ACS Publications. Most Trusted. Most Cited. Most Read
Capture of Carbon Dioxide from Air and Flue Gas in the Alkylamine-Appended Metal–Organic Framework mmen-Mg2(dobpdc)
My Activity

Figure 1Loading Img
    Article

    Capture of Carbon Dioxide from Air and Flue Gas in the Alkylamine-Appended Metal–Organic Framework mmen-Mg2(dobpdc)
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, University of California, Berkeley, California 94720, United States
    § Department of Chemistry, Research Institute for Natural Sciences, Korea University, Seoul 136-713, Republic of Korea
    Other Access OptionsSupporting Information (2)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2012, 134, 16, 7056–7065
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja300034j
    Published April 4, 2012
    Copyright © 2012 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Two new metal–organic frameworks, M2(dobpdc) (M = Zn (1), Mg (2); dobpdc4– = 4,4′-dioxido-3,3′-biphenyldicarboxylate), adopting an expanded MOF-74 structure type, were synthesized via solvothermal and microwave methods. Coordinatively unsaturated Mg2+ cations lining the 18.4-Å-diameter channels of 2 were functionalized with N,N′-dimethylethylenediamine (mmen) to afford Mg2(dobpdc)(mmen)1.6(H2O)0.4 (mmen-Mg2(dobpdc)). This compound displays an exceptional capacity for CO2 adsorption at low pressures, taking up 2.0 mmol/g (8.1 wt %) at 0.39 mbar and 25 °C, conditions relevant to removal of CO2 from air, and 3.14 mmol/g (12.1 wt %) at 0.15 bar and 40 °C, conditions relevant to CO2 capture from flue gas. Dynamic gas adsorption/desorption cycling experiments demonstrate that mmen-Mg2(dobpdc) can be regenerated upon repeated exposures to simulated air and flue gas mixtures, with cycling capacities of 1.05 mmol/g (4.4 wt %) after 1 h of exposure to flowing 390 ppm CO2 in simulated air at 25 °C and 2.52 mmol/g (9.9 wt %) after 15 min of exposure to flowing 15% CO2 in N2 at 40 °C. The purity of the CO2 removed from dry air and flue gas in these processes was estimated to be 96% and 98%, respectively. As a flue gas adsorbent, the regeneration energy was estimated through differential scanning calorimetry experiments to be 2.34 MJ/kg CO2 adsorbed. Overall, the performance characteristics of mmen-Mg2(dobpdc) indicate it to be an exceptional new adsorbent for CO2 capture, comparing favorably with both amine-grafted silicas and aqueous amine solutions.

    Copyright © 2012 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Powder X-ray diffraction patterns and fits, additional CO2, N2, and O2 isotherms and fits, FTIR spectra, TGA traces, and additional purity and regeneration energy calculations. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 1103 publications.

    1. Nana Sun, Syed Shoaib Ahmad Shah, Zhongyuan Lin, Yan-Zhen Zheng, Long Jiao, Hai-Long Jiang. MOF-Based Electrocatalysts: An Overview from the Perspective of Structural Design. Chemical Reviews 2025, 125 (5) , 2703-2792. https://doi.org/10.1021/acs.chemrev.4c00664
    2. Adrian J. Huang, Ankur K. Gupta, Henry Z. H. Jiang, Hao Zhuang, Malia B. Wenny, Ryan A. Klein, Hyunchul Kwon, Katie R. Meihaus, Hiroyasu Furukawa, Craig M. Brown, Jeffrey A. Reimer, Wibe A. de Jong, Jeffrey R. Long. Phase Change-Mediated Capture of Carbon Dioxide from Air with a Molecular Triamine Network Solid. Journal of the American Chemical Society 2025, Article ASAP.
    3. Chong Yang Chuah, Yin Liang Ho, Abdul Moiz Hashmi Syed, K Gopala Krishnan Thivyalakshmi, Euntae Yang, Khairiraihanna Johari, Yanqin Yang, Wai Ching Poon. Applicability of Adsorbents in Direct Air Capture (DAC): Recent Progress and Future Perspectives. Industrial & Engineering Chemistry Research 2025, 64 (8) , 4117-4147. https://doi.org/10.1021/acs.iecr.4c03265
    4. Zi-Ming Ye, Yi Xie, Kent O. Kirlikovali, Shengchang Xiang, Omar K. Farha, Banglin Chen. Architecting Metal–Organic Frameworks at Molecular Level toward Direct Air Capture. Journal of the American Chemical Society 2025, 147 (7) , 5495-5514. https://doi.org/10.1021/jacs.4c12200
    5. Michael L. Barsoum, Kira M. Fahy, William Morris, Vinayak P. Dravid, Benjamin Hernandez, Omar K. Farha. The Road Ahead for Metal–Organic Frameworks: Current Landscape, Challenges and Future Prospects. ACS Nano 2025, 19 (1) , 13-20. https://doi.org/10.1021/acsnano.4c14744
    6. Shubham Jamdade, Xuqing Cai, David S. Sholl. Assessment of Long-Term Degradation of Adsorbents for Direct Air Capture by Ozonolysis. The Journal of Physical Chemistry C 2025, 129 (1) , 899-909. https://doi.org/10.1021/acs.jpcc.4c07054
    7. Chisato Okada, Zongzi Hou, Hiroaki Imoto, Kensuke Naka, Takeshi Kikutani, Midori Takasaki. In Situ Polymerization Electrospinning of Amine–Epoxy/Poly(vinyl alcohol) Nanofiber Webs for Direct CO2 Capture from the Air. ACS Omega 2024, 9 (51) , 50466-50475. https://doi.org/10.1021/acsomega.4c07631
    8. Andrzej Gładysiak, Ah-Young Song, Rebecca Vismara, Madison Waite, Nawal M. Alghoraibi, Ammar H. Alahmed, Mourad Younes, Hongliang Huang, Jeffrey A. Reimer, Kyriakos C. Stylianou. Enhanced Carbon Dioxide Capture from Diluted Streams with Functionalized Metal–Organic Frameworks. JACS Au 2024, 4 (11) , 4527-4536. https://doi.org/10.1021/jacsau.4c00923
    9. Hyun June Moon, William T. Heller, Naresh C. Osti, MinGyu Song, Laura Proaño, Ida Vaghefi, Christopher W. Jones. Probing the Distribution and Mobility of Aminopolymers after Multiple Sorption-Regeneration Cycles: Neutron Scattering Studies. Industrial & Engineering Chemistry Research 2024, 63 (34) , 15100-15112. https://doi.org/10.1021/acs.iecr.4c01595
    10. Margot F. K. Verstreken, Nicolas Chanut, Yann Magnin, Héctor Octavio Rubiera Landa, Joeri F. M. Denayer, Gino V. Baron, Rob Ameloot. Mind the Gap: The Role of Mass Transfer in Shaped Nanoporous Adsorbents for Carbon Dioxide Capture. Journal of the American Chemical Society 2024, 146 (34) , 23633-23648. https://doi.org/10.1021/jacs.4c03086
    11. Natalie Rosen, Andreas Welter, Martin Schwankl, Nicolas Plumeré, Júnior Staudt, Jakob Burger. Assessment of the Potential of Electrochemical Steps in Direct Air Capture through Techno-Economic Analysis. Energy & Fuels 2024, 38 (16) , 15469-15481. https://doi.org/10.1021/acs.energyfuels.4c02202
    12. Matthias Quintelier, Amirhossein Hajizadeh, Alexander Zintler, Bruna F. Gonçalves, Roberto Fernández de Luis, Leili Esrafili Dizaji, Christophe M. L. Vande Velde, Stefan Wuttke, Joke Hadermann. In Situ Study of the Activation Process of MOF-74 Using Three-Dimensional Electron Diffraction. Chemistry of Materials 2024, 36 (15) , 7274-7282. https://doi.org/10.1021/acs.chemmater.4c01153
    13. Mingxuan Xiong, Youli Lu, Mingzhu Zhong, Liyu Chen, Gangyi Liu, Wenbo Ju. Superlong Metal–Organic Framework Micro-/Nanofibers for Selective Vitamin Absorption. Langmuir 2024, 40 (30) , 15793-15802. https://doi.org/10.1021/acs.langmuir.4c01634
    14. Ramesh B. Komma, Gregory P. Dillon. Development and Characterization of Polyethylenimine-Infiltrated Mesoporous Silica Foam Pellets for CO2 Capture. ACS Omega 2024, 9 (30) , 32881-32892. https://doi.org/10.1021/acsomega.4c03551
    15. Zi-Xiong Zhou, Yan Wang, Ran An, Yuan-Ru Guo, Shujun Li, Qing-Jiang Pan. Direct-Air-Capture Technique of Cellulose for Mineralizing Pb2+ from Wastewater: Synchronous Accomplishment of CO2 Capture and Water Treatment. ACS Sustainable Resource Management 2024, 1 (7) , 1512-1519. https://doi.org/10.1021/acssusresmgt.4c00126
    16. Jong Hyeak Choe, Hyojin Kim, Hongryeol Yun, Jintu Francis Kurisingal, Namju Kim, Donggyu Lee, Yong Hoon Lee, Chang Seop Hong. Extended MOF-74-Type Variant with an Azine Linkage: Efficient Direct Air Capture and One-Pot Synthesis. Journal of the American Chemical Society 2024, 146 (28) , 19337-19349. https://doi.org/10.1021/jacs.4c05318
    17. Jeremy David Adams, Douglas S. Clark. Techno-Economic Assessment of Electromicrobial Production of n-Butanol from Air-Captured CO2. Environmental Science & Technology 2024, 58 (17) , 7302-7313. https://doi.org/10.1021/acs.est.3c08748
    18. Anirban Karmakar, Andreia A. C. D. Santos, Noemi Pagliaricci, João Pires, Mary Batista, Elisabete C. B. A. Alegria, Ana Martin-Calvo, Juan José Gutiérrez-Sevillano, Sofia Calero, M. Fátima C. Guedes da Silva, Riccardo Pettinari, Armando J. L. Pombeiro. Halogen-Decorated Metal–Organic Frameworks for Efficient and Selective CO2 Capture, Separation, and Chemical Fixation with Epoxides under Mild Conditions. ACS Applied Materials & Interfaces 2024, 16 (16) , 20626-20641. https://doi.org/10.1021/acsami.4c02560
    19. Yongjian Yang, Yun Kyung Shin, Hideaki Ooe, Urara Hasegawa, Setsuko Yamane, Hayata Yamada, Adri C.T. van Duin, Yasuhiro Murase, John C. Mauro. Adsorption of CO2 by Amine-Functionalized Metal–Organic Frameworks Using GCMC and ReaxFF-Based Metadynamics Simulations. The Journal of Physical Chemistry C 2024, 128 (12) , 5257-5270. https://doi.org/10.1021/acs.jpcc.3c07183
    20. Michael L. Barsoum, Jan Hofmann, Haomiao Xie, Zhihengyu Chen, Simon M. Vornholt, Roberto dos Reis, Nicholas Burns, Stefan Kycia, Karena W. Chapman, Vinayak P. Dravid, Omar K. Farha. Probing Structural Transformations and Degradation Mechanisms by Direct Observation in SIFSIX-3-Ni for Direct Air Capture. Journal of the American Chemical Society 2024, 146 (10) , 6557-6565. https://doi.org/10.1021/jacs.3c11503
    21. Ziting Zhu, Hsinhan Tsai, Surya T. Parker, Jung-Hoon Lee, Yuto Yabuuchi, Henry Z. H. Jiang, Yang Wang, Shuoyan Xiong, Alexander C. Forse, Bhavish Dinakar, Adrian Huang, Chaochao Dun, Phillip J. Milner, Alex Smith, Pedro Guimarães Martins, Katie R. Meihaus, Jeffrey J. Urban, Jeffrey A. Reimer, Jeffrey B. Neaton, Jeffrey R. Long. High-Capacity, Cooperative CO2 Capture in a Diamine-Appended Metal–Organic Framework through a Combined Chemisorptive and Physisorptive Mechanism. Journal of the American Chemical Society 2024, 146 (9) , 6072-6083. https://doi.org/10.1021/jacs.3c13381
    22. Harish Kumar Rajendran, Mohammed Askkar Deen, Jyoti Prakash Ray, Anushka Singh, Selvaraju Narayanasamy. Harnessing the Chemical Functionality of Metal–Organic Frameworks Toward Removal of Aqueous Pollutants. Langmuir 2024, 40 (8) , 3963-3983. https://doi.org/10.1021/acs.langmuir.3c02668
    23. Sen Liu, Lu Wang, Huili Zhang, Hongxu Fang, Xiaokun Yue, Shuxian Wei, Siyuan Liu, Zhaojie Wang, Xiaoqing Lu. Efficient CO2 Capture and Separation in MOFs: Effect from Isoreticular Double Interpenetration. ACS Applied Materials & Interfaces 2024, 16 (6) , 7152-7160. https://doi.org/10.1021/acsami.3c16622
    24. Qian Wang, Hongtao Cheng, Junfeng Bai. Finely Tuning Metal Ion Valences of [Fe3–xMx(μ3–OH)(Carboxyl)6(pyridyl)2] Cluster-Based ant-MOFs for Highly Improved CO2 Capture Performances. ACS Applied Materials & Interfaces 2024, 16 (6) , 8077-8085. https://doi.org/10.1021/acsami.3c16867
    25. Oscar Iu-Fan Chen, Cheng-Hsin Liu, Kaiyu Wang, Emilio Borrego-Marin, Haozhe Li, Ali H. Alawadhi, Jorge A. R. Navarro, Omar M. Yaghi. Water-Enhanced Direct Air Capture of Carbon Dioxide in Metal–Organic Frameworks. Journal of the American Chemical Society 2024, 146 (4) , 2835-2844. https://doi.org/10.1021/jacs.3c14125
    26. Karuppasamy Gopalsamy, Dong Fan, Supriyo Naskar, Yann Magnin, Guillaume Maurin. Engineering of an Isoreticular Series of CALF-20 Metal–Organic Frameworks for CO2 Capture. ACS Applied Engineering Materials 2024, 2 (1) , 96-103. https://doi.org/10.1021/acsaenm.3c00622
    27. Jong Hyeak Choe, Hyojin Kim, Hongryeol Yun, Minjung Kang, Sookyung Park, Sumin Yu, Chang Seop Hong. Boc Protection for Diamine-Appended MOF Adsorbents to Enhance CO2 Recyclability under Realistic Humid Conditions. Journal of the American Chemical Society 2024, 146 (1) , 646-659. https://doi.org/10.1021/jacs.3c10475
    28. Chaojie Li, Jianing Qu, Fang Zong, Rui Liu, Weiwen Wang. Enhanced Photocatalytic Nitrogen Fixation of an In Situ-Constructed Fe Mesh-Based La/TiO2/MIL-88A Heterojunction. Industrial & Engineering Chemistry Research 2023, 62 (47) , 20127-20141. https://doi.org/10.1021/acs.iecr.3c02509
    29. Youhong Guo, Vittoria Bolongaro, T. Alan Hatton. Scalable Biomass-Derived Hydrogels for Sustainable Carbon Dioxide Capture. Nano Letters 2023, 23 (21) , 9697-9703. https://doi.org/10.1021/acs.nanolett.3c02157
    30. Hyun June Moon, Jan Michael Y. Carrillo, Christopher W. Jones. Distribution and Mobility of Amines Confined in Porous Silica Supports Assessed via Neutron Scattering, NMR, and MD Simulations: Impacts on CO2 Sorption Kinetics and Capacities. Accounts of Chemical Research 2023, 56 (19) , 2620-2630. https://doi.org/10.1021/acs.accounts.3c00363
    31. Patrick Gäumann, Davide Ferri, Denis Sheptyakov, Jeroen A. van Bokhoven, Przemyslaw Rzepka, Marco Ranocchiari. In Situ Neutron Diffraction of Zn-MOF-74 Reveals Nanoconfinement-Induced Effects on Adsorbed Propene. The Journal of Physical Chemistry C 2023, 127 (33) , 16636-16644. https://doi.org/10.1021/acs.jpcc.3c03225
    32. Qiubing Dong, Jingmeng Wan, Huanhao Chen, Yuhang Huang, Jingui Duan. Highly Efficient CO2 Capture from Wet–Hot Flue Gas by a Robust Trap-and-Flow Crystal. ACS Applied Materials & Interfaces 2023, 15 (33) , 39606-39613. https://doi.org/10.1021/acsami.3c09456
    33. Ziting Zhu, Surya T. Parker, Alexander C. Forse, Jung-Hoon Lee, Rebecca L. Siegelman, Phillip J. Milner, Hsinhan Tsai, Mengshan Ye, Shuoyan Xiong, Maria V. Paley, Adam A. Uliana, Julia Oktawiec, Bhavish Dinakar, Stephanie A. Didas, Katie R. Meihaus, Jeffrey A. Reimer, Jeffrey B. Neaton, Jeffrey R. Long. Cooperative Carbon Dioxide Capture in Diamine-Appended Magnesium–Olsalazine Frameworks. Journal of the American Chemical Society 2023, 145 (31) , 17151-17163. https://doi.org/10.1021/jacs.3c03870
    34. Matthew J. Hurlock, Matthew S. Christian, Keith J. Fritzsching, David X. Rademacher, Jessica M. Rimsza, Tina M. Nenoff. Experimental and Computational Mechanisms that Govern Long-Term Stability of CO2-Adsorbed ZIF-8-Based Porous Liquids. ACS Applied Materials & Interfaces 2023, 15 (27) , 32792-32802. https://doi.org/10.1021/acsami.3c06177
    35. Lei Zhang, Ziyu He, Yupeng Liu, Jianjun You, Lang Lin, Jihui Jia, Song Chen, Nengbin Hua, Li-An Ma, Xiaoyun Ye, Yanrong Liu, Cheng-Xia Chen, Qianting Wang. A Robust Squarate-Cobalt Metal–Organic Framework for CO2/N2 Separation. ACS Applied Materials & Interfaces 2023, 15 (25) , 30394-30401. https://doi.org/10.1021/acsami.3c06530
    36. Jingwen Cao, Qiang Wang, Dingkai Hu, Jiaqiu Li, Aifei Qi. Surface Properties of Fluorine-Functionalized Metal–Organic Frameworks Based on Inverse Gas Chromatography. Langmuir 2023, 39 (25) , 8737-8748. https://doi.org/10.1021/acs.langmuir.3c00735
    37. Nitasha Habib, Ozce Durak, Hasan Can Gulbalkan, Ahmet Safa Aydogdu, Seda Keskin, Alper Uzun. Composite of MIL-101(Cr) with a Pyrrolidinium-Based Ionic Liquid Providing High CO2 Selectivity. ACS Applied Engineering Materials 2023, 1 (6) , 1473-1481. https://doi.org/10.1021/acsaenm.3c00010
    38. BehbahaniHoda ShokrollahzadehPh.D. candidateGreenMatthew D.Associate Professor in Chemical Engineering, Director of the Center for Negative Carbon Emissions (CNCE), and the Associate Director of the Biodesign Center for Sustainable Macromolecular Materials and Manufacturing (SM3)Mike Zaworotko, Bernal Chair of Crystal Engineering, Department of Chemical Sciences, University of Limerick, Kyriaki Koupepidou. Ph.D. student, University of Limerick. Direct Air Capture of CO2. 2023https://doi.org/10.1021/acsinfocus.7e7016
    39. Zihao Liang, Yangyang Ou, El-Sayed M. El-Sayed, Kongzhao Su, Wenjing Wang, Daqiang Yuan. Effect of Functional Groups on Low-Concentration Carbon Dioxide Capture in UiO-66-Type Metal–Organic Frameworks. Inorganic Chemistry 2023, 62 (21) , 8309-8314. https://doi.org/10.1021/acs.inorgchem.3c00821
    40. Guanhe Rim, Pranjali Priyadarshini, MinGyu Song, Yuxiang Wang, Andrew Bai, Matthew J. Realff, Ryan P. Lively, Christopher W. Jones. Support Pore Structure and Composition Strongly Influence the Direct Air Capture of CO2 on Supported Amines. Journal of the American Chemical Society 2023, 145 (13) , 7190-7204. https://doi.org/10.1021/jacs.2c12707
    41. K. Suresh Kumar Reddy, Anish Mathai Varghese, Adetola Elijah Ogungbenro, Georgios N. Karanikolos. Aminosilane-Modified Ordered Hierarchical Nanostructured Silica for Highly-Selective Carbon Dioxide Capture at Low Pressure. ACS Applied Engineering Materials 2023, 1 (2) , 720-733. https://doi.org/10.1021/acsaenm.2c00136
    42. Soyeon Ko, UnJin Ryu, Hyunjin Park, Alejandro M. Fracaroli, WooYeon Moon, Kyung Min Choi. Effect of Spatial Heterogeneity on the Unusual Uptake Behavior of Multivariate-Metal–Organic Frameworks. Journal of the American Chemical Society 2023, 145 (5) , 3101-3107. https://doi.org/10.1021/jacs.2c12207
    43. Kolleboyina Jayaramulu, Soumya Mukherjee, Dulce M. Morales, Deepak P. Dubal, Ashok Kumar Nanjundan, Andreas Schneemann, Justus Masa, Stepan Kment, Wolfgang Schuhmann, Michal Otyepka, Radek Zbořil, Roland A. Fischer. Graphene-Based Metal–Organic Framework Hybrids for Applications in Catalysis, Environmental, and Energy Technologies. Chemical Reviews 2022, 122 (24) , 17241-17338. https://doi.org/10.1021/acs.chemrev.2c00270
    44. Donghui Jo, Su-Kyung Lee, Kyung Ho Cho, Ji Woong Yoon, U-Hwang Lee. An Amine-Functionalized Ultramicroporous Metal–Organic Framework for Postcombustion CO2 Capture. ACS Applied Materials & Interfaces 2022, 14 (51) , 56707-56714. https://doi.org/10.1021/acsami.2c15476
    45. Shuna Yang, Weichen Zhu, Linbin Zhu, Xue Ma, Tongan Yan, Nengcui Gu, Youshi Lan, Yi Huang, Mingyuan Yuan, Minman Tong. Multi-Scale Computer-Aided Design of Covalent Organic Frameworks for CO2 Capture in Wet Flue Gas. ACS Applied Materials & Interfaces 2022, 14 (50) , 56353-56362. https://doi.org/10.1021/acsami.2c17109
    46. Bennett D. Marshall. A Cluster Based Cooperative Kinetic Model for CO2 Adsorption on Amine Functionalized Metal–Organic Frameworks. Industrial & Engineering Chemistry Research 2022, 61 (49) , 18138-18145. https://doi.org/10.1021/acs.iecr.2c02402
    47. Surya T. Parker, Alex Smith, Alexander C. Forse, Wei-Chih Liao, Florian Brown-Altvater, Rebecca L. Siegelman, Eugene J. Kim, Nicholas A. Zill, Wenjun Zhang, Jeffrey B. Neaton, Jeffrey A. Reimer, Jeffrey R. Long. Evaluation of the Stability of Diamine-Appended Mg2(dobpdc) Frameworks to Sulfur Dioxide. Journal of the American Chemical Society 2022, 144 (43) , 19849-19860. https://doi.org/10.1021/jacs.2c07498
    48. Youn Ji Min, Arvind Ganesan, Matthew J. Realff, Christopher W. Jones. Direct Air Capture of CO2 Using Poly(ethyleneimine)-Functionalized Expanded Poly(tetrafluoroethylene)/Silica Composite Structured Sorbents. ACS Applied Materials & Interfaces 2022, 14 (36) , 40992-41002. https://doi.org/10.1021/acsami.2c11143
    49. Zeju Wang, Xinru Sheng, Yitao Wu, Yang Liu, Huangtianzhi Zhu, Feihe Huang. Efficient Purification of 2,6-Lutidine by Nonporous Adaptive Crystals of Pillararenes. ACS Applied Materials & Interfaces 2022, 14 (36) , 41072-41078. https://doi.org/10.1021/acsami.2c11776
    50. Xiaoyan Cheng, Lirong Guo, Hongyu Wang, Jinzhong Gu, Ying Yang, Marina V. Kirillova, Alexander M. Kirillov. Coordination Polymers from Biphenyl-Dicarboxylate Linkers: Synthesis, Structural Diversity, Interpenetration, and Catalytic Properties. Inorganic Chemistry 2022, 61 (32) , 12577-12590. https://doi.org/10.1021/acs.inorgchem.2c01488
    51. Rajesh Das, Surya Sekhar Manna, Biswarup Pathak, C. M. Nagaraja. Strategic Design of Mg-Centered Porphyrin Metal–Organic Framework for Efficient Visible Light-Promoted Fixation of CO2 under Ambient Conditions: Combined Experimental and Theoretical Investigation. ACS Applied Materials & Interfaces 2022, 14 (29) , 33285-33296. https://doi.org/10.1021/acsami.2c07969
    52. Hao Lyu, Haozhe Li, Nikita Hanikel, Kaiyu Wang, Omar M. Yaghi. Covalent Organic Frameworks for Carbon Dioxide Capture from Air. Journal of the American Chemical Society 2022, 144 (28) , 12989-12995. https://doi.org/10.1021/jacs.2c05382
    53. Wan-Cui Liu, Hua-Shu Wu, Zi-Ying Huang, Yue Qin, Ze-Xian Tao, Wei-Quan Lin, Zhi-Guang Xu, Jian-Zhong Wu, Yong-Cong Ou. Substituent Dependence on Series of Cationic Gyroidal MOFs in utc-c Topology with High CO2 Affinity and Ultrahigh Anionic Dye Adsorption Capacity. Inorganic Chemistry 2022, 61 (26) , 9897-9905. https://doi.org/10.1021/acs.inorgchem.2c00538
    54. Wenying Quan, Hannah E. Holmes, Fengyi Zhang, Breanne L. Hamlett, M. G. Finn, Carter W. Abney, Matthew T. Kapelewski, Simon C. Weston, Ryan P. Lively, William J. Koros. Scalable Formation of Diamine-Appended Metal–Organic Framework Hollow Fiber Sorbents for Postcombustion CO2 Capture. JACS Au 2022, 2 (6) , 1350-1358. https://doi.org/10.1021/jacsau.2c00029
    55. Jong Hyeak Choe, Hyojin Kim, Minjung Kang, Hongryeol Yun, Sun Young Kim, Su Min Lee, Chang Seop Hong. Functionalization of Diamine-Appended MOF-Based Adsorbents by Ring Opening of Epoxide: Long-Term Stability and CO2 Recyclability under Humid Conditions. Journal of the American Chemical Society 2022, 144 (23) , 10309-10319. https://doi.org/10.1021/jacs.2c01488
    56. Jie Ling, Anning Zhou, Wenzhen Wang, Xinyu Jia, Mengdan Ma, Yizhong Li. One-Pot Method Synthesis of Bimetallic MgCu-MOF-74 and Its CO2 Adsorption under Visible Light. ACS Omega 2022, 7 (23) , 19920-19929. https://doi.org/10.1021/acsomega.2c01717
    57. Ziyin Li, Yingxiang Ye, Chao Shi, Zizhu Yao, Zhangjing Zhang, Shengchang Xiang. Isoreticular Double Interpenetrating Copper–Pyrazolate–Carboxylate Frameworks for Efficient CO2 Capture. Crystal Growth & Design 2022, 22 (6) , 3853-3861. https://doi.org/10.1021/acs.cgd.2c00229
    58. Yuqing Ye, Yuan Li, Jie Wang, Shuai Yuan, Xiaojun Xu, Xinning Zhang, Junwen Zhou, Bo Wang, Xiaojie Ma. Generation of Environmentally Persistent Free Radicals on Metal–Organic Frameworks. Langmuir 2022, 38 (10) , 3265-3275. https://doi.org/10.1021/acs.langmuir.1c03491
    59. Vijay Gupta, Sanjay K. Mandal. Effect of Unsaturated Metal Site Modulation in Highly Stable Microporous Materials on CO2 Capture and Fixation. Inorganic Chemistry 2022, 61 (7) , 3086-3096. https://doi.org/10.1021/acs.inorgchem.1c03310
    60. Hao Lyu, Oscar Iu-Fan Chen, Nikita Hanikel, Mohammad I. Hossain, Robinson W. Flaig, Xiaokun Pei, Ameer Amin, Mark D. Doherty, Rebekah K. Impastato, T. Grant Glover, David R. Moore, Omar M. Yaghi. Carbon Dioxide Capture Chemistry of Amino Acid Functionalized Metal–Organic Frameworks in Humid Flue Gas. Journal of the American Chemical Society 2022, 144 (5) , 2387-2396. https://doi.org/10.1021/jacs.1c13368
    61. Tamara L. Church, Konstantin Kriechbaum, S. Noushin Emami, Raimondas Mozu̅raitis, Lennart Bergström. Functional Wood–Foam Composites for Controlled Uptake and Release. ACS Sustainable Chemistry & Engineering 2021, 9 (46) , 15571-15581. https://doi.org/10.1021/acssuschemeng.1c05695
    62. Xiurong Zhang Weidong Fan Daofeng Sun . Modification of Metal−Organic Frameworks for CO2 Capture. , 269-308. https://doi.org/10.1021/bk-2021-1393.ch011
    63. Payal Tyagi Mohit Saroha Rajender Singh Malik . MOF: A Heterogeneous Platform for CO2 Capture and Catalysis. , 315-354. https://doi.org/10.1021/bk-2021-1393.ch013
    64. Luca Braglia, Francesco Tavani, Silvia Mauri, Raju Edla, Damjan Krizmancic, Alessandro Tofoni, Valentina Colombo, Paola D’Angelo, Piero Torelli. Catching the Reversible Formation and Reactivity of Surface Defective Sites in Metal–Organic Frameworks: An Operando Ambient Pressure-NEXAFS Investigation. The Journal of Physical Chemistry Letters 2021, 12 (37) , 9182-9187. https://doi.org/10.1021/acs.jpclett.1c02585
    65. Bhavish Dinakar, Alexander C. Forse, Henry Z. H. Jiang, Ziting Zhu, Jung-Hoon Lee, Eugene J. Kim, Surya T. Parker, Connor J. Pollak, Rebecca L. Siegelman, Phillip J. Milner, Jeffrey A. Reimer, Jeffrey R. Long. Overcoming Metastable CO2 Adsorption in a Bulky Diamine-Appended Metal–Organic Framework. Journal of the American Chemical Society 2021, 143 (37) , 15258-15270. https://doi.org/10.1021/jacs.1c06434
    66. Rui Tu, Wei Zhang, Jiahao Zhang, Mengchu Wang, Fanxing Zhang, Kewu Yang, Jinxiu Li, Hua Pan, Matthew T. Bernards, Pengfei Xie, Yi He, Yao Shi. Squarate-Calcium Metal–Organic Framework for Molecular Sieving of CO2 from Flue Gas with High Water Vapor Resistance. Energy & Fuels 2021, 35 (17) , 13900-13907. https://doi.org/10.1021/acs.energyfuels.1c01642
    67. Young Hun Lee, YongSung Kwon, Chaehoon Kim, Young-Eun Hwang, Minkee Choi, YouIn Park, Aqil Jamal, Dong-Yeun Koh. Controlled Synthesis of Metal–Organic Frameworks in Scalable Open-Porous Contactor for Maximizing Carbon Capture Efficiency. JACS Au 2021, 1 (8) , 1198-1207. https://doi.org/10.1021/jacsau.1c00068
    68. Doo San Choi, Dae Won Kim, Jung-Hoon Lee, Yun Seok Chae, Dong Won Kang, Chang Seop Hong. Diamine Functionalization of a Metal–Organic Framework by Exploiting Solvent Polarity for Enhanced CO2 Adsorption. ACS Applied Materials & Interfaces 2021, 13 (32) , 38358-38364. https://doi.org/10.1021/acsami.1c10659
    69. Caitlin E. Bien, Zhongzheng Cai, Casey R. Wade. Using Postsynthetic X-Type Ligand Exchange to Enhance CO2 Adsorption in Metal–Organic Frameworks with Kuratowski-Type Building Units. Inorganic Chemistry 2021, 60 (16) , 11784-11794. https://doi.org/10.1021/acs.inorgchem.1c01077
    70. Joel M. Kolle, Mohammadreza Fayaz, Abdelhamid Sayari. Understanding the Effect of Water on CO2 Adsorption. Chemical Reviews 2021, 121 (13) , 7280-7345. https://doi.org/10.1021/acs.chemrev.0c00762
    71. Cameron Halliday, T. Alan Hatton. Sorbents for the Capture of CO2 and Other Acid Gases: A Review. Industrial & Engineering Chemistry Research 2021, 60 (26) , 9313-9346. https://doi.org/10.1021/acs.iecr.1c00597
    72. Fuqiang Chen, Dan Lai, Lidong Guo, Jun Wang, Peixin Zhang, Kaiyi Wu, Zhiguo Zhang, Qiwei Yang, Yiwen Yang, Banglin Chen, Qilong Ren, Zongbi Bao. Deep Desulfurization with Record SO2 Adsorption on the Metal–Organic Frameworks. Journal of the American Chemical Society 2021, 143 (24) , 9040-9047. https://doi.org/10.1021/jacs.1c02176
    73. Mojtaba Khanpour Matikolaei, Ehsan Binaeian. Boosting Ammonia Uptake within Metal–Organic Frameworks by Anion Modulating Strategy. ACS Applied Materials & Interfaces 2021, 13 (23) , 27159-27168. https://doi.org/10.1021/acsami.1c03242
    74. Jinkyoung Park, Yun Seok Chae, Dong Won Kang, Minjung Kang, Jong Hyeak Choe, Saemi Kim, Jee Yeon Kim, Yong Won Jeong, Chang Seop Hong. Shaping of a Metal–Organic Framework–Polymer Composite and Its CO2 Adsorption Performances from Humid Indoor Air. ACS Applied Materials & Interfaces 2021, 13 (21) , 25421-25427. https://doi.org/10.1021/acsami.1c06089
    75. Goutam Pahari, Saheli Ghosh, Arijit Halder, Debajyoti Ghoshal. Structural Transformations in Metal–Organic Frameworks for the Exploration of Their CO2 Sorption Behavior at Ambient and High Pressure. Crystal Growth & Design 2021, 21 (5) , 2633-2642. https://doi.org/10.1021/acs.cgd.0c01365
    76. Zihao Wang, Arvin Bilegsaikhan, Ronald T. Jerozal, Tristan A. Pitt, Phillip J. Milner. Evaluating the Robustness of Metal–Organic Frameworks for Synthetic Chemistry. ACS Applied Materials & Interfaces 2021, 13 (15) , 17517-17531. https://doi.org/10.1021/acsami.1c01329
    77. Xin Zheng, Hui Zhang, Li-Ming Yang, Eric Ganz. CO2 Adsorption Properties of a N,N-Diethylethylenediamine-Appended M2(dobpdc) Series of Materials and Their Detailed Microprocess. Crystal Growth & Design 2021, 21 (4) , 2474-2480. https://doi.org/10.1021/acs.cgd.1c00096
    78. Gouri Chakraborty, Prasenjit Das, Sanjay K. Mandal. Efficient and Highly Selective CO2 Capture, Separation, and Chemical Conversion under Ambient Conditions by a Polar-Group-Appended Copper(II) Metal–Organic Framework. Inorganic Chemistry 2021, 60 (7) , 5071-5080. https://doi.org/10.1021/acs.inorgchem.1c00101
    79. Ryan Hughes, Goutham Kotamreddy, Anca Ostace, Debangsu Bhattacharyya, Rebecca L. Siegelman, Surya T. Parker, Stephanie A. Didas, Jeffrey R. Long, Benjamin Omell, Michael Matuszewski. Isotherm, Kinetic, Process Modeling, and Techno-Economic Analysis of a Diamine-Appended Metal–Organic Framework for CO2 Capture Using Fixed Bed Contactors. Energy & Fuels 2021, 35 (7) , 6040-6055. https://doi.org/10.1021/acs.energyfuels.0c04359
    80. Yixing Li, Xiao Zhang, Jianwen Lan, Dazhi Li, Zhijiang Wang, Ping Xu, Jianmin Sun. A High-Performance Zinc-Organic Framework with Accessible Open Metal Sites Catalyzes CO2 and Styrene Oxide into Styrene Carbonate under Mild Conditions. ACS Sustainable Chemistry & Engineering 2021, 9 (7) , 2795-2803. https://doi.org/10.1021/acssuschemeng.0c08466
    81. Hui Zhang, Xin Zheng, Li-Ming Yang, Eric Ganz. Properties and Detailed Adsorption of CO2 by M2(dobpdc) with N,N-Dimethylethylenediamine Functionalization. Inorganic Chemistry 2021, 60 (4) , 2656-2662. https://doi.org/10.1021/acs.inorgchem.0c03527
    82. Konstantin I. Hadjiivanov, Dimitar A. Panayotov, Mihail Y. Mihaylov, Elena Z. Ivanova, Kristina K. Chakarova, Stanislava M. Andonova, Nikola L. Drenchev. Power of Infrared and Raman Spectroscopies to Characterize Metal-Organic Frameworks and Investigate Their Interaction with Guest Molecules. Chemical Reviews 2021, 121 (3) , 1286-1424. https://doi.org/10.1021/acs.chemrev.0c00487
    83. Mary E. Zick, Jung-Hoon Lee, Miguel I. Gonzalez, Ever O. Velasquez, Adam A. Uliana, Jaehwan Kim, Jeffrey R. Long, Phillip J. Milner. Fluoroarene Separations in Metal–Organic Frameworks with Two Proximal Mg2+ Coordination Sites. Journal of the American Chemical Society 2021, 143 (4) , 1948-1958. https://doi.org/10.1021/jacs.0c11530
    84. Kanika Kole, Sankar Das, Arnab Samanta, Subhra Jana. Parametric Study and Detailed Kinetic Understanding of CO2 Adsorption over High-Surface-Area Flowery Silica Nanomaterials. Industrial & Engineering Chemistry Research 2020, 59 (49) , 21393-21402. https://doi.org/10.1021/acs.iecr.0c04531
    85. Hui Zhang, Li-Ming Yang, Eric Ganz. Formation Mechanism of Ammonium Carbamate for CO2 Uptake in N,N′-Dimethylethylenediamine Grafted M2(dobpdc). Langmuir 2020, 36 (46) , 14104-14112. https://doi.org/10.1021/acs.langmuir.0c02750
    86. Hui Zhang, Chunli Shang, Li-Ming Yang, Eric Ganz. Elucidation of the Underlying Mechanism of CO2 Capture by Ethylenediamine-Functionalized M2(dobpdc) (M = Mg, Sc–Zn). Inorganic Chemistry 2020, 59 (22) , 16665-16671. https://doi.org/10.1021/acs.inorgchem.0c02654
    87. Jinkyoung Park, Jeoung Ryul Park, Jong Hyeak Choe, Saemi Kim, Minjung Kang, Dong Won Kang, Jee Yeon Kim, Yong Won Jeong, Chang Seop Hong. Metal–Organic Framework Adsorbent for Practical Capture of Trace Carbon Dioxide. ACS Applied Materials & Interfaces 2020, 12 (45) , 50534-50540. https://doi.org/10.1021/acsami.0c16224
    88. Hui Zhang, Li-Ming Yang, Hui Pan, Eric Ganz. Atomistic Level Mechanism of CO2 Adsorption in N-Ethylethylenediamine-Functionalized M2(dobpdc) Metal–Organic Frameworks. Crystal Growth & Design 2020, 20 (10) , 6337-6345. https://doi.org/10.1021/acs.cgd.0c00269
    89. Hasan Babaei, Jung-Hoon Lee, Matthew N. Dods, Christopher E. Wilmer, Jeffrey R. Long. Enhanced Thermal Conductivity in a Diamine-Appended Metal–Organic Framework as a Result of Cooperative CO2 Adsorption. ACS Applied Materials & Interfaces 2020, 12 (40) , 44617-44621. https://doi.org/10.1021/acsami.0c10233
    90. Hui Zhang, Li-Ming Yang, Eric Ganz. Unveiling the Molecular Mechanism of CO2 Capture in N-Methylethylenediamine-Grafted M2(dobpdc). ACS Sustainable Chemistry & Engineering 2020, 8 (38) , 14616-14626. https://doi.org/10.1021/acssuschemeng.0c05951
    91. Qihui Qian, Patrick A. Asinger, Moon Joo Lee, Gang Han, Katherine Mizrahi Rodriguez, Sharon Lin, Francesco M. Benedetti, Albert X. Wu, Won Seok Chi, Zachary P. Smith. MOF-Based Membranes for Gas Separations. Chemical Reviews 2020, 120 (16) , 8161-8266. https://doi.org/10.1021/acs.chemrev.0c00119
    92. Yuyang Tian, Guangshan Zhu. Porous Aromatic Frameworks (PAFs). Chemical Reviews 2020, 120 (16) , 8934-8986. https://doi.org/10.1021/acs.chemrev.9b00687
    93. Cornelia Rosu, Simon H. Pang, Achintya R. Sujan, Miles A. Sakwa-Novak, Eric W. Ping, Christopher W. Jones. Effect of Extended Aging and Oxidation on Linear Poly(propylenimine)-Mesoporous Silica Composites for CO2 Capture from Simulated Air and Flue Gas Streams. ACS Applied Materials & Interfaces 2020, 12 (34) , 38085-38097. https://doi.org/10.1021/acsami.0c09554
    94. Zhongzheng Cai, Caitlin E. Bien, Qiao Liu, Casey R. Wade. Insights into CO2 Adsorption in M–OH Functionalized MOFs. Chemistry of Materials 2020, 32 (10) , 4257-4264. https://doi.org/10.1021/acs.chemmater.0c00746
    95. Sean M. W. Wilson, F. Handan Tezel. Direct Dry Air Capture of CO2 Using VTSA with Faujasite Zeolites. Industrial & Engineering Chemistry Research 2020, 59 (18) , 8783-8794. https://doi.org/10.1021/acs.iecr.9b04803
    96. Hui Zhang, Li-Ming Yang, Eric Ganz. Adsorption Properties and Microscopic Mechanism of CO2 Capture in 1,1-Dimethyl-1,2-ethylenediamine-Grafted Metal–Organic Frameworks. ACS Applied Materials & Interfaces 2020, 12 (16) , 18533-18540. https://doi.org/10.1021/acsami.0c01927
    97. Gloria Capano, Francesco Ambrosio, Stavroula Kampouri, Kyriakos C. Stylianou, Alfredo Pasquarello, Berend Smit. On the Electronic and Optical Properties of Metal–Organic Frameworks: Case Study of MIL-125 and MIL-125-NH2. The Journal of Physical Chemistry C 2020, 124 (7) , 4065-4072. https://doi.org/10.1021/acs.jpcc.9b09453
    98. Jian Zheng, Dushyant Barpaga, Benjamin A. Trump, Manish Shetty, Yanzhong Fan, Papri Bhattacharya, Jeromy J. Jenks, Cheng-Yong Su, Craig M. Brown, Guillaume Maurin, B. Peter McGrail, Radha Kishan Motkuri. Molecular Insight into Fluorocarbon Adsorption in Pore Expanded Metal–Organic Framework Analogs. Journal of the American Chemical Society 2020, 142 (6) , 3002-3012. https://doi.org/10.1021/jacs.9b11963
    99. Caitlin E. Bien, Qiao Liu, Casey R. Wade. Assessing the Role of Metal Identity on CO2 Adsorption in MOFs Containing M–OH Functional Groups. Chemistry of Materials 2020, 32 (1) , 489-497. https://doi.org/10.1021/acs.chemmater.9b04228
    100. Jun Wang, Esra Yılmaz, Xianghui Zhang, Houqian Li, Renqin Zhang, Xiaofeng Guo, Hui Sun, Baodong Wang, Di Wu. Hydration Energetics of a Diamine-Appended Metal–Organic Framework Carbon Capture Sorbent. The Journal of Physical Chemistry C 2020, 124 (1) , 398-403. https://doi.org/10.1021/acs.jpcc.9b08008
    Load more citations

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2012, 134, 16, 7056–7065
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja300034j
    Published April 4, 2012
    Copyright © 2012 American Chemical Society

    Article Views

    30k

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.