niko Hildebrandt . Quantum-Dot-Based Förster Resonance Energy Transfer Immunoassay for Sensitive Clinical Diagnostics of Low-Volume Serum Samples. ACS Nano 2013, 7 (8) , 7411-7419. https://doi.org/10.1021/nn403253y
    50. Kelly Boeneman, James B. Delehanty, Juan B. Blanco-Canosa, Kimihiro Susumu, Michael H. Stewart, Eunkeu Oh, Alan L. Huston, Glyn Dawson, Sampat Ingale, Ryan Walters, Miriam Domowicz, Jeffrey R. Deschamps, W. Russ Algar, Stassi DiMaggio, Janet Manono, Christopher M. Spillmann, Darren Thompson, Travis L. Jennings, Philip E. Dawson, and Igor L. Medintz . Selecting Improved Peptidyl Motifs for Cytosolic Delivery of Disparate Protein and Nanoparticle Materials. ACS Nano 2013, 7 (5) , 3778-3796. https://doi.org/10.1021/nn400702r
    51. Yucheng Wang, Rui Hu, Guimiao Lin, Indrajit Roy, and Ken-Tye Yong . Functionalized Quantum Dots for Biosensing and Bioimaging and Concerns on Toxicity. ACS Applied Materials & Interfaces 2013, 5 (8) , 2786-2799. https://doi.org/10.1021/am302030a
    52. K. David Wegner, Phung Thi Lanh, Travis Jennings, Eunkeu Oh, Vaibhav Jain, Simon M. Fairclough, Jason M. Smith, Emerson Giovanelli, Nicolas Lequeux, Thomas Pons, and Niko Hildebrandt . Influence of Luminescence Quantum Yield, Surface Coating, and Functionalization of Quantum Dots on the Sensitivity of Time-Resolved FRET Bioassays. ACS Applied Materials & Interfaces 2013, 5 (8) , 2881-2892. https://doi.org/10.1021/am3030728
    53. Anthony S. Stender, Kyle Marchuk, Chang Liu, Suzanne Sander, Matthew W. Meyer, Emily A. Smith, Bhanu Neupane, Gufeng Wang, Junjie Li, Ji-Xin Cheng, Bo Huang, and Ning Fang . Single Cell Optical Imaging and Spectroscopy. Chemical Reviews 2013, 113 (4) , 2469-2527. https://doi.org/10.1021/cr300336e
    54. Harri Härmä, Sari Pihlasalo, Piotr J. Cywinski, Piia Mikkonen, Tommy Hammann, Hans-Gerd Löhmannsröben, and Pekka Hänninen . Protein Quantification Using Resonance Energy Transfer between Donor Nanoparticles and Acceptor Quantum Dots. Analytical Chemistry 2013, 85 (5) , 2921-2926. https://doi.org/10.1021/ac303586n
    55. Sebastián A. Díaz, Luciana Giordano, Julio C. Azcárate, Thomas M. Jovin, and Elizabeth A. Jares-Erijman . Quantum Dots as Templates for Self-Assembly of Photoswitchable Polymers: Small, Dual-Color Nanoparticles Capable of Facile Photomodulation. Journal of the American Chemical Society 2013, 135 (8) , 3208-3217. https://doi.org/10.1021/ja3117813
    56. Juan Hu and Chun-yang Zhang . Simple and Accurate Quantification of Quantum Yield at the Single-Molecule/Particle Level. Analytical Chemistry 2013, 85 (4) , 2000-2004. https://doi.org/10.1021/ac3036487
    57. Juan Zhou, Qiang-xin Wang, and Chun-yang Zhang . Liposome–Quantum Dot Complexes Enable Multiplexed Detection of Attomolar DNAs without Target Amplification. Journal of the American Chemical Society 2013, 135 (6) , 2056-2059. https://doi.org/10.1021/ja3110329
    58. W. Russ Algar, Mario G. Ancona, Anthony P. Malanoski, Kimihiro Susumu, and Igor L. Medintz . Assembly of a Concentric Förster Resonance Energy Transfer Relay on a Quantum Dot Scaffold: Characterization and Application to Multiplexed Protease Sensing. ACS Nano 2012, 6 (12) , 11044-11058. https://doi.org/10.1021/nn304736j
    59. W. Russ Algar, Anthony P. Malanoski, Kimihiro Susumu, Michael H. Stewart, Niko Hildebrandt, and Igor L. Medintz . Multiplexed Tracking of Protease Activity Using a Single Color of Quantum Dot Vector and a Time-Gated Förster Resonance Energy Transfer Relay. Analytical Chemistry 2012, 84 (22) , 10136-10146. https://doi.org/10.1021/ac3028068
    60. Eleonora Petryayeva and Ulrich J. Krull . Quantum Dot and Gold Nanoparticle Immobilization for Biosensing Applications using Multidentate Imidazole Surface Ligands. Langmuir 2012, 28 (39) , 13943-13951. https://doi.org/10.1021/la302985x
    61. Run Long, Niall J. English, and Oleg V. Prezhdo . Photo-induced Charge Separation across the Graphene–TiO2 Interface Is Faster than Energy Losses: A Time-Domain ab Initio Analysis. Journal of the American Chemical Society 2012, 134 (34) , 14238-14248. https://doi.org/10.1021/ja3063953
    62. Sebastián A. Díaz, Luciana Giordano, Thomas M. Jovin, and Elizabeth A. Jares-Erijman . Modulation of a Photoswitchable Dual-Color Quantum Dot containing a Photochromic FRET Acceptor and an Internal Standard. Nano Letters 2012, 12 (7) , 3537-3544. https://doi.org/10.1021/nl301093s
    63. Michael H. Stewart, Alan L. Huston, Amy M. Scott, Alexander L. Efros, Joseph S. Melinger, Kelly Boeneman Gemmill, Scott A. Trammell, Juan B. Blanco-Canosa, Philip E. Dawson, and Igor L. Medintz . Complex Förster Energy Transfer Interactions between Semiconductor Quantum Dots and a Redox-Active Osmium Assembly. ACS Nano 2012, 6 (6) , 5330-5347. https://doi.org/10.1021/nn301177h
    64. Miguel A. Garcia-Garibay (Associate Editor). Advances at the Frontiers of Photochemical Sciences. Journal of the American Chemical Society 2012, 134 (20) , 8289-8292. https://doi.org/10.1021/ja301329b
    65. Katrin Pechstedt Tracy Melvin . Colloidal Quantum Dots: The Opportunities and the Pitfalls for DNA Analysis Applications. 2012, 323-363. https://doi.org/10.1021/bk-2012-1113.ch013
    66. Neha Soleja, Mohd. Mohsin. Exploring the landscape of FRET-based molecular sensors: Design strategies and recent advances in emerging applications. Biotechnology Advances 2024, 77 , 108466. https://doi.org/10.1016/j.biotechadv.2024.108466
    67. Naoya Tate, Seiya Yamaguchi, Shunichi Sakai, Suguru Shimomura, Takahiro Nishimura, Jun Kozuka, Yusuke Ogura, Jun Tanida. Demonstration of quantum dot reservoir computing based on spatio-temporal optical processing. Applied Optics 2024, 63 (28) , G30. https://doi.org/10.1364/AO.523828
    68. S. H. Mohamed, Ali A. Alhazime. Induced red emission and diamagnetic maintenance in cubic Sb2O3 nanostructures via nitrogen insertion. Optical and Quantum Electronics 2024, 56 (5) https://doi.org/10.1007/s11082-024-06694-z
    69. Nicolaj Kofod, Margrete Juel Henrichsen, Thomas Just Sørensen. Mapping the distribution of electronic states within the 5 D 4 and 7 F 6 levels of Tb 3+ complexes with optical spectroscopy. Dalton Transactions 2024, 53 (10) , 4461-4470. https://doi.org/10.1039/D3DT03657J
    70. Shu Xie, Fei Li, Fengyi Liu, Quanqing Xu, Xufeng Zhang. Tough lanthanide luminescent hydrogel for nitroaromatics detection. Journal of Rare Earths 2024, 42 (2) , 293-302. https://doi.org/10.1016/j.jre.2022.10.001
    71. Pradyut Roy, Adhra S. Sury, Pramod P. Pillai. Resonance energy transfer in electrostatically assembled donor-acceptor system based on blue-emitting InP quantum dots. Chemical Physics Impact 2023, 7 , 100334. https://doi.org/10.1016/j.chphi.2023.100334
    72. Mikkel Baldtzer Liisberg, Tom Vosch. Time gated Fourier transform spectroscopy as a technique for disentangling short- and long-lived luminescence. Communications Materials 2023, 4 (1) https://doi.org/10.1038/s43246-023-00386-z
    73. Fengping Hou, Shiqi Sun, Sahibzada Waheed Abdullah, Yu Tang, Xiongxiong Li, Huichen Guo. The application of nanoparticles in point-of-care testing (POCT) immunoassays. Analytical Methods 2023, 15 (18) , 2154-2180. https://doi.org/10.1039/D3AY00182B
    74. Sultan Şahin, Özge Ergüder, Levent Trabzon, Caner Ünlü. Quantum dots for sensing applications. 2023, 443-473. https://doi.org/10.1016/B978-0-323-88431-0.00025-9
    75. Chi Chen, Xingfei Wei, Molly F. Parsons, Jiajia Guo, James L. Banal, Yinong Zhao, Madelyn N. Scott, Gabriela S. Schlau-Cohen, Rigoberto Hernandez, Mark Bathe. Nanoscale 3D spatial addressing and valence control of quantum dots using wireframe DNA origami. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-32662-w
    76. Milad Mohammadi Rasooll, Hassan Sepehrmansourie, Mahmoud Zarei, Mohammad Ali Zolfigol, Sadegh Rostamnia. Phosphonic acid tagged carbon quantum dots encapsulated in SBA-15 as a novel catalyst for the preparation of N-heterocycles with pyrazolo, barbituric acid and indole moieties. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-24553-3
    77. Matteo Bruschi, Federico Gallina, Barbara Fresch. Simulating action-2D electronic spectroscopy of quantum dots: insights on the exciton and biexciton interplay from detection-mode and time-gating. Physical Chemistry Chemical Physics 2022, 24 (45) , 27645-27659. https://doi.org/10.1039/D2CP04270C
    78. Hisaki Oka. Functional Separation of Energy Transfer and Photon Absorption of Excitons Formed in Circular Nanoantennae. physica status solidi (b) 2022, 259 (11) https://doi.org/10.1002/pssb.202200206
    79. Clémence Cheignon, Ali A. Kassir, Lohona K. Soro, Loïc J. Charbonnière. Dye-sensitized lanthanide containing nanoparticles for luminescence based applications. Nanoscale 2022, 14 (38) , 13915-13949. https://doi.org/10.1039/D1NR06464A
    80. David Milićević, Jan Hlaváč. Triple-FRET multi-purpose fluorescent probe for three-protease detection. RSC Advances 2022, 12 (44) , 28780-28787. https://doi.org/10.1039/D2RA05125G
    81. Xiaotong Shen, Wei Xu, Jin Ouyang, Na Na. Fluorescence resonance energy transfer-based nanomaterials for the sensing in biological systems. Chinese Chemical Letters 2022, 33 (10) , 4505-4516. https://doi.org/10.1016/j.cclet.2021.12.061
    82. Qian Zhang, Xinyi Zhang, Fei Ma, Chun-yang Zhang. Advances in quantum dot-based biosensors for DNA-modifying enzymes assay. Coordination Chemistry Reviews 2022, 469 , 214674. https://doi.org/10.1016/j.ccr.2022.214674
    83. W. Russ Algar, Katherine D. Krause. Developing FRET Networks for Sensing. Annual Review of Analytical Chemistry 2022, 15 (1) , 17-36. https://doi.org/10.1146/annurev-anchem-061020-014925
    84. Naoya Tate, Yuki Miyata, Shun-ichi Sakai, Akihiro Nakamura, Suguru Shimomura, Takahiro Nishimura, Jun Kozuka, Yusuke Ogura, Jun Tanida. Quantitative analysis of nonlinear optical input/output of a quantum-dot network based on the echo state property. Optics Express 2022, 30 (9) , 14669. https://doi.org/10.1364/OE.450132
    85. Valeriya Trusova, Uliana Tarabara, Olga Zhytniakivska, Kateryna Vus, Galyna Gorbenko. Fӧrster resonance energy transfer analysis of amyloid state of proteins. BBA Advances 2022, 2 , 100059. https://doi.org/10.1016/j.bbadva.2022.100059
    86. Jason Pan, Tommy Kmieciak, Yen-Ting Liu, Matthew Wildenradt, Yun-Sheng Chen, Yang Zhao. Quantifying molecular- to cellular-level forces in living cells. Journal of Physics D: Applied Physics 2021, 54 (48) , 483001. https://doi.org/10.1088/1361-6463/ac2170
    87. Rosana A. Gonçalves, Herick H. da Silva Barros, Luana S. Araujo, Erica F. Antunes, Antje Quade, Marcio D. Teodoro, Maurício R. Baldan, Olivia M. Berengue. Suppression of vapor-liquid-solid (VLS) mechanism in the growth of α-Sb2O4 nanobelts by a vapor-deposition approach. Materials Science in Semiconductor Processing 2021, 134 , 106006. https://doi.org/10.1016/j.mssp.2021.106006
    88. Clémence Cheignon, Margaux Heurté, Richard C. Knighton, Ali A. Kassir, Alexandre Lecointre, Aline Nonat, Anne Boos, Câline Christine, Zouhair Asfari, Loïc J. Charbonnière. Investigation of the Supramolecular Assembly of Luminescent Lanthanide Nanoparticles Surface Functionalized by p‐ Sulfonato‐Calix[4]arenes with Charged Aromatic Compounds. European Journal of Inorganic Chemistry 2021, 2021 (36) , 3761-3770. https://doi.org/10.1002/ejic.202100546
    89. Galyna Gorbenko, Olga Zhytniakivska, Kateryna Vus, Uliana Tarabara, Valeriya Trusova. Three-step Förster resonance energy transfer on an amyloid fibril scaffold. Physical Chemistry Chemical Physics 2021, 23 (27) , 14746-14754. https://doi.org/10.1039/D1CP01359A
    90. Junyang Chen, Shan Jiang, Mengke Wang, Xiaolei Xie, Xingguang Su. Self-assembled dual-emissive nanoprobe with metal−organic frameworks as scaffolds for enhanced ascorbic acid and ascorbate oxidase sensing. Sensors and Actuators B: Chemical 2021, 339 , 129910. https://doi.org/10.1016/j.snb.2021.129910
    91. Yang Feng, Yingying Su, Rui Liu, Yi Lv. Engineering activatable nanoprobes based on time-resolved luminescence for chemo/biosensing. TrAC Trends in Analytical Chemistry 2021, 140 , 116283. https://doi.org/10.1016/j.trac.2021.116283
    92. Yu Cheng, Si Da Ling, Yuhao Geng, Yundong Wang, Jianhong Xu. Microfluidic synthesis of quantum dots and their applications in bio-sensing and bio-imaging. Nanoscale Advances 2021, 3 (8) , 2180-2195. https://doi.org/10.1039/D0NA00933D
    93. Xiaoqi Tao, Ziyi Liao, Yaqing Zhang, Fei Fu, Mengqi Hao, Yang Song, Erqun Song. Aptamer-quantum dots and teicoplanin-gold nanoparticles constructed FRET sensor for sensitive detection of Staphylococcus aureus. Chinese Chemical Letters 2021, 32 (2) , 791-795. https://doi.org/10.1016/j.cclet.2020.07.020
    94. Sultan Şahin, Caner Ünlü, Levent Trabzon. Affinity biosensors developed with quantum dots in microfluidic systems. Emergent Materials 2021, 4 (1) , 187-209. https://doi.org/10.1007/s42247-021-00195-5
    95. Mohd Sajid Lone, Parvaiz Ahmad Bhat, Saima Afzal, Oyais Ahmad Chat, Aijaz Ahmad Dar. Energy transduction through FRET in self-assembled soft nanostructures based on surfactants/polymers: current scenario and prospects. Soft Matter 2021, 17 (3) , 425-446. https://doi.org/10.1039/D0SM01625J
    96. Marcelina Cardoso Dos Santos, Ingrid Colin, Gabriel Ribeiro Dos Santos, Kimihiro Susumu, Michaël Demarque, Igor L. Medintz, Niko Hildebrandt. Time‐Gated FRET Nanoprobes for Autofluorescence‐Free Long‐Term In Vivo Imaging of Developing Zebrafish. Advanced Materials 2020, 32 (39) https://doi.org/10.1002/adma.202003912
    97. Tooba Hallaj, Mohammad Amjadi, Xue Qiu, Kimihiro Susumu, Igor L. Medintz, Niko Hildebrandt. Terbium-to-quantum dot Förster resonance energy transfer for homogeneous and sensitive detection of histone methyltransferase activity. Nanoscale 2020, 12 (25) , 13719-13730. https://doi.org/10.1039/D0NR03383A
    98. Anirban Samanta, Igor L. Medintz. Bioluminescence-Based Energy Transfer Using Semiconductor Quantum Dots as Acceptors. Sensors 2020, 20 (10) , 2909. https://doi.org/10.3390/s20102909
    99. Jihong Li, Xiaolong Liu, Jianxi Yao. The Enhanced Photovoltaic Performance of Sb 2 S 3 Solar Cells by Thermal Decomposition of Antimony Ethyl Xanthate with Thiourea Doping. Energy Technology 2020, 8 (4) https://doi.org/10.1002/ente.201900841
    100. Suguru Shimomura, Takahiro Nishimura, Yuki Miyata, Naoya Tate, Yusuke Ogura, Jun Tanida. Spectral and temporal optical signal generation using randomly distributed quantum dots. Optical Review 2020, 27 (2) , 264-269. https://doi.org/10.1007/s10043-020-00588-7
    Load more citations

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2012, 134, 3, 1876–1891
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja210162f
    Published January 5, 2012
    Copyright © 2012 American Chemical Society

    Article Views

    6319

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.