ACS Publications. Most Trusted. Most Cited. Most Read
Isolation of (CO)1– and (CO2)1– Radical Complexes of Rare Earths via Ln(NR2)3/K Reduction and [K2(18-crown-6)2]2+ Oligomerization
My Activity

Figure 1Loading Img
    Communication

    Isolation of (CO)1– and (CO2)1– Radical Complexes of Rare Earths via Ln(NR2)3/K Reduction and [K2(18-crown-6)2]2+ Oligomerization
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, University of California, Irvine, California 92697-2025, United States
    Other Access OptionsSupporting Information (10)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2012, 134, 14, 6064–6067
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja211220r
    Published March 21, 2012
    Copyright © 2012 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Deep-blue solutions of Y2+ formed from Y(NR2)3 (R = SiMe3) and excess potassium in the presence of 18-crown-6 at −45 °C under vacuum in diethyl ether react with CO at −78 °C to form colorless crystals of the (CO)1– radical complex, {[(R2N)3Y(μ-CO)2][K2(18-crown-6)2]}n, 1. The polymeric structure contains trigonal bipyramidal [(R2N)3Y(μ-CO)2]2– units with axial (CO)1– ligands linked by [K2(18-crown-6)2]2+ dications. Byproducts such as the ynediolate, [(R2N)3Y]2(μ-OC≡CO){[K(18-crown-6)]2(18-crown-6)}, 2, in which two (CO)1– anions are coupled to form (OC≡CO)2–, and the insertion/rearrangement product, {(R2N)2Y[OC(═CH2)Si(Me2)NSiMe3]}[K(18-crown-6)], 3, are common in these reactions that give variable results depending on the specific reaction conditions. The CO reduction in the presence of THF forms a solvated variant of 2, the ynediolate [(R2N)3Y]2(μ-OC≡CO)[K(18-crown-6)(THF)2]2, 2a. CO2 reacts analogously with Y2+ to form the (CO2)1– radical complex, {[(R2N)3Y(μ-CO2)2][K2(18-crown-6)2]}n, 4, that has a structure similar to that of 1. Analogous (CO)1– and (OC≡CO)2– complexes of lutetium were isolated using Lu(NR2)3/K/18-crown-6: {[(R2N)3Lu(μ-CO)2][K2(18-crown-6)2]}n, 5, [(R2N)3Lu]2(μ-OC≡CO){[K(18-crown-6)]2(18-crown-6)}, 6, and [(R2N)3Lu]2(μ-OC≡CO)[K(18-crown-6)(Et2O)2]2, 6a.

    Copyright © 2012 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Experimental details and characterization data. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 54 publications.

    1. Joshua D. Queen, Quinn E. Goudzwaard, Ahmadreza Rajabi, Joseph W. Ziller, Filipp Furche, William J. Evans. The Scandium(II) Carbonyl Complex (C5H2tBu3)2Sc(CO) and Its Isocyanide Analog (C5H2tBu3)2Sc(CNC6H3Me2-2,6). Journal of the American Chemical Society 2024, 146 (36) , 24770-24775. https://doi.org/10.1021/jacs.4c09021
    2. Vanessa R. Landaeta, Thomas M. Horsley Downie, Robert Wolf. Low-Valent Transition Metalate Anions in Synthesis, Small Molecule Activation, and Catalysis. Chemical Reviews 2024, 124 (4) , 1323-1463. https://doi.org/10.1021/acs.chemrev.3c00121
    3. Haihan Yan, Botao Wu, Junnian Wei, Wen-Xiong Zhang. Insight into the Ligand-to-Ligand Charge-Transfer Process in Rare-Earth-Metal Diradical Complexes. Inorganic Chemistry 2023, 62 (21) , 8052-8057. https://doi.org/10.1021/acs.inorgchem.3c00900
    4. Amanda B. Chung, Cary R. Stennett, William N. G. Moore, Ming Fang, Joseph W. Ziller, William J. Evans. Reductive C–O Cleavage of Ethereal Solvents and 18-Crown-6 in Ln(NR2)3/KC8 Reactions (R = SiMe3). Inorganic Chemistry 2023, 62 (14) , 5854-5862. https://doi.org/10.1021/acs.inorgchem.3c00689
    5. Johanna M. Uher, Matthias R. Steiner, Johann A. Hlina. Mono- and Disamarium Azacryptand Complexes: A Platform for Cooperative Rare-Earth Metal Chemistry. Inorganic Chemistry 2022, 61 (14) , 5539-5546. https://doi.org/10.1021/acs.inorgchem.1c03989
    6. Han-Ying Liu, Ryan J. Schwamm, Samuel E. Neale, Michael S. Hill, Claire L. McMullin, Mary F. Mahon. Reductive Dimerization of CO by a Na/Mg(I) Diamide. Journal of the American Chemical Society 2021, 143 (42) , 17851-17856. https://doi.org/10.1021/jacs.1c09467
    7. Amanda B. Chung, Austin J. Ryan, Ming Fang, Joseph W. Ziller, William J. Evans. Reductive Reactivity of the 4f75d1 Gd(II) Ion in {GdII[N(SiMe3)2]3}−: Structural Characterization of Products of Coupling, Bond Cleavage, Insertion, and Radical Reactions. Inorganic Chemistry 2021, 60 (20) , 15635-15645. https://doi.org/10.1021/acs.inorgchem.1c02241
    8. Wenqing Wang, Yaping Wen, Jian Su, Haibo Ma, Hai-Ying Wang, Mohamedally Kurmoo, Jing-Lin Zuo. Carbon Dioxide (CO2) Fixation: Linearly Bridged Zn2 Paddlewheel Nodes by CO2 in a Metal–Organic Framework. Inorganic Chemistry 2019, 58 (23) , 16040-16046. https://doi.org/10.1021/acs.inorgchem.9b02548
    9. David H. Woen, Guo P. Chen, Joseph W. Ziller, Timothy J. Boyle, Filipp Furche, and William J. Evans . End-On Bridging Dinitrogen Complex of Scandium. Journal of the American Chemical Society 2017, 139 (42) , 14861-14864. https://doi.org/10.1021/jacs.7b08456
    10. Jordan F. Corbey, David H. Woen, Chad T. Palumbo, Megan E. Fieser, Joseph W. Ziller, Filipp Furche, and William J. Evans . Ligand Effects in the Synthesis of Ln2+ Complexes by Reduction of Tris(cyclopentadienyl) Precursors Including C–H Bond Activation of an Indenyl Anion. Organometallics 2015, 34 (15) , 3909-3921. https://doi.org/10.1021/acs.organomet.5b00500
    11. Rainer Zitz, Johann Hlina, Karl Gatterer, Christoph Marschner, Tibor Szilvási, and Judith Baumgartner . Neutral “Cp-Free” Silyl-Lanthanide(II) Complexes: Synthesis, Structure, and Bonding Analysis. Inorganic Chemistry 2015, 54 (14) , 7065-7072. https://doi.org/10.1021/acs.inorgchem.5b01072
    12. Alexandre Hervé, Yamina Bouzidi, Jean-Claude Berthet, Lotfi Belkhiri, Pierre Thuéry, Abdou Boucekkine, and Michel Ephritikhine . U–CN versus Ce–NC Coordination in Trivalent Complexes Derived from M[N(SiMe3)2]3 (M = Ce, U). Inorganic Chemistry 2014, 53 (13) , 6995-7013. https://doi.org/10.1021/ic500939t
    13. Matthew R. MacDonald, Jefferson E. Bates, Joseph W. Ziller, Filipp Furche, and William J. Evans . Completing the Series of +2 Ions for the Lanthanide Elements: Synthesis of Molecular Complexes of Pr2+, Gd2+, Tb2+, and Lu2+. Journal of the American Chemical Society 2013, 135 (26) , 9857-9868. https://doi.org/10.1021/ja403753j
    14. Shuangliu Zhou, Zhangshuan Wu, Lingmin Zhou, Shaowu Wang, Lijun Zhang, Xiancui Zhu, Yun Wei, Jinhua Zhai, and Jie Wu . Controlled Synthesis of Racemic Indenyl Rare-Earth Metal Complexes via the Cooperation between the Intramolecular Coordination of Donor Atoms and a Bridge. Inorganic Chemistry 2013, 52 (11) , 6417-6426. https://doi.org/10.1021/ic4003109
    15. Megan E. Fieser, Jefferson E. Bates, Joseph W. Ziller, Filipp Furche, and William J. Evans . Dinitrogen Reduction via Photochemical Activation of Heteroleptic Tris(cyclopentadienyl) Rare-Earth Complexes. Journal of the American Chemical Society 2013, 135 (10) , 3804-3807. https://doi.org/10.1021/ja400664s
    16. David P. Mills, Lyndsay Soutar, Oliver J. Cooper, William Lewis, Alexander J. Blake, and Stephen T. Liddle . Reactivity of the Yttrium Alkyl Carbene Complex [Y(BIPM)(CH2C6H5)(THF)] (BIPM = {C(PPh2NSiMe3)2})2–: From Insertions, Substitutions, and Additions to Nontypical Transformations. Organometallics 2013, 32 (5) , 1251-1264. https://doi.org/10.1021/om3010178
    17. Joy H. Farnaby, Ming Fang, Joseph W. Ziller, and William J. Evans . Expanding Yttrium Bis(trimethylsilylamide) Chemistry Through the Reaction Chemistry of (N2)2–, (N2)3–, and (NO)2– Complexes. Inorganic Chemistry 2012, 51 (20) , 11168-11176. https://doi.org/10.1021/ic301778q
    18. Matthew R. MacDonald, Jefferson E. Bates, Megan E. Fieser, Joseph W. Ziller, Filipp Furche, and William J. Evans . Expanding Rare-Earth Oxidation State Chemistry to Molecular Complexes of Holmium(II) and Erbium(II). Journal of the American Chemical Society 2012, 134 (20) , 8420-8423. https://doi.org/10.1021/ja303357w
    19. Qing You, Jiamin Cai, Jie Zhang, Xigeng Zhou. Tuning the reactivity of an yttrium complex bearing a functionalized silylamido ligand using solvated KCl. Inorganic Chemistry Frontiers 2024, 11 (21) , 7501-7511. https://doi.org/10.1039/D4QI01882F
    20. Ahmadreza Rajabi, Robin Grotjahn, Dmitrij Rappoport, Filipp Furche. A DFT perspective on organometallic lanthanide chemistry. Dalton Transactions 2024, 104 https://doi.org/10.1039/D3DT03221C
    21. Ana M. Geer, Deborah L. Kays, Laurence J. Taylor. Homogeneous Carbon Monoxide Homologation. 2023, 813-846. https://doi.org/10.1002/9783527830237.ch23
    22. Jiamin Cai, Jie Zhang, Xigeng Zhou. Selective Si–C(sp 3 ) bond cleavage of a silyl-bridged amido alkyl ligand in an yttrium complex. Dalton Transactions 2023, 52 (12) , 3807-3814. https://doi.org/10.1039/D3DT00149K
    23. Robert J. Ward, Iker del Rosal, Steven P. Kelley, Laurent Maron, Justin R. Walensky. Isolation of C1 through C4 derivatives from CO using heteroleptic uranium( iii ) metallocene aryloxide complexes. Chemical Science 2023, 14 (8) , 2024-2032. https://doi.org/10.1039/D2SC06375A
    24. Na Li, Jinliang Zhang, Jun Matsushima, Cheng Song, Xuwei Luan, Ming Dou, Tao Chen, Lingling Wang. Sensitivity analysis of seismic attributes and oil reservoir predictions based on jointing wells and seismic data – A case study in the Taoerhe Sag, China. Frontiers in Marine Science 2022, 9 https://doi.org/10.3389/fmars.2022.1011770
    25. Thomas Simler, Karl N. McCabe, Laurent Maron, Grégory Nocton. CO reductive oligomerization by a divalent thulium complex and CO 2 -induced functionalization. Chemical Science 2022, 13 (25) , 7449-7461. https://doi.org/10.1039/D2SC01798A
    26. Keith Izod. Alkyl, carbonyl and cyanide complexes of the group 3 metals and lanthanides. 2022, 3-57. https://doi.org/10.1016/B978-0-12-820206-7.00058-5
    27. Richard A. Layfield. Lanthanides. 2021, 418-470. https://doi.org/10.1016/B978-0-08-102688-5.00057-X
    28. Mark R. Crimmin, Richard Y. Kong, Nick Phillips. Coordination and Activation of Alkanes, CO and CO2 at Metal Centres. 2021, 311-362. https://doi.org/10.1016/B978-0-08-102688-5.00055-6
    29. Ross F. Koby, Timothy P. Hanusa. Macrocyclic Complexes of the Alkali Metals. 2021, 49-65. https://doi.org/10.1016/B978-0-12-409547-2.14810-3
    30. Uwe Bayer, Reiner Anwander. Carbonyl group and carbon dioxide activation by rare-earth-metal complexes. Dalton Transactions 2020, 49 (48) , 17472-17493. https://doi.org/10.1039/D0DT03578E
    31. Sree Ganesh Balasubramani, Guo P. Chen, Sonia Coriani, Michael Diedenhofen, Marius S. Frank, Yannick J. Franzke, Filipp Furche, Robin Grotjahn, Michael E. Harding, Christof Hättig, Arnim Hellweg, Benjamin Helmich-Paris, Christof Holzer, Uwe Huniar, Martin Kaupp, Alireza Marefat Khah, Sarah Karbalaei Khani, Thomas Müller, Fabian Mack, Brian D. Nguyen, Shane M. Parker, Eva Perlt, Dmitrij Rappoport, Kevin Reiter, Saswata Roy, Matthias Rückert, Gunnar Schmitz, Marek Sierka, Enrico Tapavicza, David P. Tew, Christoph van Wüllen, Vamsee K. Voora, Florian Weigend, Artur Wodyński, Jason M. Yu. TURBOMOLE: Modular program suite for ab initio quantum-chemical and condensed-matter simulations. The Journal of Chemical Physics 2020, 152 (18) https://doi.org/10.1063/5.0004635
    32. Austin J. Ryan, Joseph W. Ziller, William J. Evans. The importance of the counter-cation in reductive rare-earth metal chemistry: 18-crown-6 instead of 2,2,2-cryptand allows isolation of [Y II (NR 2 ) 3 ] 1− and ynediolate and enediolate complexes from CO reactions. Chemical Science 2020, 11 (7) , 2006-2014. https://doi.org/10.1039/C9SC05794C
    33. Fabrizio Ortu, David P. Mills. Low-coordinate rare-earth and actinide complexes. 2019, 1-87. https://doi.org/10.1016/bs.hpcre.2019.05.001
    34. Evan P. Beaumier, Adam J. Pearce, Xin Yi See, Ian A. Tonks. Modern applications of low-valent early transition metals in synthesis and catalysis. Nature Reviews Chemistry 2019, 3 (1) , 15-34. https://doi.org/10.1038/s41570-018-0059-x
    35. Daniel N. Huh, Joseph W. Ziller, William J. Evans. Isolation of reactive Ln( ii ) complexes with C 5 H 4 Me ligands (Cp Me ) using inverse sandwich countercations: synthesis and structure of [(18-crown-6)K(μ-Cp Me )K(18-crown-6)][Cp Me 3 Ln II ] (Ln = Tb, Ho). Dalton Transactions 2018, 47 (48) , 17285-17290. https://doi.org/10.1039/C8DT03890B
    36. Kyle A. Grice. Carbon dioxide reduction with homogenous early transition metal complexes: Opportunities and challenges for developing CO 2 catalysis. Coordination Chemistry Reviews 2017, 336 , 78-95. https://doi.org/10.1016/j.ccr.2017.01.007
    37. David H. Woen, Guo P. Chen, Joseph W. Ziller, Timothy J. Boyle, Filipp Furche, William J. Evans. Solution Synthesis, Structure, and CO 2 Reduction Reactivity of a Scandium(II) Complex, {Sc[N(SiMe 3 ) 2 ] 3 } −. Angewandte Chemie 2017, 129 (8) , 2082-2085. https://doi.org/10.1002/ange.201611758
    38. David H. Woen, Guo P. Chen, Joseph W. Ziller, Timothy J. Boyle, Filipp Furche, William J. Evans. Solution Synthesis, Structure, and CO 2 Reduction Reactivity of a Scandium(II) Complex, {Sc[N(SiMe 3 ) 2 ] 3 } −. Angewandte Chemie International Edition 2017, 56 (8) , 2050-2053. https://doi.org/10.1002/anie.201611758
    39. Antonio Pastor, Francisco Montilla, Agustín Galindo. Spectroscopic and Structural Characterization of Carbon Dioxide Transition Metal Complexes. 2017, 1-91. https://doi.org/10.1016/bs.adomc.2017.07.001
    40. Wolfgang Kaim. Electron Transfer Reactivity of Organometallic Compounds Involving Radical-Forming Noninnocent Ligands. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences 2016, 86 (4) , 445-457. https://doi.org/10.1007/s40010-016-0304-y
    41. Megan E. Fieser, David H. Woen, Jordan F. Corbey, Thomas J. Mueller, Joseph W. Ziller, William J. Evans. Raman spectroscopy of the N–N bond in rare earth dinitrogen complexes. Dalton Transactions 2016, 45 (37) , 14634-14644. https://doi.org/10.1039/C5DT04547A
    42. Luke J. Murphy, Katherine N. Robertson, Richard A. Kemp, Heikki M. Tuononen, Jason A. C. Clyburne. Structurally simple complexes of CO 2. Chemical Communications 2015, 51 (19) , 3942-3956. https://doi.org/10.1039/C4CC08510H
    43. Niall J. English, Morad M. El-Hendawy, Damian A. Mooney, J.M.D. MacElroy. Perspectives on atmospheric CO2 fixation in inorganic and biomimetic structures. Coordination Chemistry Reviews 2014, 269 , 85-95. https://doi.org/10.1016/j.ccr.2014.02.015
    44. Gerd Meyer. Alle Lanthanide und nun sogar Uran in der Oxidationsstufe +2!. Angewandte Chemie 2014, 126 (14) , 3620-3622. https://doi.org/10.1002/ange.201311325
    45. Gerd Meyer. All the Lanthanides Do It and Even Uranium Does Oxidation State +2. Angewandte Chemie International Edition 2014, 53 (14) , 3550-3551. https://doi.org/10.1002/anie.201311325
    46. Simon A. Cotton. Lanthanide Amides. 2014, 1-11. https://doi.org/10.1002/9781119951438.eibc2026
    47. Frank T. Edelmann. Lanthanides and actinides: Annual survey of their organometallic chemistry covering the year 2012. Coordination Chemistry Reviews 2014, 261 , 73-155. https://doi.org/10.1016/j.ccr.2013.11.008
    48. Song Yang, Xiancui Zhu, Shuangliu Zhou, Shaowu Wang, Zhijun Feng, Yun Wei, Hui Miao, Liping Guo, Fenhua Wang, Guangchao Zhang, Xiaoxia Gu, Xiaolong Mu. Synthesis, structure, and catalytic activity of novel trinuclear rare-earth metal amido complexes incorporating μ–η 5 :η 1 bonding indolyl and μ 3 -oxo groups. Dalton Trans. 2014, 43 (6) , 2521-2533. https://doi.org/10.1039/C3DT51107C
    49. Goutam Nandi, Israel Goldberg. Fixation of CO 2 in bi-layered coordination networks of zinc tetra(4-carboxyphenyl)porphyrin with multi-component [Pr 2 Na 3 (NO 3 )(H 2 O) 3 ] connectors. Chem. Commun. 2014, 50 (88) , 13612-13615. https://doi.org/10.1039/C4CC05601A
    50. Polly L. Arnold, Zöe R. Turner, Anne I. Germeroth, Ian J. Casely, Gary S. Nichol, Ronan Bellabarba, Robert P. Tooze. Carbon monoxide and carbon dioxide insertion chemistry of f-block N-heterocyclic carbene complexes. Dalton Trans. 2013, 42 (5) , 1333-1337. https://doi.org/10.1039/C2DT31698F
    51. Simon A. Cotton. Scandium, yttrium, the lanthanides. Annual Reports Section "A" (Inorganic Chemistry) 2013, 109 , 208. https://doi.org/10.1039/c3ic90017g
    52. Caroline T. Saouma, Connie C. Lu, Michael W. Day, Jonas C. Peters. CO2 reduction by Fe(i): solvent control of C–O cleavage versus C–C coupling. Chemical Science 2013, 4 (10) , 4042. https://doi.org/10.1039/c3sc51262b
    53. Stephen T. Liddle. Lanthanides: Organometallic Chemistry. 2012https://doi.org/10.1002/9781119951438.eibc2082
    54. Mengtao Ma, Andreas Stasch, Cameron Jones. Magnesium(I) Dimers as Reagents for the Reductive Coupling of Isonitriles and Nitriles. Chemistry – A European Journal 2012, 18 (34) , 10669-10676. https://doi.org/10.1002/chem.201201030

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2012, 134, 14, 6064–6067
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja211220r
    Published March 21, 2012
    Copyright © 2012 American Chemical Society

    Article Views

    2386

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.