ACS Publications. Most Trusted. Most Cited. Most Read
Observation of Photocatalytic Dissociation of Water on Terminal Ti Sites of TiO2(110)-1 × 1 Surface
My Activity

Figure 1Loading Img
    Article

    Observation of Photocatalytic Dissociation of Water on Terminal Ti Sites of TiO2(110)-1 × 1 Surface
    Click to copy article linkArticle link copied!

    View Author Information
    Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2012, 134, 24, 9978–9985
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja211919k
    Published June 1, 2012
    Copyright © 2012 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The water splitting reaction based on the promising TiO2 photocatalyst is one of the fundamental processes that bears significant implication in hydrogen energy technology and has been extensively studied. However, a long-standing puzzling question in understanding the reaction sequence of the water splitting is whether the initial reaction step is a photocatalytic process and how it happens. Here, using the low temperature scanning tunneling microscopy (STM) performed at 80 K, we observed the dissociation of individually adsorbed water molecules at the 5-fold coordinated Ti (Ti5c) sites of the reduced TiO2 (110)-1 × 1 surface under the irradiation of UV lights with the wavelength shorter than 400 nm, or to say its energy larger than the band gap of 3.1 eV for the rutile TiO2. This finding thus clearly suggests the involvement of a photocatalytic dissociation process that produces two kinds of hydroxyl species. One is always present at the adjacent bridging oxygen sites, that is, OHbr, and the other either occurs as OHt at Ti5c sites away from the original ones or even desorbs from the surface. In comparison, the tip-induced dissociation of the water can only produce OHt or oxygen adatoms exactly at the original Ti5c sites, without the trace of OHbr. Such a difference clearly indicates that the photocatalytic dissociation of the water undergoes a process that differs significantly from the attachment of electrons injected by the tip. Our results imply that the initial step of the water dissociation under the UV light irradiation may not be reduced by the electrons, but most likely oxidized by the holes generated by the photons.

    Copyright © 2012 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    More detailed experimental results and complete ref 19. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 166 publications.

    1. Shucai Xia, Tianjun Wang, Zefeng Ren, Xueming Yang, Qing Guo, Chuanyao Zhou. Adsorption Structure–Activity Correlation in the Photocatalytic Chemistry of Methanol and Water on TiO2(110). Accounts of Chemical Research 2024, 57 (23) , 3407-3418. https://doi.org/10.1021/acs.accounts.4c00578
    2. Huimin Xu, Lei Wang, Linjie Chen, Xiaochuan Ma, Wei Hu, Jin Zhao, Shijing Tan, Bing Wang. Stabilizing Fe Single Atoms on Rutile-TiO2(110) Surface Via Atomic Substitution. The Journal of Physical Chemistry Letters 2024, 15 (36) , 9272-9279. https://doi.org/10.1021/acs.jpclett.4c02189
    3. Xuefan Feng, Qisheng Zang, Xinyan Feng, Bo Lv, Hao Yu, Tingting Sun, Zhenyu Yuan, Junliang Liu, Yu Yang, Fuqin Zhang. Enhanced Solar-to-Hydrogen Conversion and Hydrogen Isotope Separation through Interfacial Hydrogen-Bond Engineering and Homolytic O–H Cleavage on Multianionic Sulfides in Large-Scale Floating Nanocomposites. ACS Catalysis 2024, 14 (11) , 9077-9092. https://doi.org/10.1021/acscatal.4c00903
    4. Koichi Kato, Naoki Nagatsuka, Katsuyuki Fukutani. H2 Molecule Generation from Dissociatively Adsorbed Water on TiO2 through Photoexcitation. The Journal of Physical Chemistry C 2024, 128 (20) , 8188-8198. https://doi.org/10.1021/acs.jpcc.3c08216
    5. Lei Wang, Xiaofeng Liu, Lingyun Wan, Yunzhi Gao, Xiaoning Wang, Jie Liu, Shijing Tan, Qing Guo, Wenhui Zhao, Wei Hu, Qunxiang Li, Jinlong Yang. Excitonic Effects of the Excited-State Photocatalytic Reaction at the Molecule/Metal Oxide Interface. The Journal of Physical Chemistry Letters 2024, 15 (7) , 2096-2104. https://doi.org/10.1021/acs.jpclett.3c03075
    6. Jingyan Zhang, Lei Li, Hui Li. Adsorption-Controlled Wettability and Self-Cleaning of TiO2. Langmuir 2023, 39 (17) , 6188-6200. https://doi.org/10.1021/acs.langmuir.3c00324
    7. Xiaobing Shi, Qianbao Wu, Chunhua Cui. Modulating WO3 Crystal Orientation to Suppress Hydroxyl Radicals for Sustainable Solar Water Oxidation. ACS Catalysis 2023, 13 (2) , 1470-1476. https://doi.org/10.1021/acscatal.2c05325
    8. Qiang Zhu, Yuuki Adachi, Yasuhiro Sugawara, Yanjun Li. Tip-Induced Dynamic Behaviors of a Water Molecule and Hydroxyl on the Rutile TiO2(110) Surface. The Journal of Physical Chemistry C 2022, 126 (31) , 13062-13068. https://doi.org/10.1021/acs.jpcc.1c08935
    9. Xiaochuan Ma, Yongliang Shi, Jianyi Liu, Xintong Li, Xuefeng Cui, Shijing Tan, Jin Zhao, Bing Wang. Hydrogen-Bond Network Promotes Water Splitting on the TiO2 Surface. Journal of the American Chemical Society 2022, 144 (30) , 13565-13573. https://doi.org/10.1021/jacs.2c03690
    10. Xiaoning Wang, Lingyun Wan, Zijian Wang, Xiaofeng Liu, Yunzhi Gao, Lei Wang, Jie Liu, Qing Guo, Wei Hu, Jinlong Yang. Identifying Photocatalytic Active Sites of C2H6 C–H Bond Activation on TiO2 via Combining First-Principles Ground-State and Excited-State Electronic Structure Calculations. The Journal of Physical Chemistry Letters 2022, 13 (28) , 6532-6540. https://doi.org/10.1021/acs.jpclett.2c01100
    11. So-Dam Sohn, Yohan Kim, Sungchul Jung, Jeong Su Kang, Huijun Han, Kwang S. Kim, Kibog Park, Hyung-Joon Shin. C60 Adsorbed on TiO2 Drives Dark Generation of Hydroxyl Radicals. ACS Catalysis 2022, 12 (10) , 5990-5996. https://doi.org/10.1021/acscatal.2c00755
    12. Rulin Sun, Xinlu Liu, Xiao Chen, Li Che, Xueming Yang, Qing Guo. One-Pot Ethyl Acetate Production from Ethanol Photooxidation on Rutile TiO2(110): Strong Photon Energy Dependence. The Journal of Physical Chemistry Letters 2022, 13 (3) , 801-807. https://doi.org/10.1021/acs.jpclett.2c00048
    13. Min Zhou, Haifeng Wang. Optimally Selecting Photo- and Electrocatalysis to Facilitate CH4 Activation on TiO2(110) Surface: Localized Photoexcitation versus Global Electric-Field Polarization. JACS Au 2022, 2 (1) , 188-196. https://doi.org/10.1021/jacsau.1c00466
    14. Binli Wang, Ruimin Wang, Hongjun Fan. Photocatalytic Activity and Hole-Scavenging Behaviors on Rutile TiO2(100) Surfaces: A Theoretical Study. The Journal of Physical Chemistry C 2022, 126 (2) , 974-985. https://doi.org/10.1021/acs.jpcc.1c10633
    15. Masato Miyazaki, Yasuhiro Sugawara, Yan Jun Li. Charge Behavior of Terminal Hydroxyl on Rutile TiO2(110). Langmuir 2021, 37 (35) , 10588-10593. https://doi.org/10.1021/acs.langmuir.1c01845
    16. Tao Chen, Qian Ding, Xiuli Wang, Zhaochi Feng, Can Li. Mechanistic Studies on Photocatalytic Overall Water Splitting over Ga2O3-Based Photocatalysts by Operando MS-FTIR Spectroscopy. The Journal of Physical Chemistry Letters 2021, 12 (26) , 6029-6033. https://doi.org/10.1021/acs.jpclett.1c01621
    17. Chenbiao Xu, Fei Xu, Xiao Chen, Zhenxing Li, Zhiwen Luan, Xingan Wang, Qing Guo, Xueming Yang. Wavelength-Dependent Water Oxidation on Rutile TiO2(110). The Journal of Physical Chemistry Letters 2021, 12 (3) , 1066-1072. https://doi.org/10.1021/acs.jpclett.0c03726
    18. Haiping Lin, Zhijun Wang, Haochen Wang, Jianzhi Gao, Haoxuan Ding, Yong Xu, Qing Li, Qing Guo, Zhibo Ma, Xueming Yang, Minghu Pan. In Situ Observation of Stepwise C–H Bond Scission: Deciphering the Catalytic Selectivity of Ethylbenzene-to-Styrene Conversion on TiO2. The Journal of Physical Chemistry Letters 2020, 11 (22) , 9850-9855. https://doi.org/10.1021/acs.jpclett.0c02729
    19. Daniel J. Aschaffenburg, Seiji Kawasaki, Chaitanya Das Pemmaraju, Tanja Cuk. Accuracy in Resolving the First Hydration Layer on a Transition-Metal Oxide Surface: Experiment (AP-XPS) and Theory. The Journal of Physical Chemistry C 2020, 124 (39) , 21407-21417. https://doi.org/10.1021/acs.jpcc.0c05195
    20. Fengshuang Han, Liya Zhu, Zhenxiong Huang, Zhaohui Zhou. Photoinduced Superhydrophilicity of Anatase TiO2 Surface Uncovered by First-Principles Molecular Dynamics. The Journal of Physical Chemistry Letters 2020, 11 (18) , 7590-7594. https://doi.org/10.1021/acs.jpclett.0c02219
    21. F. Parrino, S. Livraghi, E. Giamello, R. Ceccato, L. Palmisano. Role of Hydroxyl, Superoxide, and Nitrate Radicals on the Fate of Bromide Ions in Photocatalytic TiO2 Suspensions. ACS Catalysis 2020, 10 (14) , 7922-7931. https://doi.org/10.1021/acscatal.0c02010
    22. Jeong Su Kang, So-Dam Sohn, Hyung-Joon Shin. Dissociative Adsorption of H2O2 on the TiO2(110) Surface for Advanced Oxidation Process. The Journal of Physical Chemistry C 2020, 124 (22) , 11930-11934. https://doi.org/10.1021/acs.jpcc.0c02143
    23. Shijing Tan, Hao Feng, Qijing Zheng, Xuefeng Cui, Jin Zhao, Yi Luo, Jinlong Yang, Bing Wang, J. G. Hou. Interfacial Hydrogen-Bonding Dynamics in Surface-Facilitated Dehydrogenation of Water on TiO2(110). Journal of the American Chemical Society 2020, 142 (2) , 826-834. https://doi.org/10.1021/jacs.9b09132
    24. Huan Fei Wen, Yuuki Adachi, Quanzhen Zhang, Masato Miyazaki, Yasuhiro Sugawara, Yan Jun Li. Identification of Atomic Defects and Adsorbate on Rutile TiO2(110)-(1 × 1) Surface by Atomic Force Microscopy. The Journal of Physical Chemistry C 2019, 123 (42) , 25756-25760. https://doi.org/10.1021/acs.jpcc.9b07949
    25. Qing Guo, Zhibo Ma, Chuanyao Zhou, Zefeng Ren, Xueming Yang. Single Molecule Photocatalysis on TiO2 Surfaces. Chemical Reviews 2019, 119 (20) , 11020-11041. https://doi.org/10.1021/acs.chemrev.9b00226
    26. Yi Luo, Kai Ren, Sake Wang, Jyh-Pin Chou, Jin Yu, Zhengming Sun, Minglei Sun. First-Principles Study on Transition-Metal Dichalcogenide/BSe van der Waals Heterostructures: A Promising Water-Splitting Photocatalyst. The Journal of Physical Chemistry C 2019, 123 (37) , 22742-22751. https://doi.org/10.1021/acs.jpcc.9b05581
    27. Shihui Dong, Bin Li, Xuefeng Cui, Shijing Tan, Bing Wang. Photoresponses of Supported Au Single Atoms on TiO2(110) through the Metal-Induced Gap States. The Journal of Physical Chemistry Letters 2019, 10 (16) , 4683-4691. https://doi.org/10.1021/acs.jpclett.9b01527
    28. Shijing Tan, Hao Feng, Yongfei Ji, Qijing Zheng, Yongliang Shi, Jin Zhao, Aidi Zhao, Jinlong Yang, Yi Luo, Bing Wang, J. G. Hou. Visualizing Elementary Reactions of Methanol by Electrons and Holes on TiO2(110) Surface. The Journal of Physical Chemistry C 2018, 122 (50) , 28805-28814. https://doi.org/10.1021/acs.jpcc.8b09784
    29. Jue Yu, Lan Li, Yong Qian, Hongming Lou, Dongjie Yang, Xueqing Qiu. Facile and Green Preparation of High UV-Blocking Lignin/Titanium Dioxide Nanocomposites for Developing Natural Sunscreens. Industrial & Engineering Chemistry Research 2018, 57 (46) , 15740-15748. https://doi.org/10.1021/acs.iecr.8b04101
    30. Fan Jin, Min Wei, Tingwei Chen, Huizhong Ma, Guokui Liu, Yuchen Ma. Behavior of Photogenerated Electron–Hole Pair for Water Splitting on TiO2(110). The Journal of Physical Chemistry C 2018, 122 (40) , 22930-22938. https://doi.org/10.1021/acs.jpcc.8b05648
    31. Dong Wang, Zhi-Pan Liu, Wei-Min Yang. Revealing the Size Effect of Platinum Cocatalyst for Photocatalytic Hydrogen Evolution on TiO2 Support: A DFT Study. ACS Catalysis 2018, 8 (8) , 7270-7278. https://doi.org/10.1021/acscatal.8b01886
    32. Huan Fei Wen, Quanzhen Zhang, Yuuki Adachi, Masato Miyazaki, Yoshitaka Naitoh, Yan Jun Li, Yasuhiro Sugawara. Direct Visualization of Oxygen Reaction with Paired Hydroxyl on TiO2(110) Surface at 78 K by Atomic Force Microscopy. The Journal of Physical Chemistry C 2018, 122 (30) , 17395-17399. https://doi.org/10.1021/acs.jpcc.8b06289
    33. Zhenhua Geng, Xianchi Jin, Ruimin Wang, Xiao Chen, Qing Guo, Zhibo Ma, Dongxu Dai, Hongjun Fan, Xueming Yang. Low-Temperature Hydrogen Production via Water Conversion on Pt/TiO2. The Journal of Physical Chemistry C 2018, 122 (20) , 10956-10962. https://doi.org/10.1021/acs.jpcc.8b02945
    34. Martin Setvin, Xiao Shi, Jan Hulva, Thomas Simschitz, Gareth S. Parkinson, Michael Schmid, Cristiana Di Valentin, Annabella Selloni, and Ulrike Diebold . Methanol on Anatase TiO2 (101): Mechanistic Insights into Photocatalysis. ACS Catalysis 2017, 7 (10) , 7081-7091. https://doi.org/10.1021/acscatal.7b02003
    35. Zhengwang Cheng, Haoqi Tang, Xuefeng Cui, Shihui Dong, Xiaochuan Ma, Bin Luo, Shijing Tan, and Bing Wang . Identifying the Site-Dependent Photoactivity of Anatase TiO2(001)-(1×4) Surface. The Journal of Physical Chemistry C 2017, 121 (36) , 19930-19937. https://doi.org/10.1021/acs.jpcc.7b07256
    36. Yoshio Nosaka and Atsuko Y. Nosaka . Generation and Detection of Reactive Oxygen Species in Photocatalysis. Chemical Reviews 2017, 117 (17) , 11302-11336. https://doi.org/10.1021/acs.chemrev.7b00161
    37. Annapaola Migani and Lluís Blancafort . What Controls Photocatalytic Water Oxidation on Rutile TiO2(110) under Ultra-High-Vacuum Conditions?. Journal of the American Chemical Society 2017, 139 (34) , 11845-11856. https://doi.org/10.1021/jacs.7b05121
    38. Fen Liu, Ningdong Feng, Qiang Wang, Jun Xu, Guodong Qi, Chao Wang, and Feng Deng . Transfer Channel of Photoinduced Holes on a TiO2 Surface As Revealed by Solid-State Nuclear Magnetic Resonance and Electron Spin Resonance Spectroscopy. Journal of the American Chemical Society 2017, 139 (29) , 10020-10028. https://doi.org/10.1021/jacs.7b04877
    39. Andreas Kafizas, Yimeng Ma, Ernest Pastor, Stephanie R. Pendlebury, Camilo Mesa, Laia Francàs, Florian Le Formal, Nuruzzaman Noor, Min Ling, Carlos Sotelo-Vazquez, Claire J. Carmalt, Ivan P. Parkin, and James R. Durrant . Water Oxidation Kinetics of Accumulated Holes on the Surface of a TiO2 Photoanode: A Rate Law Analysis. ACS Catalysis 2017, 7 (7) , 4896-4903. https://doi.org/10.1021/acscatal.7b01150
    40. Saman Hosseinpour, Fujie Tang, Fenglong Wang, Ruth A. Livingstone, Simon J. Schlegel, Tatsuhiko Ohto, Mischa Bonn, Yuki Nagata, and Ellen H. G. Backus . Chemisorbed and Physisorbed Water at the TiO2/Water Interface. The Journal of Physical Chemistry Letters 2017, 8 (10) , 2195-2199. https://doi.org/10.1021/acs.jpclett.7b00564
    41. Dong Wang, Zhi-Pan Liu, and Wei-Min Yang . Proton-Promoted Electron Transfer in Photocatalysis: Key Step for Photocatalytic Hydrogen Evolution on Metal/Titania Composites. ACS Catalysis 2017, 7 (4) , 2744-2752. https://doi.org/10.1021/acscatal.7b00225
    42. Tetsuroh Shirasawa, Wolfgang Voegeli, Etsuo Arakawa, Toshio Takahashi, and Tadashi Matsushita . Structural Change of the Rutile–TiO2(110) Surface During the Photoinduced Wettability Conversion. The Journal of Physical Chemistry C 2016, 120 (51) , 29107-29115. https://doi.org/10.1021/acs.jpcc.6b08448
    43. Annapaola Migani and Lluís Blancafort . Excitonic Interfacial Proton-Coupled Electron Transfer Mechanism in the Photocatalytic Oxidation of Methanol to Formaldehyde on TiO2(110). Journal of the American Chemical Society 2016, 138 (49) , 16165-16173. https://doi.org/10.1021/jacs.6b11067
    44. Zhenhua Geng, Xiao Chen, Wenshao Yang, Qing Guo, Chenbiao Xu, Dongxu Dai, and Xueming Yang . Highly Efficient Water Dissociation on Anatase TiO2(101). The Journal of Physical Chemistry C 2016, 120 (47) , 26807-26813. https://doi.org/10.1021/acs.jpcc.6b07774
    45. Hao Feng, Liming Liu, Shihui Dong, Xuefeng Cui, Jin Zhao, and Bing Wang . Dynamic Processes of Formaldehyde at Terminal Ti Sites on the Rutile TiO2(110) Surface. The Journal of Physical Chemistry C 2016, 120 (42) , 24287-24293. https://doi.org/10.1021/acs.jpcc.6b08797
    46. Qijing Zheng, Shijing Tan, Hao Feng, Xuefeng Cui, Jin Zhao, and Bing Wang . Dynamic Equilibrium of Reversible Reactions and Migration of Hydrogen Atoms Mediated by Diffusive Methanol on Rutile TiO2 (110)-(1 × 1) Surface. The Journal of Physical Chemistry C 2016, 120 (14) , 7728-7735. https://doi.org/10.1021/acs.jpcc.6b02367
    47. Hao Feng, Shijing Tan, Haoqi Tang, Qijing Zheng, Yongliang Shi, Xuefeng Cui, Xiang Shao, Aidi Zhao, Jin Zhao, and Bing Wang . Temperature- and Coverage-Dependent Kinetics of Photocatalytic Reaction of Methanol on TiO2 (110)-(1 × 1) Surface. The Journal of Physical Chemistry C 2016, 120 (10) , 5503-5514. https://doi.org/10.1021/acs.jpcc.5b12010
    48. Wenshao Yang, Dong Wei, Xianchi Jin, Chenbiao Xu, Zhenhua Geng, Qing Guo, Zhibo Ma, Dongxu Dai, Hongjun Fan, and Xueming Yang . Effect of the Hydrogen Bond in Photoinduced Water Dissociation: A Double-Edged Sword. The Journal of Physical Chemistry Letters 2016, 7 (4) , 603-608. https://doi.org/10.1021/acs.jpclett.6b00015
    49. Nikolay G. Petrik and Greg A. Kimmel . Reaction Kinetics of Water Molecules with Oxygen Vacancies on Rutile TiO2(110). The Journal of Physical Chemistry C 2015, 119 (40) , 23059-23067. https://doi.org/10.1021/acs.jpcc.5b07526
    50. Dong Wei, Xianchi Jin, Chuanqi Huang, Dongxu Dai, Zhibo Ma, Wei-Xue Li, and Xueming Yang . Direct Imaging Single Methanol Molecule Photocatalysis on Titania. The Journal of Physical Chemistry C 2015, 119 (31) , 17748-17754. https://doi.org/10.1021/acs.jpcc.5b05074
    51. Wen-Jin Yin, Matthias Krack, Bo Wen, Shang-Yi Ma, and Li-Min Liu . CO2 Capture and Conversion on Rutile TiO2(110) in the Water Environment: Insight by First-Principles Calculations. The Journal of Physical Chemistry Letters 2015, 6 (13) , 2538-2545. https://doi.org/10.1021/acs.jpclett.5b00798
    52. Huijuan Sun, Duncan J. Mowbray, Annapaola Migani, Jin Zhao, Hrvoje Petek, and Angel Rubio . Comparing Quasiparticle H2O Level Alignment on Anatase and Rutile TiO2. ACS Catalysis 2015, 5 (7) , 4242-4254. https://doi.org/10.1021/acscatal.5b00529
    53. Markus Lampimäki, Sepp Schreiber, Veronika Zelenay, Adéla Křepelová, Mario Birrer, Stephanus Axnanda, Baohua Mao, Zhi Liu, Hendrik Bluhm, and Markus Ammann . Exploring the Environmental Photochemistry on the TiO2(110) Surface in Situ by Near Ambient Pressure X-ray Photoelectron Spectroscopy. The Journal of Physical Chemistry C 2015, 119 (13) , 7076-7085. https://doi.org/10.1021/jp511340n
    54. Annapaola Migani, Duncan J. Mowbray, Jin Zhao, and Hrvoje Petek . Quasiparticle Interfacial Level Alignment of Highly Hybridized Frontier Levels: H2O on TiO2(110). Journal of Chemical Theory and Computation 2015, 11 (1) , 239-251. https://doi.org/10.1021/ct500779s
    55. Georgios A. Tritsaris, Dmitry Vinichenko, Grigory Kolesov, Cynthia M. Friend, and Efthimios Kaxiras . Dynamics of the Photogenerated Hole at the Rutile TiO2(110)/Water Interface: A Nonadiabatic Simulation Study. The Journal of Physical Chemistry C 2014, 118 (47) , 27393-27401. https://doi.org/10.1021/jp508557w
    56. Yongfei Ji, Bing Wang, and Yi Luo . A Comparative Theoretical Study of Proton-Coupled Hole Transfer for H2O and Small Organic Molecules (CH3OH, HCOOH, H2CO) on the Anatase TiO2(101) Surface. The Journal of Physical Chemistry C 2014, 118 (37) , 21457-21462. https://doi.org/10.1021/jp505854t
    57. Qing Yuan, Zongfang Wu, Yuekang Jin, Feng Xiong, and Weixin Huang . Surface Chemistry of Formaldehyde on Rutile TiO2(110) Surface: Photocatalysis vs Thermal-Catalysis. The Journal of Physical Chemistry C 2014, 118 (35) , 20420-20428. https://doi.org/10.1021/jp5061733
    58. Yongfei Ji, Bing Wang, and Yi Luo . GGA+U Study on the Mechanism of Photodecomposition of Water Adsorbed on Rutile TiO2(110) Surface: Free vs Trapped Hole. The Journal of Physical Chemistry C 2014, 118 (2) , 1027-1034. https://doi.org/10.1021/jp409605y
    59. Michael A. Henderson and Igor Lyubinetsky . Molecular-Level Insights into Photocatalysis from Scanning Probe Microscopy Studies on TiO2(110). Chemical Reviews 2013, 113 (6) , 4428-4455. https://doi.org/10.1021/cr300315m
    60. Junseok Lee, Dan C. Sorescu, Xingyi Deng, and Kenneth D. Jordan . Water Chain Formation on TiO2(110). The Journal of Physical Chemistry Letters 2013, 4 (1) , 53-57. https://doi.org/10.1021/jz301727n
    61. Yingying Fan, Yuheng Jiang, Haiting Lin, Jianan Li, Yuanjiang Xie, Anyi Chen, Siyang Li, Dongxue Han, Li Niu, Zhiyong Tang. Insight into selectivity of photocatalytic methane oxidation to formaldehyde on tungsten trioxide. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-49138-8
    62. Zhiqiang Wang, Yajie Gao, Tianjun Wang, Wei Chen, Zefeng Ren, Xueming Yang, Chuanyao Zhou. Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters 2024, 238 , 110602. https://doi.org/10.1016/j.cclet.2024.110602
    63. Yitong Zhang, Cheng Cheng, Yifan Wu, Oleg V. Prezhdo, Run Long. Enhancement of hole capture and water dissociation on rutile TiO 2 (110) by intermolecular hydrogen bonding: time-domain ab initio study. Journal of Materials Chemistry A 2024, 12 (38) , 26178-26187. https://doi.org/10.1039/D4TA04750H
    64. Haiting Lin, Anyi Chen, Tianren Liu, Wensheng Zhang, Xinyv Du, Junjie Feng, Jiajun Zeng, Yingying Fan, Dongxue Han, Li Niu. Synergistically Photocatalytic Conversion of Two Greenhouse Gases to Liquid‐Phase Oxygenates under Anaerobic Conditions. Solar RRL 2024, 8 (18) https://doi.org/10.1002/solr.202400522
    65. Peiwei You, Daqiang Chen, Xinbao Liu, Cui Zhang, Annabella Selloni, Sheng Meng. Correlated electron–nuclear dynamics of photoinduced water dissociation on rutile TiO2. Nature Materials 2024, 23 (8) , 1100-1106. https://doi.org/10.1038/s41563-024-01900-5
    66. Zheng Wang, Min Liao, Li Ling, Meng Zhang. Construction of highly active photocatalytic interfaces through light field modulation and photo-deposition of Pd sites. Giant 2024, 18 , 100266. https://doi.org/10.1016/j.giant.2024.100266
    67. Vesna Ribić, Vanja Jordan, Sandra Drev, Janez Kovač, Goran Dražić, Aleksander Rečnik. Mnemonic Rutile–Rutile Interfaces Triggering Spontaneous Dissociation of Water. Advanced Materials 2023, https://doi.org/10.1002/adma.202308027
    68. He Zhou, Heng Zhang, Shiling Yuan. Comparison of H2O Adsorption and Dissociation Behaviors on Rutile (110) and Anatase (101) Surfaces Based on ReaxFF Molecular Dynamics Simulation. Molecules 2023, 28 (19) , 6823. https://doi.org/10.3390/molecules28196823
    69. Dáire O’Carroll, José A. Martinez-Gonzalez, Niall J. English. Coherency spectral analysis of interfacial water at TiO 2 surfaces. Molecular Simulation 2023, 49 (12) , 1185-1194. https://doi.org/10.1080/08927022.2020.1764951
    70. Dongsheng Zhang, Ren Su. Heterogeneous Photocatalytic Hydrogenative Reactions Using Liquid Hydrogen Donors: Mechanisms, Catalysts Design, and Applications. Chemistry – A European Journal 2023, 29 (35) https://doi.org/10.1002/chem.202300882
    71. Kræn C. Adamsen, Nikolay G. Petrik, Wilke Dononelli, Greg A. Kimmel, Tao Xu, Zheshen Li, Lutz Lammich, Bjørk Hammer, Jeppe V. Lauritsen, Stefan Wendt. Origin of hydroxyl pair formation on reduced anatase TiO 2 (101). Physical Chemistry Chemical Physics 2023, 25 (19) , 13645-13653. https://doi.org/10.1039/D3CP01051A
    72. Xinyu Xiao, Ying Han, Chao Liu, Xing Wang. Steered photogenerated carrier separation via mixed-crystal-homojunction-mediated permanent negative charge electric field. Applied Materials Today 2023, 31 , 101757. https://doi.org/10.1016/j.apmt.2023.101757
    73. Carlos R. Michel, Alma H. Martínez-Preciado. Adsorption and photocatalytic degradation of Congo red and malachite green by nanostructured Y2O3 synthesized by the coprecipitation method. Open Ceramics 2023, 13 , 100336. https://doi.org/10.1016/j.oceram.2023.100336
    74. Hongliang Chen, Chuancheng Jia, Xin Zhu, Chen Yang, Xuefeng Guo, J. Fraser Stoddart. Reactions in single-molecule junctions. Nature Reviews Materials 2023, 8 (3) , 165-185. https://doi.org/10.1038/s41578-022-00506-0
    75. Emily M. Kempfer-Robertson, Irma Avdic, Meagan N. Haase, Thomas Dane Pike, Lee M. Thompson. Protonation state control of electric field induced molecular switching mechanisms. Physical Chemistry Chemical Physics 2023, 25 (6) , 5251-5261. https://doi.org/10.1039/D2CP04494C
    76. Xiaobing Shi, Qianbao Wu, Chunhua Cui. Improving WO3/SnO2 photoanode stability by inhibiting hydroxyl radicals with cobalt ions in strong acid. Science China Materials 2023, 66 (2) , 614-622. https://doi.org/10.1007/s40843-022-2188-5
    77. Maicon Delarmelina, Mbongiseni W. Dlamini, Samuel Pattisson, Philip R. Davies, Graham J. Hutchings, C. Richard A. Catlow. The effect of dissolved chlorides on the photocatalytic degradation properties of titania in wastewater treatment. Physical Chemistry Chemical Physics 2023, 25 (5) , 4161-4176. https://doi.org/10.1039/D2CP03140J
    78. Sheng Meng, Enge Wang. Water Adsorption on Non-metallic Surfaces. 2023, 201-226. https://doi.org/10.1007/978-981-99-1541-5_9
    79. Huiqiang Liang, Ziyuan Yan, Guosong Zeng. Recent Advances in In Situ/Operando Surface/Interface Characterization Techniques for the Study of Artificial Photosynthesis. Inorganics 2023, 11 (1) , 16. https://doi.org/10.3390/inorganics11010016
    80. Olena Berger. Understanding the fundamentals of TiO 2 surfacesPart II. Reactivity and surface chemistry of TiO 2 single crystals. Surface Engineering 2022, 38 (10-12) , 846-906. https://doi.org/10.1080/02670844.2023.2175505
    81. Miho Yamauchi, Hikaru Saito, Toshiki Sugimoto, Shogo Mori, Susumu Saito. Sustainable organic synthesis promoted on titanium dioxide using coordinated water and renewable energies/resources. Coordination Chemistry Reviews 2022, 472 , 214773. https://doi.org/10.1016/j.ccr.2022.214773
    82. Yoshio Nosaka. Water Photo-Oxidation over TiO2—History and Reaction Mechanism. Catalysts 2022, 12 (12) , 1557. https://doi.org/10.3390/catal12121557
    83. Jeong Su Kang, Ju Yeol Baek, Hyuntae Hwang, Hyeon Suk Shin, Chang Won Yoon, Hyung-Joon Shin. Photocatalytic dehydrogenation of organic hydrogen carrier on Pd-TiO 2 (110) surfaces. Journal of Materials Chemistry A 2022, 10 (42) , 22701-22706. https://doi.org/10.1039/D2TA04956B
    84. Qingyong Meng, Junbo Chen, Jianxing Ma, Xingyu Zhang, Jun Chen. Adiabatic models for the quantum dynamics of surface scattering with lattice effects. Physical Chemistry Chemical Physics 2022, 24 (27) , 16415-16436. https://doi.org/10.1039/D2CP01560A
    85. Mojtaba Arabameri, Hadis Bashiri. Introduction of the Effective Photon Concentration Variable for Studying the Mechanism of Crystal Violet Photodegradation. Photochemistry and Photobiology 2022, 98 (4) , 798-814. https://doi.org/10.1111/php.13543
    86. Chunhua Yang, Xiaomei Wang, Chun-Hong Lin, Wentao Zhu. Photocatalysed direct amination of benzene and ammonia over Ti–V-MCM-41. RSC Advances 2022, 12 (29) , 18773-18778. https://doi.org/10.1039/D2RA02427F
    87. Mojtaba Arabameri, Hadis Bashiri. A new approach to study the degradation of the organic pollutants by A-doped MxOy/B photocatalysts. Environmental Science and Pollution Research 2022, 29 (26) , 39139-39163. https://doi.org/10.1007/s11356-022-18923-7
    88. Helong Sun, Lufa Hu, Zhangyang Li, Junyu Lang, Chunling Wang, Xiaohao Liu, Yun Hang Hu, Fangming Jin. Ultra‐stable Molecular Interface SiW 12 O x /TiO 2 Catalyst Derived from Keggin‐type Polyoxometalates for Photocatalytic Conversion of Methane to Oxygenates. ChemCatChem 2022, 14 (10) https://doi.org/10.1002/cctc.202200001
    89. Deepak Kukkar, Preeti Kukkar, Sherif A. Younis, Ki-Hyun Kim. The use of nanophotocatalysts for the effective mitigation of polycyclic aromatic hydrocarbons in aqueous phase. Journal of Cleaner Production 2022, 333 , 130026. https://doi.org/10.1016/j.jclepro.2021.130026
    90. Siying Zhong, Shaoyi Wu, Xiaohong Chen, Kailai Xu, , . Theory study of H 2 O adsorbed TiO 2 (110) surface: structural and electronic properties. MATEC Web of Conferences 2022, 358 , 01058. https://doi.org/10.1051/matecconf/202235801058
    91. Hongwei Sun, Fengjiao Quan, Chengliang Mao, Lizhi Zhang. New Strategies for Nitrogen Fixation and Pollution Control. Chinese Journal of Chemistry 2021, 39 (12) , 3199-3210. https://doi.org/10.1002/cjoc.202100426
    92. Yuuki Adachi, Hongqian Sang, Yasuhiro Sugawara, Yan Jun Li. Single hydrogen atom manipulation for reversible deprotonation of water on a rutile TiO2 (110) surface. Communications Chemistry 2021, 4 (1) https://doi.org/10.1038/s42004-020-00444-4
    93. Jiawei Liu, Liying Huang, Yeping Li, Lei Yang, Chaobao Wang, Juan Liu, Yanhua Song, Mengxin Yang, Huaming Li. Construction of oxygen vacancy assisted Z-scheme BiO2−x/BiOBr heterojunction for LED light pollutants degradation and bacteria inactivation. Journal of Colloid and Interface Science 2021, 600 , 344-357. https://doi.org/10.1016/j.jcis.2021.04.143
    94. Fei Fang, Yuanxu Liu, Xiao Sun, Cong Fu, Yagna Prakash Bhoi, Wei Xiong, Weixin Huang. TiO2 Facet-dependent reconstruction and photocatalysis of CuOx/TiO2 photocatalysts in CO2 photoreduction. Applied Surface Science 2021, 564 , 150407. https://doi.org/10.1016/j.apsusc.2021.150407
    95. Ruimin Chen, Jieyuan Li, Hong Wang, Peng Chen, Xing'an Dong, Yanjuan Sun, Ying Zhou, Fan Dong. Photocatalytic reaction mechanisms at a gas–solid interface for typical air pollutant decomposition. Journal of Materials Chemistry A 2021, 9 (36) , 20184-20210. https://doi.org/10.1039/D1TA03705F
    96. Xiao Xu, Haotian Liu, Jian Wang, Ting Chen, Xing Ding, Hao Chen. Insight into surface hydroxyl groups for environmental purification: characterizations, applications and advances. Surfaces and Interfaces 2021, 25 , 101272. https://doi.org/10.1016/j.surfin.2021.101272
    97. Lingyun Wan, Xiaofeng Liu, Jie Liu, Xinming Qin, Wei Hu, Jinlong Yang. Hybrid MPI and OpenMP parallel implementation of large-scale linear-response time-dependent density functional theory with plane-wave basis set. Electronic Structure 2021, 3 (2) , 024004. https://doi.org/10.1088/2516-1075/abfd1f
    98. Christopher O’Rourke, Andrew Mills. Water oxidation by P25 TiO2 photoanodes in acidic solution. Chemosphere 2021, 271 , 129847. https://doi.org/10.1016/j.chemosphere.2021.129847
    99. Mingjie Wei, Yong Wang. Structure and dynamics of water in TiO2 nano slits: The influence of interfacial interactions and pore sizes. Chinese Journal of Chemical Engineering 2021, 31 , 67-74. https://doi.org/10.1016/j.cjche.2020.10.028
    100. Pankaj Raizada, Vatika Soni, Abhinandan Kumar, Pardeep Singh, Aftab Aslam Parwaz Khan, Abdullah M. Asiri, Vijay Kumar Thakur, Van-Huy Nguyen. Surface defect engineering of metal oxides photocatalyst for energy application and water treatment. Journal of Materiomics 2021, 7 (2) , 388-418. https://doi.org/10.1016/j.jmat.2020.10.009
    Load all citations

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2012, 134, 24, 9978–9985
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja211919k
    Published June 1, 2012
    Copyright © 2012 American Chemical Society

    Article Views

    4886

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.