Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Quantification of the Surface Diffusion of Tripodal Binding Motifs on Graphene Using Scanning Electrochemical Microscopy

View Author Information
Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, United States
Cite this: J. Am. Chem. Soc. 2012, 134, 14, 6224–6236
Publication Date (Web):March 12, 2012
https://doi.org/10.1021/ja2106724
Copyright © 2012 American Chemical Society

    Article Views

    3960

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    The surface diffusion of a cobalt bis-terpyridine, Co(tpy)2-containing tripodal compound (1·2PF6), designed to noncovalently adsorb to graphene through three pyrene moieties, has been studied by scanning electrochemical microscopy (SECM) on single-layer graphene (SLG). An initial boundary approach was designed in which picoliter droplets (radii ∼15–50 μm) of the tripodal compound were deposited on an SLG electrode, yielding microspots in which a monolayer of the tripodal molecules is initially confined. The time evolution of the electrochemical activity of these spots was detected at the aqueous phosphate buffer/SLG interface by SECM, in both generation/collection (G/C) and feedback modes. The tripodal compound microspots exhibit differential reactivity with respect to the underlying graphene substrate in two different electrochemical processes. For example, during the oxygen reduction reaction, adsorbed 1·2PF6 tripodal molecules generate more H2O2 than the bare graphene surface. This product was detected with spatial and temporal resolution using the SECM tip. The tripodal compound also mediates the oxidation of a Fe(II) species, generated at the SECM tip, under conditions in which SLG shows slow interfacial charge transfer. In each case, SECM images, obtained at increasing times, show a gradual decrease in the electrochemical response due to radial diffusion of the adsorbed molecules outward from the microspots onto the unfunctionalized areas of the SLG surface. This response was fit to a simple surface diffusion model, which yielded excellent agreement between the two experiments for the effective diffusion coefficients: Deff = 1.6 (±0.9) × 10–9 cm2/s and Deff = 1.5 (±0.6) × 10–9 cm2/s for G/C and feedback modes, respectively. Control experiments ruled out alternative explanations for the observed behavior, such as deactivation of the Co(II/III) species or of the SLG, and verified that the molecules do not diffuse when confined to obstructed areas. The noncovalent nature of the surface functionalization, together with the surface reactivity and mobility of these molecules, provides a means to couple the superior electronic properties of graphene to compounds with enhanced electrochemical performance, a key step toward developing dynamic electrode surfaces for sensing, electrocatalysis, and electronic applications.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Experimental details of graphene growth, supporting experiments for the characterization of 1·2PF6 activity, and a complete description of the simulation model. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 56 publications.

    1. Niraja Kurapati, Donald C. Janda, Ryan J. Balla, Siao-Han Huang, Kevin C. Leonard, Shigeru Amemiya. Nanogap-Resolved Adsorption-Coupled Electron Transfer by Scanning Electrochemical Microscopy: Implications for Electrocatalysis. Analytical Chemistry 2022, 94 (51) , 17956-17963. https://doi.org/10.1021/acs.analchem.2c04008
    2. Houria Asri, Olivier Dautel, Armelle Ouali. Terpyridine–Ru Complexes Noncovalently Supported on Cobalt Magnetic Nanoparticles for Nitroarene Transfer Hydrogenation. ACS Applied Nano Materials 2020, 3 (12) , 11811-11818. https://doi.org/10.1021/acsanm.0c02337
    3. Adam R. Brill, Mohan Kumar Kuntumalla, Graham de Ruiter, Elad Koren. Formation of Highly Ordered Self-Assembled Monolayers on Two-Dimensional Materials via Noncovalent Functionalization. ACS Applied Materials & Interfaces 2020, 12 (30) , 33941-33949. https://doi.org/10.1021/acsami.0c09722
    4. Shaoqi Zhan, Mårten S. G. Ahlquist. Dynamics and Reactions of Molecular Ru Catalysts at Carbon Nanotube–Water Interfaces. Journal of the American Chemical Society 2018, 140 (24) , 7498-7503. https://doi.org/10.1021/jacs.8b00433
    5. Jingshu Hui, Srimanta Pakhira, Richa Bhargava, Zachary J. Barton, Xuan Zhou, Adam J. Chinderle, Jose L. Mendoza-Cortes, Joaquín Rodríguez-López. Modulating Electrocatalysis on Graphene Heterostructures: Physically Impermeable Yet Electronically Transparent Electrodes. ACS Nano 2018, 12 (3) , 2980-2990. https://doi.org/10.1021/acsnano.8b00702
    6. Hiroaki Ozawa, Norihiko Katori, Tomomi Kita, Shota Oka, and Masa-aki Haga . Controlling the Molecular Direction of Dinuclear Ruthenium Complexes on HOPG Surface through Noncovalent Bonding. Langmuir 2017, 33 (43) , 11901-11910. https://doi.org/10.1021/acs.langmuir.7b02194
    7. Wei Wang, Jie Zhang, Fangfang Wang, Bing-Wei Mao, Dongping Zhan, and Zhong-Qun Tian . Mobility and Reactivity of Oxygen Adspecies on Platinum Surface. Journal of the American Chemical Society 2016, 138 (29) , 9057-9060. https://doi.org/10.1021/jacs.6b05259
    8. Chao Sun, Katherine L. Walker, Devin L. Wakefield, and William R. Dichtel . Retaining the Activity of Enzymes and Fluorophores Attached to Graphene Oxide. Chemistry of Materials 2015, 27 (12) , 4499-4504. https://doi.org/10.1021/acs.chemmater.5b01954
    9. Kristian Torbensen, Mikkel Kongsfelt, Kyoko Shimizu, Emil B. Pedersen, Troels Skrydstrup, Steen U. Pedersen, and Kim Daasbjerg . Patterned Carboxylation of Graphene Using Scanning Electrochemical Microscopy. Langmuir 2015, 31 (15) , 4443-4452. https://doi.org/10.1021/la504500m
    10. Teresa C. Cristarella, Adam J. Chinderle, Jingshu Hui, and Joaquín Rodríguez-López . Single-Layer Graphene as a Stable and Transparent Electrode for Nonaqueous Radical Annihilation Electrogenerated Chemiluminescence. Langmuir 2015, 31 (13) , 3999-4007. https://doi.org/10.1021/la5050317
    11. Alessandro Minguzzi, Dario Battistel, Joaquin Rodríguez-López, Alberto Vertova, Sandra Rondinini, Allen J. Bard, and Salvatore Daniele . Rapid Characterization of Oxygen-Evolving Electrocatalyst Spot Arrays by the Substrate Generation/Tip Collection Mode of Scanning Electrochemical Microscopy with Decreased O2 Diffusion Layer Overlap. The Journal of Physical Chemistry C 2015, 119 (6) , 2941-2947. https://doi.org/10.1021/jp510651f
    12. Guohui Zhang, Paul M. Kirkman, Anisha N. Patel, Anatolii S. Cuharuc, Kim McKelvey, and Patrick R. Unwin . Molecular Functionalization of Graphite Surfaces: Basal Plane versus Step Edge Electrochemical Activity. Journal of the American Chemical Society 2014, 136 (32) , 11444-11451. https://doi.org/10.1021/ja505266d
    13. Mona A. Ebrish, Eric J. Olson, and Steven J. Koester . Effect of Noncovalent Basal Plane Functionalization on the Quantum Capacitance in Graphene. ACS Applied Materials & Interfaces 2014, 6 (13) , 10296-10303. https://doi.org/10.1021/am5017057
    14. Joël Azevedo, Laure Fillaud, Céline Bourdillon, Jean-Marc Noël, Fréderic Kanoufi, Bruno Jousselme, Vincent Derycke, Stéphane Campidelli, and Renaud Cornut . Localized Reduction of Graphene Oxide by Electrogenerated Naphthalene Radical Anions and Subsequent Diazonium Electrografting. Journal of the American Chemical Society 2014, 136 (13) , 4833-4836. https://doi.org/10.1021/ja500189u
    15. Jason A. Mann and William R. Dichtel . Improving the Binding Characteristics of Tripodal Compounds on Single Layer Graphene. ACS Nano 2013, 7 (8) , 7193-7199. https://doi.org/10.1021/nn402599x
    16. Jason A. Mann and William R. Dichtel . Noncovalent Functionalization of Graphene by Molecular and Polymeric Adsorbates. The Journal of Physical Chemistry Letters 2013, 4 (16) , 2649-2657. https://doi.org/10.1021/jz4010448
    17. Bo Zhang, Lixin Fan, Huawei Zhong, Yuwen Liu, and Shengli Chen . Graphene Nanoelectrodes: Fabrication and Size-Dependent Electrochemistry. Journal of the American Chemical Society 2013, 135 (27) , 10073-10080. https://doi.org/10.1021/ja402456b
    18. Shudan Bian, Amy M. Scott, Yang Cao, Yong Liang, Sílvia Osuna, K. N. Houk, and Adam B. Braunschweig . Covalently Patterned Graphene Surfaces by a Force-Accelerated Diels–Alder Reaction. Journal of the American Chemical Society 2013, 135 (25) , 9240-9243. https://doi.org/10.1021/ja4042077
    19. Thomas Alava, Jason A. Mann, Cécile Théodore, Jaime J. Benitez, William R. Dichtel, Jeevak M. Parpia, and Harold G. Craighead . Control of the Graphene–Protein Interface Is Required To Preserve Adsorbed Protein Function. Analytical Chemistry 2013, 85 (5) , 2754-2759. https://doi.org/10.1021/ac303268z
    20. Joel Azevedo, Céline Bourdillon, Vincent Derycke, Stéphane Campidelli, Christine Lefrou, and Renaud Cornut . Contactless Surface Conductivity Mapping of Graphene Oxide Thin Films Deposited on Glass with Scanning Electrochemical Microscopy. Analytical Chemistry 2013, 85 (3) , 1812-1818. https://doi.org/10.1021/ac303173d
    21. Nicole L. Ritzert, Joaquín Rodríguez-López, Cen Tan, and Héctor D. Abruña . Kinetics of Interfacial Electron Transfer at Single-Layer Graphene Electrodes in Aqueous and Nonaqueous Solutions. Langmuir 2013, 29 (5) , 1683-1694. https://doi.org/10.1021/la3042549
    22. Anisha N. Patel, Manon Guille Collignon, Michael A. O’Connell, Wendy O. Y. Hung, Kim McKelvey, Julie V. Macpherson, and Patrick R. Unwin . A New View of Electrochemistry at Highly Oriented Pyrolytic Graphite. Journal of the American Chemical Society 2012, 134 (49) , 20117-20130. https://doi.org/10.1021/ja308615h
    23. Pelumi Adanigbo, Jorge Romo-Jimenez, Kaidi Zhang, Sonal Maroo, Kwabena Bediako, Yun Yu. Scanning electrochemical probe microscopy investigation of two-dimensional materials. 2D Materials 2024, 11 (3) , 032001. https://doi.org/10.1088/2053-1583/ad4e45
    24. Kévin Magra, Jean‐Frédéric Audibert, Diana Dragoe, Talal Mallah, Fabien Miomandre, Marie‐Laure Boillot. Optical Read‐Out of the Electrical Switching of Cobalt‐Terpyridine‐BODIPY Molecules Immobilized as Single Layer on ITO. Advanced Optical Materials 2023, 11 (24) https://doi.org/10.1002/adom.202301128
    25. Shay Goff Wallace, Michael C Brothers, Zachary E Brooks, Sonal V Rangnekar, David Lam, Michael J St Lawrence, William A Gaviria Rojas, Karl W Putz, Steve S Kim, Mark C Hersam. Fully printed and flexible multi-material electrochemical aptasensor platform enabled by selective graphene biofunctionalization. Engineering Research Express 2022, 4 (1) , 015037. https://doi.org/10.1088/2631-8695/ac5e27
    26. Man Li, Jian-Gang Guo. Theoretical characterization and application of mechanical behavior of atoms/ions migrating on graphene surface. Materials Chemistry and Physics 2021, 260 , 124138. https://doi.org/10.1016/j.matchemphys.2020.124138
    27. Abdoulaye Djire, Xiang Wang, Chuanxiao Xiao, O. Charles Nwamba, Michael V. Mirkin, Nathan R. Neale. Basal Plane Hydrogen Evolution Activity from Mixed Metal Nitride MXenes Measured by Scanning Electrochemical Microscopy. Advanced Functional Materials 2020, 30 (47) https://doi.org/10.1002/adfm.202001136
    28. Man Li, Jian-Gang Guo. Theoretical study for adsorption and migration behavior of atoms/ions on sinusoidal corrugated graphene surface. Materials Chemistry and Physics 2020, 254 , 123527. https://doi.org/10.1016/j.matchemphys.2020.123527
    29. Tong Sun, Dengchao Wang, Michael V. Mirkin, Hao Cheng, Jin-Cheng Zheng, Ryan M. Richards, Feng Lin, Huolin L. Xin. Direct high-resolution mapping of electrocatalytic activity of semi-two-dimensional catalysts with single-edge sensitivity. Proceedings of the National Academy of Sciences 2019, 116 (24) , 11618-11623. https://doi.org/10.1073/pnas.1821091116
    30. Tong Sun, Hanyu Zhang, Xiang Wang, Jun Liu, Chuanxiao Xiao, Sanjini U. Nanayakkara, Jeffrey L. Blackburn, Michael V. Mirkin, Elisa M. Miller. Nanoscale mapping of hydrogen evolution on metallic and semiconducting MoS 2 nanosheets. Nanoscale Horizons 2019, 4 (3) , 619-624. https://doi.org/10.1039/C8NH00346G
    31. José M. Abad, Alvaro Y. Tesio, Emiliano Martínez-Periñán, Félix Pariente, Encarnación Lorenzo. Imaging resolution of biocatalytic activity using nanoscale scanning electrochemical microscopy. Nano Research 2018, 11 (8) , 4232-4244. https://doi.org/10.1007/s12274-018-2011-2
    32. Kang Cui, Iris Dorner, Stijn F.L. Mertens. Interfacial supramolecular electrochemistry. Current Opinion in Electrochemistry 2018, 8 , 156-163. https://doi.org/10.1016/j.coelec.2018.06.002
    33. Hang Zhang, Junxiang Huang, Yongwei Wang, Rui Liu, Xiulan Huai, Jingjing Jiang, Chantelle Anfuso. Atomic force microscopy for two-dimensional materials: A tutorial review. Optics Communications 2018, 406 , 3-17. https://doi.org/10.1016/j.optcom.2017.05.015
    34. Michal Valášek, Marcel Mayor. Spatial and Lateral Control of Functionality by Rigid Molecular Platforms. Chemistry – A European Journal 2017, 23 (55) , 13538-13548. https://doi.org/10.1002/chem.201703349
    35. A. Papaderakis, D. Tsiplakides, S. Balomenou, S. Sotiropoulos. Probing the hydrogen adsorption affinity of Pt and Ir by surface interrogation scanning electrochemical microscopy (SI-SECM). Electrochemistry Communications 2017, 83 , 77-80. https://doi.org/10.1016/j.elecom.2017.09.003
    36. K. Jaouen, O. Henrotte, S. Campidelli, B. Jousselme, V. Derycke, R. Cornut. Localized electrochemistry for the investigation and the modification of 2D materials. Applied Materials Today 2017, 8 , 116-124. https://doi.org/10.1016/j.apmt.2017.05.001
    37. J. Molina, J. Fernández, F. Cases. Scanning electrochemical microscopy for the analysis and patterning of graphene materials: A review. Synthetic Metals 2016, 222 , 145-161. https://doi.org/10.1016/j.synthmet.2016.10.019
    38. Marcin Lindner, Michal Valášek, Jan Homberg, Kevin Edelmann, Lukas Gerhard, Wulf Wulfhekel, Olaf Fuhr, Tobias Wächter, Michael Zharnikov, Viliam Kolivoška, Lubomír Pospíšil, Gábor Mészáros, Magdaléna Hromadová, Marcel Mayor. Importance of the Anchor Group Position ( Para versus Meta ) in Tetraphenylmethane Tripods: Synthesis and Self‐Assembly Features. Chemistry – A European Journal 2016, 22 (37) , 13218-13235. https://doi.org/10.1002/chem.201602019
    39. Jingshu Hui, Xuan Zhou, Richa Bhargava, Adam Chinderle, Jiarui Zhang, Joaquín Rodríguez-López. Kinetic Modulation of Outer-Sphere Electron Transfer Reactions on Graphene Electrode with a Sub-surface Metal Substrate. Electrochimica Acta 2016, 211 , 1016-1023. https://doi.org/10.1016/j.electacta.2016.06.134
    40. M.R. Axet, O. Dechy-Cabaret, J. Durand, M. Gouygou, P. Serp. Coordination chemistry on carbon surfaces. Coordination Chemistry Reviews 2016, 308 , 236-345. https://doi.org/10.1016/j.ccr.2015.06.005
    41. Hongyao Yin, Yujun Feng. Smart graphene dispersion stabilized by a CO 2 -removable polymer. RSC Advances 2016, 6 (83) , 79943-79951. https://doi.org/10.1039/C6RA16634B
    42. Burton H. Simpson, Joaquín Rodríguez-López. Redox Titrations via Surface Interrogation Scanning Electrochemical Microscopy at an Extended Semiconducting Surface for the Quantification of Photogenerated Adsorbed Intermediates. Electrochimica Acta 2015, 179 , 74-83. https://doi.org/10.1016/j.electacta.2015.04.128
    43. B. H. Simpson, J. Rodríguez-López. Emerging techniques for the in situ analysis of reaction intermediates on photo-electrochemical interfaces. Analytical Methods 2015, 7 (17) , 7029-7041. https://doi.org/10.1039/C5AY00503E
    44. Yan-Zi Yu, Jian-Gang Guo, Yi-Lan Kang. An Analytical Model for Adsorption and Diffusion of Atoms/Ions on Graphene Surface. Journal of Nanomaterials 2015, 2015 , 1-10. https://doi.org/10.1155/2015/382474
    45. Nicole L. Ritzert, Wan Li, Cen Tan, Gabriel G. Rodríguez-Calero, Joaquín Rodríguez-López, Kenneth Hernández-Burgos, Sean Conte, Joshua J. Parks, Daniel C. Ralph, Héctor D. Abruña. Single layer graphene as an electrochemical platform. Faraday Discuss. 2014, 306 https://doi.org/10.1039/C4FD00060A
    46. Agnès Anne, Mohamed Ali Bahri, Arnaud Chovin, Christophe Demaille, Cécilia Taofifenua. Probing the conformation and 2D-distribution of pyrene-terminated redox-labeled poly(ethylene glycol) chains end-adsorbed on HOPG using cyclic voltammetry and atomic force electrochemical microscopy. Physical Chemistry Chemical Physics 2014, 16 (10) , 4642. https://doi.org/10.1039/c3cp54720e
    47. Chonglei Ren, Yu Chen, Haiyang Zhang, Jianping Deng. Noncovalent Chiral Functionalization of Graphene with Optically Active Helical Polymers. Macromolecular Rapid Communications 2013, 34 (17) , 1368-1374. https://doi.org/10.1002/marc.201300342
    48. Achraf Ghorbal, Federico Grisotto, Julienne Charlier, Serge Palacin, Cédric Goyer, Christophe Demaille, Ammar Brahim. Nano-Electrochemistry and Nano-Electrografting with an Original Combined AFM-SECM. Nanomaterials 2013, 3 (2) , 303-316. https://doi.org/10.3390/nano3020303
    49. Jason A. Mann, Thomas Alava, Harold G. Craighead, William R. Dichtel. Preservation of Antibody Selectivity on Graphene by Conjugation to a Tripod Monolayer. Angewandte Chemie 2013, 125 (11) , 3259-3262. https://doi.org/10.1002/ange.201209149
    50. Jason A. Mann, Thomas Alava, Harold G. Craighead, William R. Dichtel. Preservation of Antibody Selectivity on Graphene by Conjugation to a Tripod Monolayer. Angewandte Chemie International Edition 2013, 52 (11) , 3177-3180. https://doi.org/10.1002/anie.201209149
    51. J. Molina, J. Fernández, J.C. Inés, A.I. del Río, J. Bonastre, F. Cases. Electrochemical characterization of reduced graphene oxide-coated polyester fabrics. Electrochimica Acta 2013, 93 , 44-52. https://doi.org/10.1016/j.electacta.2013.01.071
    52. Eric D. Rus, Hongsen Wang, Anna E. Legard, Nicole L. Ritzert, Robert Bruce Van Dover, Héctor D. Abruña. An exchangeable-tip scanning probe instrument for the analysis of combinatorial libraries of electrocatalysts. Review of Scientific Instruments 2013, 84 (2) https://doi.org/10.1063/1.4776199
    53. Alexandrina Schramm, Christophe Stroh, Kerrin Dössel, Maya Lukas, Matthias Fischer, Frank Schramm, Olaf Fuhr, Hilbert v. Löhneysen, Marcel Mayor. Tripodal M III Complexes on Au(111) Surfaces: Towards Molecular “Lunar Modules”. European Journal of Inorganic Chemistry 2013, 2013 (1) , 70-79. https://doi.org/10.1002/ejic.201200928
    54. Sampath Srinivasan, Weon Ho Shin, Jang Wook Choi, Ali Coskun. A bifunctional approach for the preparation of graphene and ionic liquid-based hybrid gels. J. Mater. Chem. A 2013, 1 (1) , 43-48. https://doi.org/10.1039/C2TA00192F
    55. Laura Rodríguez-Pérez, Ma Ángeles Herranz, Nazario Martín. The chemistry of pristine graphene. Chemical Communications 2013, 49 (36) , 3721. https://doi.org/10.1039/c3cc38950b
    56. Anisha N. Patel, Sze-yin Tan, Patrick R. Unwin. Epinephrine electro-oxidation highlights fast electrochemistry at the graphite basal surface. Chemical Communications 2013, 49 (78) , 8776. https://doi.org/10.1039/c3cc45022h