ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Boosting the Sensitivity of Ligand–Protein Screening by NMR of Long-Lived States

View Author Information
Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
Département de Chimie, Ecole Normale Supérieure, 75231 Paris Cedex 05, France
§ UMR 7203, CNRS/UPMC/ENS, Paris, France
Université de Pierre-et-Marie Curie, Paris, France
Cite this: J. Am. Chem. Soc. 2012, 134, 27, 11076–11079
Publication Date (Web):June 11, 2012
https://doi.org/10.1021/ja303301w
Copyright © 2012 American Chemical Society

    Article Views

    2110

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    A new NMR method for the study of ligand–protein interactions exploits the unusual lifetimes of long-lived states (LLSs). The new method provides better contrast between bound and free ligands and requires a protein–ligand ratio ca. 25 times lower than for established T methods, thus saving on costly proteins. The new LLS method was applied to the screening of inhibitors of urokinase-type plasminogen activator (uPA), which is a prototypical target of cancer research. With only 10 μM protein, a dissociation constant (KD) of 180 ± 20 nM was determined for the strong ligand (inhibitor) UK-18, which can be compared with KD = 157 ± 39 nM determined by the established surface plasmon resonance method.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Derivation of eqs 35; details about the pulse sequence, modeling, chemical shift calculations; numerical simulations and estimates of the effect of the correlation time on the NMR relaxation rates of interest. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 72 publications.

    1. Upanshu Gangwar, Balvinder Singh, Narayanan D. Kurur. Long-Lived States Provide Insights from NMR into the β-Cyclodextrin Drug Assemblies. The Journal of Physical Chemistry A 2023, 127 (5) , 1158-1167. https://doi.org/10.1021/acs.jpca.2c07023
    2. K. Miyanishi, W. Mizukami, M. Motoyama, N. Ichijo, A. Kagawa, M. Negoro, M. Kitagawa. Prediction of 1H Singlet Relaxation via Intermolecular Dipolar Couplings Using the Molecular Dynamics Method. The Journal of Physical Chemistry B 2022, 126 (19) , 3530-3538. https://doi.org/10.1021/acs.jpcb.1c10799
    3. Chengda Huang, Yang Peng, Enping Lin, Zhikai Ni, Xiaoqing Lin, Haolin Zhan, Yuqing Huang, Zhong Chen. Adaptable Singlet-Filtered Nuclear Magnetic Resonance Spectroscopy for Chemical and Biological Applications. Analytical Chemistry 2022, 94 (10) , 4201-4208. https://doi.org/10.1021/acs.analchem.1c04210
    4. Maninder Singh, Vineet Kumar Soni, Rituraj Mishra, and Narayanan D. Kurur . Relaxation Editing Using Long-Lived States and Coherences for Analysis of Mixtures. Analytical Chemistry 2016, 88 (6) , 3004-3008. https://doi.org/10.1021/acs.analchem.6b00050
    5. Roberto Buratto, Daniele Mammoli, Estel Canet, and Geoffrey Bodenhausen . Ligand–Protein Affinity Studies Using Long-Lived States of Fluorine-19 Nuclei. Journal of Medicinal Chemistry 2016, 59 (5) , 1960-1966. https://doi.org/10.1021/acs.jmedchem.5b01583
    6. Quentin Stern, Jonas Milani, Basile Vuichoud, Aurélien Bornet, Alvar D. Gossert, Geoffrey Bodenhausen, Sami Jannin. Hyperpolarized Water to Study Protein–Ligand Interactions. The Journal of Physical Chemistry Letters 2015, 6 (9) , 1674-1678. https://doi.org/10.1021/acs.jpclett.5b00403
    7. Joseph T. Hill-Cousins, Ionut-Alexandru Pop, Giuseppe Pileio, Gabriele Stevanato, Pär Håkansson, Soumya S. Roy, Malcolm H. Levitt, Lynda J. Brown, and Richard C. D. Brown . Synthesis of an Isotopically Labeled Naphthalene Derivative That Supports a Long-Lived Nuclear Singlet State. Organic Letters 2015, 17 (9) , 2150-2153. https://doi.org/10.1021/acs.orglett.5b00744
    8. Ryan E. Mewis, Richard A. Green, Martin C. R. Cockett, Michael J. Cowley, Simon B. Duckett, Gary G. R. Green, Richard O. John, Peter J. Rayner, and David C. Williamson . Strategies for the Hyperpolarization of Acetonitrile and Related Ligands by SABRE. The Journal of Physical Chemistry B 2015, 119 (4) , 1416-1424. https://doi.org/10.1021/jp511492q
    9. Giuseppe Pileio, Joseph T. Hill-Cousins, Sam Mitchell, Ilya Kuprov, Lynda J. Brown, Richard C. D. Brown, and Malcolm H. Levitt . Long-Lived Nuclear Singlet Order in Near-Equivalent 13C Spin Pairs. Journal of the American Chemical Society 2012, 134 (42) , 17494-17497. https://doi.org/10.1021/ja3089873
    10. Kirill F. Sheberstov, Anna Sonnefeld, Geoffrey Bodenhausen. Collective long-lived zero-quantum coherences in aliphatic chains. The Journal of Chemical Physics 2024, 160 (14) https://doi.org/10.1063/5.0196808
    11. Alexey S. Kiryutin, Vitaly P. Kozinenko, Alexandra V. Yurkovskaya. Photo‐SABRE: Nuclear Spin Hyperpolarization of cis‐trans Photoswitchable Molecules by Parahydrogen**. ChemPhotoChem 2024, 8 (1) https://doi.org/10.1002/cptc.202300151
    12. Claudio Dalvit, Isabel Gmür, Philip Rößler, Alvar D. Gossert. Affinity measurement of strong ligands with NMR spectroscopy: Limitations and ways to overcome them. Progress in Nuclear Magnetic Resonance Spectroscopy 2023, 138-139 , 52-69. https://doi.org/10.1016/j.pnmrs.2023.07.001
    13. Vishal Varma, T.S. Mahesh. Long-Lived Singlet State in an Oriented Phase and its Survival across the Phase Transition Into an Isotropic Phase. Physical Review Applied 2023, 20 (3) https://doi.org/10.1103/PhysRevApplied.20.034030
    14. Abhinav Suresh, Vishal Varma, Priya Batra, T. S. Mahesh. Counterdiabatic driving for long-lived singlet state preparation. The Journal of Chemical Physics 2023, 159 (2) https://doi.org/10.1063/5.0159448
    15. Aiky Razanahoera, Anna Sonnefeld, Geoffrey Bodenhausen, Kirill Sheberstov. Paramagnetic relaxivity of delocalized long-lived states of protons in chains of CH 2 groups. Magnetic Resonance 2023, 4 (1) , 47-56. https://doi.org/10.5194/mr-4-47-2023
    16. Anna Sonnefeld, Aiky Razanahoera, Philippe Pelupessy, Geoffrey Bodenhausen, Kirill Sheberstov. Long-lived states of methylene protons in achiral molecules. Science Advances 2022, 8 (48) https://doi.org/10.1126/sciadv.ade2113
    17. Mohamed Sabba, Nino Wili, Christian Bengs, James W. Whipham, Lynda J. Brown, Malcolm H. Levitt. Symmetry-based singlet–triplet excitation in solution nuclear magnetic resonance. The Journal of Chemical Physics 2022, 157 (13) https://doi.org/10.1063/5.0103122
    18. Anna Sonnefeld, Geoffrey Bodenhausen, Kirill Sheberstov. Polychromatic Excitation of Delocalized Long-Lived Proton Spin States in Aliphatic Chains. Physical Review Letters 2022, 129 (18) https://doi.org/10.1103/PhysRevLett.129.183203
    19. Philip Saul, Shengjun Yang, Salvatore Mamone, Felipe Opazo, Andreas Meyer, Silvio O. Rizzoli, Stefan Glöggler. Exotic nuclear spin behavior in dendritic macromolecules. Physical Chemistry Chemical Physics 2021, 23 (46) , 26349-26355. https://doi.org/10.1039/D1CP04483D
    20. Christian Bengs, Laurynas Dagys, Gamal A. I. Moustafa, James W. Whipham, Mohamed Sabba, Alexey S. Kiryutin, Konstantin L. Ivanov, Malcolm H. Levitt. Nuclear singlet relaxation by chemical exchange. The Journal of Chemical Physics 2021, 155 (12) https://doi.org/10.1063/5.0066182
    21. Stuart Elliott, O. Ogba, Lynda Brown, Daniel O’Leary. An Examination of Factors Influencing Small Proton Chemical Shift Differences in Nitrogen-Substituted Monodeuterated Methyl Groups. Symmetry 2021, 13 (9) , 1610. https://doi.org/10.3390/sym13091610
    22. Phuong Linh Nguyen, Bich Phuong Bui, Men Thi Hoai Duong, Kyeong Lee, Hee-Chul Ahn, Jungsook Cho. Suppression of LPS-Induced Inflammation and Cell Migration by Azelastine through Inhibition of JNK/NF-κB Pathway in BV2 Microglial Cells. International Journal of Molecular Sciences 2021, 22 (16) , 9061. https://doi.org/10.3390/ijms22169061
    23. Christian Bengs. Centralizer theory for long-lived spin states. The Journal of Chemical Physics 2021, 154 (24) https://doi.org/10.1063/5.0050419
    24. Giulia Melchiorre, Ciara Nelder, Lynda J. Brown, Jean-Nicolas Dumez, Giuseppe Pileio. Single-scan measurements of nuclear spin singlet order decay rates. Physical Chemistry Chemical Physics 2021, 23 (16) , 9851-9859. https://doi.org/10.1039/D1CP00807B
    25. Aliki Moysiadi, Francesco Giustiniano, Andrew M. R. Hall, Topaz A. A. Cartlidge, Lynda J. Brown, Giuseppe Pileio. Nuclear Spin Relaxation of Longitudinal and Singlet Order in Liquid-CO2 Solutions. Frontiers in Chemistry 2021, 9 https://doi.org/10.3389/fchem.2021.668044
    26. Surbhi Mundra, Jay Kumar, Diva Maheshwari, Vaibhav K. Shukla, Rahul Yadav, S. V. S. Rama Krishna Pulavarti, Ashish Arora. Protein Labeling and Structure Determination by NMR Spectroscopy. 2021, 65-131. https://doi.org/10.1007/7355_2021_133
    27. Christian Bengs, Laurynas Dagys, Malcolm H. Levitt. Robust transformation of singlet order into heteronuclear magnetisation over an extended coupling range. Journal of Magnetic Resonance 2020, 321 , 106850. https://doi.org/10.1016/j.jmr.2020.106850
    28. Christian Bengs, Mohamed Sabba, Alexej Jerschow, Malcolm H. Levitt. Generalised magnetisation-to-singlet-order transfer in nuclear magnetic resonance. Physical Chemistry Chemical Physics 2020, 22 (17) , 9703-9712. https://doi.org/10.1039/D0CP00935K
    29. Jean-Nicolas Dumez. Perspective on long-lived nuclear spin states. Molecular Physics 2020, 118 (6) https://doi.org/10.1080/00268976.2019.1644382
    30. Koichiro Miyanishi, Naoki Ichijo, Makoto Motoyama, Akinori Kagawa, Makoto Negoro, Masahiro Kitagawa. Long-lived state in a four-spin system hyperpolarized at room temperature. Quantum Science and Technology 2020, 5 (2) , 025004. https://doi.org/10.1088/2058-9565/ab7734
    31. Salvatore Mamone, Nasrollah Rezaei-Ghaleh, Felipe Opazo, Christian Griesinger, Stefan Glöggler. Singlet-filtered NMR spectroscopy. Science Advances 2020, 6 (8) https://doi.org/10.1126/sciadv.aaz1955
    32. C. Bengs. Rotational-permutational dual-pairing and long-lived spin order. The Journal of Chemical Physics 2020, 152 (5) https://doi.org/10.1063/1.5140186
    33. Bogdan A. Rodin, Kirill F. Sheberstov, Alexey S. Kiryutin, Lynda J. Brown, Richard C. D. Brown, Mohamed Sabba, Malcolm H. Levitt, Alexandra V. Yurkovskaya, Konstantin L. Ivanov. Fast destruction of singlet order in NMR experiments. The Journal of Chemical Physics 2019, 151 (23) https://doi.org/10.1063/1.5131730
    34. Malcolm H. Levitt. Long live the singlet state!. Journal of Magnetic Resonance 2019, 306 , 69-74. https://doi.org/10.1016/j.jmr.2019.07.029
    35. Ivan V. Zhukov, Alexey S. Kiryutin, Alexandra V. Yurkovskaya, Konstantin L. Ivanov. Assessment of heteronuclear long-lived states at ultralow magnetic fields. Physical Chemistry Chemical Physics 2019, 21 (33) , 18188-18194. https://doi.org/10.1039/C9CP03719E
    36. Bryan Erriah, Stuart J. Elliott. Experimental evidence for the role of paramagnetic oxygen concentration on the decay of long-lived nuclear spin order. RSC Advances 2019, 9 (40) , 23418-23424. https://doi.org/10.1039/C9RA03748A
    37. Claudio Dalvit, Annick Parent, Francois Vallée, Magali Mathieu, Alexey Rak. Fast NMR Methods for Measuring in the Direct and/or Competition Mode the Dissociation Constants of Chemical Fragments Interacting with a Receptor. ChemMedChem 2019, 14 (11) , 1115-1127. https://doi.org/10.1002/cmdc.201900152
    38. Stuart J. Elliott, Pavel Kadeřávek, Lynda J. Brown, Mohamed Sabba, Stefan Glöggler, Daniel J. O'Leary, Richard C. D. Brown, Fabien Ferrage, Malcolm H. Levitt. Field-cycling long-lived-state NMR of 15 N 2 spin pairs. Molecular Physics 2019, 117 (7-8) , 861-867. https://doi.org/10.1080/00268976.2018.1543906
    39. Kirill F. Sheberstov, Alexey S. Kiryutin, Christian Bengs, Joseph T. Hill-Cousins, Lynda J. Brown, Richard C. D. Brown, Giuseppe Pileio, Malcolm H. Levitt, Alexandra V. Yurkovskaya, Konstantin L. Ivanov. Excitation of singlet–triplet coherences in pairs of nearly-equivalent spins. Physical Chemistry Chemical Physics 2019, 21 (11) , 6087-6100. https://doi.org/10.1039/C9CP00451C
    40. Alexey S. Kiryutin, Mikhail S. Panov, Alexandra V. Yurkovskaya, Konstantin L. Ivanov, Geoffrey Bodenhausen. Proton Relaxometry of Long‐Lived Spin Order. ChemPhysChem 2019, 20 (5) , 766-772. https://doi.org/10.1002/cphc.201800960
    41. Shengjun Yang, Jeffrey McCormick, Salvatore Mamone, Louis‐S. Bouchard, Stefan Glöggler. Nuclear Spin Singlet States in Photoactive Molecules: From Fluorescence/NMR Bimodality to a Bimolecular Switch for Spin Singlet States. Angewandte Chemie 2019, 131 (9) , 2905-2909. https://doi.org/10.1002/ange.201814198
    42. Shengjun Yang, Jeffrey McCormick, Salvatore Mamone, Louis‐S. Bouchard, Stefan Glöggler. Nuclear Spin Singlet States in Photoactive Molecules: From Fluorescence/NMR Bimodality to a Bimolecular Switch for Spin Singlet States. Angewandte Chemie International Edition 2019, 58 (9) , 2879-2883. https://doi.org/10.1002/anie.201814198
    43. Boris Kharkov, Xueyou Duan, Emily S. Tovar, James W. Canary, Alexej Jerschow. Singlet excitation in the intermediate magnetic equivalence regime and field-dependent study of singlet–triplet leakage. Physical Chemistry Chemical Physics 2019, 21 (5) , 2595-2600. https://doi.org/10.1039/C8CP06883F
    44. Philip Saul, Salvatore Mamone, Stefan Glöggler. Nuclear singlet multimers (NUSIMERs) with long-lived singlet states. Chemical Science 2019, 10 (2) , 413-417. https://doi.org/10.1039/C8SC02831A
    45. Nicola Salvi. Applications of Hyperpolarisation and NMR Long-Lived States in Drug Screening. 2019, 1-33. https://doi.org/10.1016/bs.arnmr.2018.08.002
    46. Emmanuelle M. M. Weber, Giuseppe Sicoli, Hervé Vezin, Ghislaine Frébourg, Daniel Abergel, Geoffrey Bodenhausen, Dennis Kurzbach. Reifung von Proben beeinflusst die Effizienz der Kernpolarisation. Angewandte Chemie 2018, 130 (18) , 5267-5271. https://doi.org/10.1002/ange.201800493
    47. Emmanuelle M. M. Weber, Giuseppe Sicoli, Hervé Vezin, Ghislaine Frébourg, Daniel Abergel, Geoffrey Bodenhausen, Dennis Kurzbach. Sample Ripening through Nanophase Separation Influences the Performance of Dynamic Nuclear Polarization. Angewandte Chemie International Edition 2018, 57 (18) , 5171-5175. https://doi.org/10.1002/anie.201800493
    48. Antoinette Molinié, Geoffrey Bodenhausen. Sisyphus desperately seeking publisher. Journal of Biosciences 2018, 43 (1) , 9-14. https://doi.org/10.1007/s12038-017-9725-2
    49. Salvatore Mamone, Stefan Glöggler. Nuclear spin singlet states as magnetic on/off probes in self-assembling systems. Physical Chemistry Chemical Physics 2018, 20 (35) , 22463-22467. https://doi.org/10.1039/C8CP04448A
    50. Toshihiko Sugiki, Kyoko Furuita, Toshimichi Fujiwara, Chojiro Kojima. Current NMR Techniques for Structure-Based Drug Discovery. Molecules 2018, 23 (1) , 148. https://doi.org/10.3390/molecules23010148
    51. Cristina Stavarache, Anamaria Hanganu, Anca Paun, Codruta Paraschivescu, Mihaela Matache, Paul R. Vasos. Long-lived states detect interactions between small molecules and diamagnetic metal ions. Journal of Magnetic Resonance 2017, 284 , 15-19. https://doi.org/10.1016/j.jmr.2017.09.001
    52. B. Kharkov, X. Duan, J.W. Canary, A. Jerschow. Effect of convection and B1 inhomogeneity on singlet relaxation experiments. Journal of Magnetic Resonance 2017, 284 , 1-7. https://doi.org/10.1016/j.jmr.2017.09.005
    53. Giuseppe Pileio. Singlet NMR methodology in two-spin-1/2 systems. Progress in Nuclear Magnetic Resonance Spectroscopy 2017, 98-99 , 1-19. https://doi.org/10.1016/j.pnmrs.2016.11.002
    54. Stefan Glöggler, Stuart J. Elliott, Gabriele Stevanato, Richard C. D. Brown, Malcolm H. Levitt. Versatile magnetic resonance singlet tags compatible with biological conditions. RSC Advances 2017, 7 (55) , 34574-34578. https://doi.org/10.1039/C7RA05196D
    55. Soumya S. Roy, Philip Norcott, Peter J. Rayner, Gary G. R. Green, Simon B. Duckett. A Hyperpolarizable 1 H Magnetic Resonance Probe for Signal Detection 15 Minutes after Spin Polarization Storage. Angewandte Chemie 2016, 128 (50) , 15871-15874. https://doi.org/10.1002/ange.201609186
    56. Soumya S. Roy, Philip Norcott, Peter J. Rayner, Gary G. R. Green, Simon B. Duckett. A Hyperpolarizable 1 H Magnetic Resonance Probe for Signal Detection 15 Minutes after Spin Polarization Storage. Angewandte Chemie International Edition 2016, 55 (50) , 15642-15645. https://doi.org/10.1002/anie.201609186
    57. Alvar D. Gossert, Wolfgang Jahnke. NMR in drug discovery: A practical guide to identification and validation of ligands interacting with biological macromolecules. Progress in Nuclear Magnetic Resonance Spectroscopy 2016, 97 , 82-125. https://doi.org/10.1016/j.pnmrs.2016.09.001
    58. Geoffrey Bodenhausen. A bright future for magnetic resonance. Resonance 2015, 20 (11) , 1066-1074. https://doi.org/10.1007/s12045-015-0274-4
    59. Xiaoyue Zhou, Kaipin Xu, Shanmin Zhang. Systematic bias in NMR diffusion measurements on polydisperse systems. Journal of Magnetic Resonance 2015, 252 , 114-119. https://doi.org/10.1016/j.jmr.2015.01.004
    60. Jean-Nicolas Dumez, Pär Håkansson, Salvatore Mamone, Benno Meier, Gabriele Stevanato, Joseph T. Hill-Cousins, Soumya Singha Roy, Richard C. D. Brown, Giuseppe Pileio, Malcolm H. Levitt. Theory of long-lived nuclear spin states in methyl groups and quantum-rotor induced polarisation. The Journal of Chemical Physics 2015, 142 (4) https://doi.org/10.1063/1.4906273
    61. Gabriele Stevanato, Soumya Singha Roy, Joe Hill-Cousins, Ilya Kuprov, Lynda J. Brown, Richard C. D. Brown, Giuseppe Pileio, Malcolm H. Levitt. Long-lived nuclear spin states far from magnetic equivalence. Physical Chemistry Chemical Physics 2015, 17 (8) , 5913-5922. https://doi.org/10.1039/C4CP05704J
    62. Maninder Singh, Narayanan D. Kurur. An improved method for the measurement of lifetimes of long-lived coherences in NMR. RSC Advances 2015, 5 (11) , 8236-8238. https://doi.org/10.1039/C4RA10535D
    63. Daniele Mammoli, Nicola Salvi, Jonas Milani, Roberto Buratto, Aurélien Bornet, Akansha Ashvani Sehgal, Estel Canet, Philippe Pelupessy, Diego Carnevale, Sami Jannin, Geoffrey Bodenhausen. Challenges in preparing, preserving and detecting para-water in bulk: overcoming proton exchange and other hurdles. Physical Chemistry Chemical Physics 2015, 17 (40) , 26819-26827. https://doi.org/10.1039/C5CP03350K
    64. Roberto Buratto, Aurélien Bornet, Jonas Milani, Daniele Mammoli, Basile Vuichoud, Nicola Salvi, Maninder Singh, Aurélien Laguerre, Solène Passemard, Sandrine Gerber‐Lemaire, Sami Jannin, Geoffrey Bodenhausen . Drug Screening Boosted by Hyperpolarized Long‐Lived States in NMR. ChemMedChem 2014, 9 (11) , 2509-2515. https://doi.org/10.1002/cmdc.201402214
    65. Roberto Buratto, Daniele Mammoli, Elisabetta Chiarparin, Glyn Williams, Geoffrey Bodenhausen. Untersuchung schwacher Protein‐Ligand‐Wechselwirkungen mithilfe langlebiger NMR‐Zustände: verbesserter Kontrast für das fragmentbasierte Wirkstoffscreening. Angewandte Chemie 2014, 126 (42) , 11559-11564. https://doi.org/10.1002/ange.201404921
    66. Roberto Buratto, Daniele Mammoli, Elisabetta Chiarparin, Glyn Williams, Geoffrey Bodenhausen. Exploring Weak Ligand–Protein Interactions by Long‐Lived NMR States: Improved Contrast in Fragment‐Based Drug Screening. Angewandte Chemie International Edition 2014, 53 (42) , 11376-11380. https://doi.org/10.1002/anie.201404921
    67. A. Sadet, L. Fernandes, F. Kateb, R. Balzan, P. R. Vasos. Long-lived coherences: Improved dispersion in the frequency domain using continuous-wave and reduced-power windowed sustaining irradiation. The Journal of Chemical Physics 2014, 141 (5) https://doi.org/10.1063/1.4891565
    68. Konstantin L. Ivanov, Andrey N. Pravdivtsev, Alexandra V. Yurkovskaya, Hans-Martin Vieth, Robert Kaptein. The role of level anti-crossings in nuclear spin hyperpolarization. Progress in Nuclear Magnetic Resonance Spectroscopy 2014, 81 , 1-36. https://doi.org/10.1016/j.pnmrs.2014.06.001
    69. L. Fernandes, C. Guerniou, I. Marín‐Montesinos, M. Pons, F. Kateb, P. R. Vasos. Long‐lived states in an intrinsically disordered protein domain. Magnetic Resonance in Chemistry 2013, 51 (11) , 729-733. https://doi.org/10.1002/mrc.4008
    70. Camille Daniel, Yoann Roupioz, Didier Gasparutto, Thierry Livache, Arnaud Buhot, . Solution-Phase vs Surface-Phase Aptamer-Protein Affinity from a Label-Free Kinetic Biosensor. PLoS ONE 2013, 8 (9) , e75419. https://doi.org/10.1371/journal.pone.0075419
    71. Antoinette Molinié, Geoffrey Bodenhausen. On toxic effects of scientific journals. Journal of Biosciences 2013, 38 (2) , 189-199. https://doi.org/10.1007/s12038-013-9328-5
    72. Mark Edgar. Physical methods and techniques: NMR spectroscopy. Annual Reports Section "B" (Organic Chemistry) 2013, 109 , 256. https://doi.org/10.1039/c3oc90012f

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect