ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img
ADDITION / CORRECTIONThis article has been corrected. View the notice.

Palladium-Catalyzed Cross-Coupling of Aryl Chlorides and Triflates with Sodium Cyanate: A Practical Synthesis of Unsymmetrical Ureas

View Author Information
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
Cite this: J. Am. Chem. Soc. 2012, 134, 27, 11132–11135
Publication Date (Web):June 20, 2012
https://doi.org/10.1021/ja305212v
Copyright © 2012 American Chemical Society

    Article Views

    11027

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (2)»

    Abstract

    Abstract Image

    An efficient method for palladium-catalyzed cross-coupling of aryl chlorides and triflates with sodium cyanate is reported. The protocol allows for the synthesis of unsymmetrical N,N′-di- and N,N,N′-trisubstituted ureas in one pot and is tolerant of a wide range of functional groups. Insight into the mechanism of aryl isocyanate formation was gleaned through studies of the transmetalation and reductive elimination steps of the reaction, including the first demonstration of reductive elimination from an arylpalladium isocyanate complex to produce an aryl isocyanate.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Experimental procedures; characterizations; spectral data for all compounds; complete refs 2b, 2c, and 7b; and X-ray crystallographic data for 2 (CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 111 publications.

    1. Rebecca B. Watson, Todd W. Butler, Jacob C. DeForest. Preparation of Carbamates, Esters, Amides, and Unsymmetrical Ureas via Brønsted Acid-Activated N-Acyl Imidazoliums. Organic Process Research & Development 2021, 25 (3) , 500-506. https://doi.org/10.1021/acs.oprd.0c00445
    2. Shiying Du, Zuguang Yang, Jianhua Tang, Zhengkai Chen, Xiao-Feng Wu. Synthesis of 3H-1,2,4-Triazol-3-ones via NiCl2-Promoted Cascade Annulation of Hydrazonoyl Chlorides and Sodium Cyanate. Organic Letters 2021, 23 (6) , 2359-2363. https://doi.org/10.1021/acs.orglett.1c00568
    3. Shiying Du, Wei-Feng Wang, Yufei Song, Zhengkai Chen, Xiao-Feng Wu. Palladium-Catalyzed Cascade Carbonylative Synthesis of 1,2,4-Triazol-3-ones from Hydrazonoyl Chlorides and NaN3. Organic Letters 2021, 23 (3) , 974-978. https://doi.org/10.1021/acs.orglett.0c04167
    4. Xin Mu, Morgan Hopp, Rafal M. Dziedzic, Mary A. Waddington, Arnold L. Rheingold, Ellen M. Sletten, Jonathan C. Axtell, Alexander M. Spokoyny. Expanding the Scope of Palladium-Catalyzed B–N Cross-Coupling Chemistry in Carboranes. Organometallics 2020, 39 (23) , 4380-4386. https://doi.org/10.1021/acs.organomet.0c00576
    5. Kwangho Yoo, Jooyeon Lee, Myung Hwan Park, Youngjo Kim, Hyun Jin Kim, Min Kim. Ir-Catalyzed C–H Amidation Using Carbamoyl Azides for the Syntheses of Unsymmetrical Ureas. The Journal of Organic Chemistry 2020, 85 (9) , 6233-6241. https://doi.org/10.1021/acs.joc.0c00659
    6. Braeden A. Mair, Moustafa H. Fouad, Uzair S. Ismailani, Maxime Munch, Benjamin H. Rotstein. Rhodium-Catalyzed Addition of Organozinc Iodides to Carbon-11 Isocyanates. Organic Letters 2020, 22 (7) , 2746-2750. https://doi.org/10.1021/acs.orglett.0c00729
    7. Arun K. Ghosh, Margherita Brindisi. Urea Derivatives in Modern Drug Discovery and Medicinal Chemistry. Journal of Medicinal Chemistry 2020, 63 (6) , 2751-2788. https://doi.org/10.1021/acs.jmedchem.9b01541
    8. Daniele Fiorito, Yangbin Liu, Céline Besnard, Clément Mazet. Direct Access to Chiral Secondary Amides by Copper-Catalyzed Borylative Carboxamidation of Vinylarenes with Isocyanates. Journal of the American Chemical Society 2020, 142 (1) , 623-632. https://doi.org/10.1021/jacs.9b12297
    9. Bradley P. Morgan Seb Caille Shawn D. Walker . Discovery and Development of Omecamtiv Mecarbil: A Novel Cardiac Myosin Activator for the Potential Treatment of Systolic Heart Failure. 2020, 99-126. https://doi.org/10.1021/bk-2020-1369.ch003
    10. Amy J. South, Ana M. Geer, Laurence J. Taylor, Helen R. Sharpe, William Lewis, Alexander J. Blake, Deborah L. Kays. Iron(II)-Catalyzed Hydroamination of Isocyanates. Organometallics 2019, 38 (21) , 4115-4120. https://doi.org/10.1021/acs.organomet.9b00393
    11. Joshua S. Derasp, André M. Beauchemin. Rhodium-Catalyzed Synthesis of Amides from Functionalized Blocked Isocyanates. ACS Catalysis 2019, 9 (9) , 8104-8109. https://doi.org/10.1021/acscatal.9b02641
    12. Seb Caille, Alan M. Allgeier, Charles Bernard, Tiffany L. Correll, Andrew Cosbie, Richard D. Crockett, Sheng Cui, Margaret M. Faul, Karl B. Hansen, Seth Huggins, Neil Langille, Steven M. Mennen, Bradley P. Morgan, Henry Morrison, Alexander Muci, Karthik Nagapudi, Kyle Quasdorf, Krishnakumar Ranganathan, Philipp Roosen, Xianqing Shi, Oliver R. Thiel, Fang Wang, Justin T. Tvetan, Jacqueline C. S. Woo, Steven Wu, Shawn D. Walker. Development of a Factory Process for Omecamtiv Mecarbil, a Novel Cardiac Myosin Activator. Organic Process Research & Development 2019, 23 (8) , 1558-1567. https://doi.org/10.1021/acs.oprd.9b00200
    13. Chiara Colletto, Adyasha Panigrahi, Jaime Fernández-Casado, Igor Larrosa. Ag(I)–C–H Activation Enables Near-Room-Temperature Direct α-Arylation of Benzo[b]thiophenes. Journal of the American Chemical Society 2018, 140 (30) , 9638-9643. https://doi.org/10.1021/jacs.8b05361
    14. Yiming Ren and Sophie A. L. Rousseaux . Metal-Free Synthesis of Unsymmetrical Ureas and Carbamates from CO2 and Amines via Isocyanate Intermediates. The Journal of Organic Chemistry 2018, 83 (2) , 913-920. https://doi.org/10.1021/acs.joc.7b02905
    15. Xiongyi Huang, Thompson Zhuang, Patrick A. Kates, Hongxin Gao, Xinyi Chen, and John T. Groves . Alkyl Isocyanates via Manganese-Catalyzed C–H Activation for the Preparation of Substituted Ureas. Journal of the American Chemical Society 2017, 139 (43) , 15407-15413. https://doi.org/10.1021/jacs.7b07658
    16. Abhijit R. Kulkarni, Sumanta Garai, and Ganesh A. Thakur . Scalable, One-Pot, Microwave-Accelerated Tandem Synthesis of Unsymmetrical Urea Derivatives. The Journal of Organic Chemistry 2017, 82 (2) , 992-999. https://doi.org/10.1021/acs.joc.6b02521
    17. Ebrahim Kianmehr, Yousef Amiri Lomedasht, Nasser Faghih, and Khalid Mohammed Khan . Chelation-Assisted Copper-Mediated Direct Acetylamination of 2-Arylpyridine C–H Bonds with Cyanate Salts. The Journal of Organic Chemistry 2016, 81 (14) , 6087-6092. https://doi.org/10.1021/acs.joc.6b00902
    18. Jing An, Howard Alper, and André M. Beauchemin . Copper-Catalyzed Cascade Substitution/Cyclization of N-Isocyanates: A Synthesis of 1-Aminobenzimidazolones. Organic Letters 2016, 18 (14) , 3482-3485. https://doi.org/10.1021/acs.orglett.6b01686
    19. Jin Zhao, Zongyang Li, Shuaihu Yan, Shiyang Xu, Ming-An Wang, Bin Fu, and Zhenhua Zhang . Pd/C Catalyzed Carbonylation of Azides in the Presence of Amines. Organic Letters 2016, 18 (8) , 1736-1739. https://doi.org/10.1021/acs.orglett.6b00381
    20. Chiara Colletto, Saidul Islam, Francisco Juliá-Hernández, and Igor Larrosa . Room-Temperature Direct β-Arylation of Thiophenes and Benzo[b]thiophenes and Kinetic Evidence for a Heck-type Pathway. Journal of the American Chemical Society 2016, 138 (5) , 1677-1683. https://doi.org/10.1021/jacs.5b12242
    21. Lynette A. Smyth, Eric M. Phillips, Vincent S. Chan, José G. Napolitano, Rodger Henry, and Shashank Shekhar . Pd-Catalyzed Synthesis of Aryl and Heteroaryl Triflones from Reactions of Sodium Triflinate with Aryl (Heteroaryl) Triflates. The Journal of Organic Chemistry 2016, 81 (3) , 1285-1294. https://doi.org/10.1021/acs.joc.5b02523
    22. Kishor Naktode, Suman Das, Jayeeta Bhattacharjee, Hari Pada Nayek, and Tarun K. Panda . Imidazolin-2-iminato Ligand-Supported Titanium Complexes as Catalysts for the Synthesis of Urea Derivatives. Inorganic Chemistry 2016, 55 (3) , 1142-1153. https://doi.org/10.1021/acs.inorgchem.5b02302
    23. Seung Hyo Kim and Soon Hyeok Hong . Ruthenium-Catalyzed Urea Synthesis Using Methanol as the C1 Source. Organic Letters 2016, 18 (2) , 212-215. https://doi.org/10.1021/acs.orglett.5b03328
    24. Liping Xu, Lung Wa Chung, and Yun-Dong Wu . Mechanism of Ni-NHC Catalyzed Hydrogenolysis of Aryl Ethers: Roles of the Excess Base. ACS Catalysis 2016, 6 (1) , 483-493. https://doi.org/10.1021/acscatal.5b02089
    25. Dinesh S. Bhalerao, Anil Kumar Reddy Arkala, Y. V. Madhavi, M. Nagaraju, Srinivas Reddy Gade, U. K. Syam Kumar, Rakeshwar Bandichhor, and Vilas H. Dahanukar . Synthesis and Process Optimization of Boceprevir: A Protease Inhibitor Drug. Organic Process Research & Development 2015, 19 (11) , 1559-1567. https://doi.org/10.1021/op500065t
    26. Hongfei Yin, Angelina M. de Almeida, Mauro V. de Almeida, Anders T. Lindhardt, and Troels Skrydstrup . Synthesis of Acyl Carbamates via Four Component Pd-Catalyzed Carbonylative Coupling of Aryl Halides, Potassium Cyanate, and Alcohols. Organic Letters 2015, 17 (5) , 1248-1251. https://doi.org/10.1021/acs.orglett.5b00221
    27. Soo-Yeon Moon, U. Bin Kim, Dan-Bi Sung, and Won-Suk Kim . A Synthetic Approach to N-Aryl Carbamates via Copper-Catalyzed Chan–Lam Coupling at Room Temperature. The Journal of Organic Chemistry 2015, 80 (3) , 1856-1865. https://doi.org/10.1021/jo502828r
    28. Rebecca L. Grange and P. Andrew Evans . Metal-Free Metathesis Reaction of C-Chiral Allylic Sulfilimines with Aryl Isocyanates: Construction of Chiral Nonracemic Allylic Isocyanates. Journal of the American Chemical Society 2014, 136 (34) , 11870-11873. https://doi.org/10.1021/ja504631v
    29. Kishore Thalluri, Srinivasa Rao Manne, Dharm Dev, and Bhubaneswar Mandal . Ethyl 2-Cyano-2-(4-nitrophenylsulfonyloxyimino)acetate-Mediated Lossen Rearrangement: Single-Pot Racemization-Free Synthesis of Hydroxamic Acids and Ureas from Carboxylic Acids. The Journal of Organic Chemistry 2014, 79 (9) , 3765-3775. https://doi.org/10.1021/jo4026429
    30. Fedor M. Miloserdov, Claire L. McMullin, Marta Martı́nez Belmonte, Jordi Benet-Buchholz, Vladimir I. Bakhmutov, Stuart A. Macgregor, and Vladimir V. Grushin . The Challenge of Palladium-Catalyzed Aromatic Azidocarbonylation: From Mechanistic and Catalyst Deactivation Studies to a Highly Efficient Process. Organometallics 2014, 33 (3) , 736-752. https://doi.org/10.1021/om401126m
    31. Annette D. Allen and Thomas T. Tidwell . Ketenes and Other Cumulenes as Reactive Intermediates. Chemical Reviews 2013, 113 (9) , 7287-7342. https://doi.org/10.1021/cr3005263
    32. Nicholas C. Bruno and Stephen L. Buchwald . Synthesis and Application of Palladium Precatalysts that Accommodate Extremely Bulky Di-tert-butylphosphino Biaryl Ligands. Organic Letters 2013, 15 (11) , 2876-2879. https://doi.org/10.1021/ol401208t
    33. Ekaterina V. Vinogradova, Nathaniel H. Park, Brett P. Fors, and Stephen L. Buchwald . Palladium-Catalyzed Synthesis of N-Aryl Carbamates. Organic Letters 2013, 15 (6) , 1394-1397. https://doi.org/10.1021/ol400369n
    34. Gavin Chit Tsui, Nina M. Ninnemann, Akihito Hosotani, and Mark Lautens . Expedient Synthesis of Chiral Oxazolidinone Scaffolds via Rhodium-Catalyzed Asymmetric Ring-Opening with Sodium Cyanate. Organic Letters 2013, 15 (5) , 1064-1067. https://doi.org/10.1021/ol4000668
    35. Phillip J. Milner, Thomas J. Maimone, Mingjuan Su, Jiahao Chen, Peter Müller, and Stephen L. Buchwald . Investigating the Dearomative Rearrangement of Biaryl Phosphine-Ligated Pd(II) Complexes. Journal of the American Chemical Society 2012, 134 (48) , 19922-19934. https://doi.org/10.1021/ja310351e
    36. Ernest Koranteng, Zhen‐Cao Shu, Yi‐Yin Liu, Qian Yang, Bin Shi, Qiang‐Xian Wu, Fen Tan, Liang‐Qiu Lu, Wen‐Jing Xiao. Metallaphotoredox‐Catalyzed Three‐Component Couplings for Practical Synthesis of Ureas and Carbamates †. Chinese Journal of Chemistry 2024, 42 (3) , 264-270. https://doi.org/10.1002/cjoc.202300500
    37. Pankaj Kumar, Aman Bhalla. Isothiocyanates ( in situ ) and sulfonyl chlorides in water for N -functionalization of bicyclic amidines: access to N -alkylated γ-/ω-lactam derivatized thiourea and sulfonamides. Organic & Biomolecular Chemistry 2023, 21 (44) , 8868-8874. https://doi.org/10.1039/D3OB01584J
    38. Wahab K. A. Al-Ithawi, Rammohan Aluru, Artem V. Baklykov, Albert F. Khasanov, Igor S. Kovalev, Igor L. Nikonov, Dmitry S. Kopchuk, Alexander S. Novikov, Sougata Santra, Grigory V. Zyryanov, Brindaban C. Ranu. Mechanosynthesis of Polyureas and Studies of Their Responses to Anions. Polymers 2023, 15 (20) , 4160. https://doi.org/10.3390/polym15204160
    39. Vahideh Khorram Abadi, Davood Habibi, Somayyeh Heydari, Maryam Mahmoudiani Gilan. An adenine-based palladium complex: a capable heterogeneous magnetic nano-catalyst for the green synthesis of the ureas in aqueous media. Journal of the Iranian Chemical Society 2023, 20 (8) , 1985-1996. https://doi.org/10.1007/s13738-023-02813-x
    40. Kai Liu, Yayu Xie, Yuan Qin, Virinder S. Parmar, Yonghong Liu, Pei Cao. The metal- and column-free synthesis of pyridin-2-yl ureas carrying cyclic secondary amine substituents and establishing the mechanism of the reactions through a computational study. Organic Chemistry Frontiers 2023, 10 (13) , 3182-3192. https://doi.org/10.1039/D3QO00571B
    41. Shan Yang, Tianze Zheng, Longhui Duan, Xiaoping Xue, Zhenhua Gu. Atroposelective Three‐Component Coupling of Cyclic Diaryliodoniums and Sodium Cyanate Enabled by the Dual‐Role of Phenol. Angewandte Chemie 2023, 135 (21) https://doi.org/10.1002/ange.202302749
    42. Shan Yang, Tianze Zheng, Longhui Duan, Xiaoping Xue, Zhenhua Gu. Atroposelective Three‐Component Coupling of Cyclic Diaryliodoniums and Sodium Cyanate Enabled by the Dual‐Role of Phenol. Angewandte Chemie International Edition 2023, 62 (21) https://doi.org/10.1002/anie.202302749
    43. Jieshuai Xiao, Minyan Wang, Xuwen Yin, Shuo Yang, Pei Gu, Xueli Lv, Yue Zhao, Zhuangzhi Shi. Enantioselective Reductive (Hetero)Arylation of Cyclic N ‐Sulfonyl Imines by Cobalt Catalysis. Angewandte Chemie International Edition 2023, 62 (19) https://doi.org/10.1002/anie.202300743
    44. Jieshuai Xiao, Minyan Wang, Xuwen Yin, Shuo Yang, Pei Gu, Xueli Lv, Yue Zhao, Zhuangzhi Shi. Enantioselective Reductive (Hetero)Arylation of Cyclic N ‐Sulfonyl Imines by Cobalt Catalysis. Angewandte Chemie 2023, 135 (19) https://doi.org/10.1002/ange.202300743
    45. Antonia Sarantou, George Varvounis. 1-[2-(1H-Pyrrole-2-carbonyl)phenyl]-3-(4-methoxyphenyl)urea. Molbank 2023, 2023 (1) , M1531. https://doi.org/10.3390/M1531
    46. Faiza Asghar, Bushra Shakoor, Babar Murtaza, Ian S. Butler. An insight on the different synthetic routes for the facile synthesis of O/S-donor carbamide/thiocarbamide analogs and their miscellaneous pharmacodynamic applications. Journal of Sulfur Chemistry 2023, 44 (1) , 90-147. https://doi.org/10.1080/17415993.2022.2119085
    47. Ning Yu, Jing-Fang Lv, Shi-Mei He, Yanyan Cui, Ye Wei, Kun Jiang. Urea Synthesis from Isocyanides and O-Benzoyl Hydroxylamines Catalyzed by a Copper Salt. Molecules 2022, 27 (23) , 8219. https://doi.org/10.3390/molecules27238219
    48. C. P. Irfana Jesin, V. R. Padma Priya, Ramesh Kataria, V. Alisha, P. S. Vimalkumar, Anuja G. Joseph, Ganesh Chandra Nandi. A One‐Pot Tandem Synthesis of Sulfoximine‐Based Urea From Organic Acid via Curtius Rearrangement. ChemistrySelect 2022, 7 (39) https://doi.org/10.1002/slct.202202898
    49. Rajkumar Veligeti, Jaya Shree Anireddy, Rajesh Bagepalli Madhu, D.S. Ramakrishna. One pot, three component synthesis of fluoro and trifluoromethyl substituted unsymmetrical dihydropyrazine fused acridine-3-carboxamide using renewable 2-MeTHF solvent and their DFT studies. Journal of Fluorine Chemistry 2022, 261-262 , 110019. https://doi.org/10.1016/j.jfluchem.2022.110019
    50. Svetlana O. Kasatkina, Kirill K. Geyl, Sergey V. Baykov, Mikhail S. Novikov, Vadim P. Boyarskiy. “Urea to Urea” Approach: Access to Unsymmetrical Ureas Bearing Pyridyl Substituents. Advanced Synthesis & Catalysis 2022, 364 (7) , 1295-1304. https://doi.org/10.1002/adsc.202101490
    51. Cong Lv, Dan Liu, Tegshi Muschin, Chaolumen Bai, Agula Bao, Yong-Sheng Bao. From amides to urea derivatives or carbamates with chemospecific C–C bond cleavage at room temperature. Organic Chemistry Frontiers 2022, 9 (5) , 1354-1363. https://doi.org/10.1039/D1QO01922H
    52. Paula A. Rodríguez-Huerto, Diana Peña-Solórzano, Cristian Ochoa-Puentes. Nitroarenes as versatile building blocks for the synthesis of unsymmetrical urea derivatives and N-Arylmethyl-2-substituted benzimidazoles. Chemical Papers 2021, 75 (12) , 6275-6283. https://doi.org/10.1007/s11696-021-01785-7
    53. Joydev K. Laha, Neha Singh, Mandeep Kaur Hunjan. Synthesis of unsymmetrical urea from aryl- or pyridyl carboxamides and aminopyridines using PhI(OAc) 2 via in situ formation of aryl- or pyridyl isocyanates. New Journal of Chemistry 2021, 45 (40) , 18815-18823. https://doi.org/10.1039/D1NJ03160K
    54. Yi‐Qian Jiang, Zheng‐Yang Gu, Ye Chen, Ji‐Bao Xia. Pd‐Catalyzed Amidation of Silyl Enol Ethers With CO and Azides via an Isocyanate Intermediate. Asian Journal of Organic Chemistry 2021, 10 (7) , 1704-1707. https://doi.org/10.1002/ajoc.202100324
    55. Tapasi Kalita, Dharm Dev, Sandip Mondal, Rajat Subhra Giri, Bhubaneswar Mandal. Ethyl‐2‐Cyano‐2‐(2‐Nitrophenylsulfonyloximino)Acetate ( ortho ‐NosylOXY) Mediated One‐Pot Racemization Free Synthesis of Ureas, Carbamates, and Thiocarbamates via Curtius Rearrangement. Asian Journal of Organic Chemistry 2021, 10 (6) , 1523-1529. https://doi.org/10.1002/ajoc.202100198
    56. Mustafa Moroglu, Joseph M. Bateman, Benjamin F. Rahemtulla. Dicyclohexyl(2′,4′,6′‐triisopropyl‐3,6‐dimethoxy‐[1,1′‐biphenyl]‐2‐yl)phosphine; Di‐ tert ‐butyl(2′,4′,6′‐triisopropyl‐3,6‐dimethoxy‐[1,1′‐biphenyl]‐2‐yl)phosphine; and Diadamantan‐1‐yl(2′,4′,6′‐triisopropyl‐3,6‐dimethoxy‐[1,1′‐biphenyl]‐2‐yl)phosphine. 2021, 1-7. https://doi.org/10.1002/047084289X.rn02389
    57. Alexey S. Galushko, Darya O. Prima, Julia V. Burykina, Valentine P. Ananikov. Comparative study of aryl halides in Pd-mediated reactions: key factors beyond the oxidative addition step. Inorganic Chemistry Frontiers 2021, 8 (3) , 620-635. https://doi.org/10.1039/D0QI01133A
    58. Cameron D. Huke, Deborah L. Kays. Hydrofunctionalization reactions of heterocumulenes: Formation of C–X (X = B, N, O, P, S and Si) bonds by homogeneous metal catalysts. 2021, 1-54. https://doi.org/10.1016/bs.adomc.2021.01.003
    59. Iman Dindarloo Inaloo, Mohsen Esmaeilpour, Sahar Majnooni, Ali Reza Oveisi. Nickel‐Catalyzed Synthesis of N ‐(Hetero)aryl Carbamates from Cyanate Salts and Phenols Activated with Cyanuric Chloride. ChemCatChem 2020, 12 (21) , 5486-5491. https://doi.org/10.1002/cctc.202000876
    60. Neppoliyan Kannan, Akshay R. Patil, Arup Sinha. Direct C–H bond halogenation and pseudohalogenation of hydrocarbons mediated by high-valent 3d metal-oxo species. Dalton Transactions 2020, 49 (41) , 14344-14360. https://doi.org/10.1039/D0DT02533J
    61. Supakarn Chamni, Jinquan Zhang, Hongbin Zou. Benign synthesis of unsymmetrical arylurea derivatives using 3-substituted dioxazolones as isocyanate surrogates. Green Chemistry Letters and Reviews 2020, 13 (3) , 246-257. https://doi.org/10.1080/17518253.2020.1807616
    62. Liang Wang, Hao Wang, Yaoyao Wang, Minggui Shen, Shubai Li. Photocatalyzed synthesis of unsymmetrical ureas via the oxidative decarboxylation of oxamic acids with PANI-g-C3N4-TiO2 composite under visible light. Tetrahedron Letters 2020, 61 (23) , 151962. https://doi.org/10.1016/j.tetlet.2020.151962
    63. Ebrahim Kianmehr, Mohammad Reza Falahat, Arezoo Tanbakouchian, Mohammad Mahdavi. Copper‐Mediated Direct Cyanatation of Benzamides: A New Approach to the Synthesis of Quinazolinediones. European Journal of Organic Chemistry 2020, 2020 (6) , 708-713. https://doi.org/10.1002/ejoc.201901567
    64. Xiaoyun Ran, Yan Long, Sheng Yang, Changjiang Peng, Yuanyuan Zhang, Shan Qian, Zhenju Jiang, Xiaomei Zhang, Lingling Yang, Zhouyu Wang, Xiaoqi Yu. A novel route to unsymmetrical disubstituted ureas and thioureas by HMPA catalyzed reductive alkylation with trichlorosilane. Organic Chemistry Frontiers 2020, 7 (3) , 472-481. https://doi.org/10.1039/C9QO01321K
    65. Caixia Xie, Songhua Li, Yunyi Li, Chen Ma. An efficient route for the synthesis of N-(1H-benzo[d]imidazol-2-yl)benzamide derivatives promoted by CBr4 in one pot. Tetrahedron 2020, 76 (9) , 130977. https://doi.org/10.1016/j.tet.2020.130977
    66. Mozhdeh Mozaffari, Najmeh Nowrouzi. Palladium‐Catalyzed Synthesis of Symmetrical and Unsymmetrical Ureas Using Chromium Hexacarbonyl as a Convenient and Safe Alternative Carbonyl Source. European Journal of Organic Chemistry 2019, 2019 (46) , 7541-7544. https://doi.org/10.1002/ejoc.201901273
    67. Shikang Li, Liliang Huang, Zhuo Chen, Jiangdong Zhao, Huangdi Feng. Synthesis, characterization and biological activity of 1,3-diazaheteroaromatic derivatives by the ring-opening domino reaction. Journal of Molecular Structure 2019, 1196 , 245-251. https://doi.org/10.1016/j.molstruc.2019.06.029
    68. Gilian T. Thomas, Eric Janusson, Harmen S. Zijlstra, J. Scott McIndoe. Step-by-step real time monitoring of a catalytic amination reaction. Chemical Communications 2019, 55 (78) , 11727-11730. https://doi.org/10.1039/C9CC05076K
    69. Farid M. Sroor, Amr M. Abdelmoniem, Ismail A. Abdelhamid. Facile Synthesis, Structural Activity Relationship, Molecular Modeling and In Vitro Biological Evaluation of New Urea Derivatives with Incorporated Isoxazole and Thiazole Moieties as Anticancer Agents. ChemistrySelect 2019, 4 (34) , 10113-10121. https://doi.org/10.1002/slct.201901415
    70. M. Lakshmi Kantam, Chandrakanth Gadipelly, Gunjan Deshmukh, K. Rajender Reddy, Suresh Bhargava. Copper Catalyzed C−H Activation. The Chemical Record 2019, 19 (7) , 1302-1318. https://doi.org/10.1002/tcr.201800107
    71. Sida Li, Ruhima Khan, Xia Zhang, Yong Yang, Zheting Wang, Yong Zhan, Yuze Dai, Yue-e Liu, Baomin Fan. One stone two birds: cobalt-catalyzed in situ generation of isocyanates and benzyl alcohols for the synthesis of N -aryl carbamates. Organic & Biomolecular Chemistry 2019, 17 (24) , 5891-5896. https://doi.org/10.1039/C9OB00924H
    72. Mahadev Patil, Anurag Noonikara Poyil, Shrinivas D. Joshi, Shivaputra A. Patil, Siddappa A. Patil, Alejandro Bugarin. Synthesis, molecular docking studies, and antimicrobial evaluation of new structurally diverse ureas. Bioorganic Chemistry 2019, 87 , 302-311. https://doi.org/10.1016/j.bioorg.2019.03.024
    73. Maotong Xu, Andrew R. Jupp, Maegan S. E. Ong, Katherine I. Burton, Saurabh S. Chitnis, Douglas W. Stephan. Synthesis of Urea Derivatives from CO 2 and Silylamines. Angewandte Chemie 2019, 131 (17) , 5763-5767. https://doi.org/10.1002/ange.201900058
    74. Maotong Xu, Andrew R. Jupp, Maegan S. E. Ong, Katherine I. Burton, Saurabh S. Chitnis, Douglas W. Stephan. Synthesis of Urea Derivatives from CO 2 and Silylamines. Angewandte Chemie International Edition 2019, 58 (17) , 5707-5711. https://doi.org/10.1002/anie.201900058
    75. Liang Wang, Hao Wang, Guiqing Li, Shuliang Min, Fangyuan Xiang, Shiqi Liu, Waigang Zheng. Pd/C‐Catalyzed Domino Synthesis of Urea Derivatives Using Chloroform as the Carbon Monoxide Source in Water. Advanced Synthesis & Catalysis 2018, 360 (23) , 4585-4593. https://doi.org/10.1002/adsc.201800954
    76. Sheng‐Yan Zhang, Kai Yu, Yu‐Shuang Guo, Rui‐Qi Mou, Xiao‐Fan Lu, Dian‐Shun Guo. Preparation and Reactivation of Heterogeneous Palladium Catalysts and Applications in Sonogashira, Suzuki, and Heck Reactions in Aqueous Media. ChemistryOpen 2018, 7 (10) , 803-813. https://doi.org/10.1002/open.201800139
    77. Bo Chen, Jin‐Bao Peng, Jun Ying, Xinxin Qi, Xiao‐Feng Wu. A Palladium‐Catalyzed Domino Procedure for the Synthesis of Unsymmetrical Ureas. Advanced Synthesis & Catalysis 2018, 360 (15) , 2820-2824. https://doi.org/10.1002/adsc.201800496
    78. Anikó Angyal, András Demjén, János Wölfling, László G. Puskás, Iván Kanizsai. A green, isocyanide-based three-component reaction approach for the synthesis of multisubstituted ureas and thioureas. Tetrahedron Letters 2018, 59 (1) , 54-57. https://doi.org/10.1016/j.tetlet.2017.11.053
    79. Porag Bora, Ghanashyam Bez. Chemoselective isocyanide insertion into the N–H bond using iodine–DMSO: metal-free access to substituted ureas. Chemical Communications 2018, 54 (60) , 8363-8366. https://doi.org/10.1039/C8CC05019H
    80. Chong-Liang Li, Jin-Bao Peng, Xinxin Qi, Jun Ying, Xiao-Feng Wu. Pd/C-catalyzed reductive carbonylation of nitroaromatics for the synthesis of unsymmetrical ureas: one-step synthesis of neburon. New Journal of Chemistry 2018, 42 (15) , 12472-12475. https://doi.org/10.1039/C8NJ02413H
    81. Maotong Xu, Andrew R. Jupp, Douglas W. Stephan. Stoichiometric Reactions of CO 2 and Indium‐Silylamides and Catalytic Synthesis of Ureas. Angewandte Chemie 2017, 129 (45) , 14465-14469. https://doi.org/10.1002/ange.201708921
    82. Maotong Xu, Andrew R. Jupp, Douglas W. Stephan. Stoichiometric Reactions of CO 2 and Indium‐Silylamides and Catalytic Synthesis of Ureas. Angewandte Chemie International Edition 2017, 56 (45) , 14277-14281. https://doi.org/10.1002/anie.201708921
    83. Gamal A. El-Hiti, Keith Smith, Mohammed B. Alshammari, Amany S. Hegazy, Benson M. Kariuki. Crystal structure of 1,1-dimethyl-3-(4-methoxyphenyl)urea, C 10 H 14 N 2 O 2. Zeitschrift für Kristallographie - New Crystal Structures 2017, 232 (2) , 279-281. https://doi.org/10.1515/ncrs-2016-0238
    84. Gamal A. El-Hiti, Keith Smith, Amany S. Hegazy, Benson M. Kariuki. Crystal structure of 1,1-dimethyl-3-(4-methylphenyl)urea, C 10 H 14 N 2 O. Zeitschrift für Kristallographie - New Crystal Structures 2017, 232 (2) , 329-330. https://doi.org/10.1515/ncrs-2016-0290
    85. Benson Kariuki, Gamal El-Hiti. A Reversible Single-Crystal to Single-Crystal Thermal Phase Transformation of 3-(2-Bromo-4-(1-methylethyl)phenyl)-1,1-dimethyl urea. Crystals 2017, 7 (3) , 75. https://doi.org/10.3390/cryst7030075
    86. Tse‐Lok Ho, Mary Fieser, Louis Fieser. Tris(dibenzylideneacetone)dipalladium. 2017https://doi.org/10.1002/9780471264194.fos11451.pub5
    87. Tse‐Lok Ho, Mary Fieser, Louis Fieser. Tris(dibenzylideneacetone)dipalladium. 2017https://doi.org/10.1002/9780471264194.fos11451.pub6
    88. Srinivasa Rao Manne, Kishore Thalluri, Rajat Subhra Giri, Jyoti Chandra, Bhubaneswar Mandal. Ethyl 2‐( tert ‐Butoxycarbonyloxyimino)‐2‐cyanoacetate (Boc‐Oxyma): An Efficient Reagent for the Racemization Free Synthesis of Ureas, Carbamates and Thiocarbamates via Lossen Rearrangement. Advanced Synthesis & Catalysis 2017, 359 (1) , 168-176. https://doi.org/10.1002/adsc.201600661
    89. Xinyao Li, Ning Jiao. Nitrogenation Strategy for the Synthesis of Carbamides. 2017, 111-127. https://doi.org/10.1007/978-981-10-2813-7_5
    90. Gopal Chandru Senadi, Mohana Reddy Mutra, Ting-Yi Lu, Jeh-Jeng Wang. Oximes as reusable templates for the synthesis of ureas and carbamates by an in situ generation of carbamoyl oximes. Green Chemistry 2017, 19 (18) , 4272-4277. https://doi.org/10.1039/C7GC01449J
    91. Mohammed B. Alshammari, Keith Smith, Amany S. Hegazy, Benson M. Kariuki, Gamal A. El-Hiti. Crystal structure of 3-(2-(4-chlorophenyl)-3-hydroxy-3,3-diphenylpropyl)-1,1-dimethylurea, C 24 H 25 ClN 2 O 2. Zeitschrift für Kristallographie - New Crystal Structures 2017, 232 (1) , 101-103. https://doi.org/10.1515/ncrs-2016-0170
    92. Xiaopeng Zhang, Zhaojing Tang, Xueli Niu, Zhengwei Li, Xuesen Fan, Guisheng Zhang. Selenium-catalyzed carbonylation of 2-aminothiazole with nitro aromatics to N-aryl-N′-2-thiazolylureas. Tetrahedron Letters 2016, 57 (47) , 5266-5270. https://doi.org/10.1016/j.tetlet.2016.10.046
    93. Lucien P. Jay, Timothy J. Barker. Palladium‐Catalyzed Synthesis of Allylic Ureas via an Isocyanate Intermediate. European Journal of Organic Chemistry 2016, 2016 (10) , 1829-1831. https://doi.org/10.1002/ejoc.201600149
    94. Sara S. E. Ghodsinia, Batool Akhlaghinia. A high-yielding, expeditious, and multicomponent synthesis of urea and carbamate derivatives by using triphenylphosphine/trichloroisocyanuric acid system. Phosphorus, Sulfur, and Silicon and the Related Elements 2016, 191 (1) , 1-7. https://doi.org/10.1080/10426507.2015.1085038
    95. Victor Laserna, Wusheng Guo, Arjan W. Kleij. Aluminium‐Catalysed Oxazolidinone Synthesis and their Conversion into Functional Non‐Symmetrical Ureas. Advanced Synthesis & Catalysis 2015, 357 (13) , 2849-2854. https://doi.org/10.1002/adsc.201500635
    96. Nagireddy Veera Reddy, Pailla Santhosh Kumar, Peddi Sudhir Reddy, Mannepalli Lakshmi Kantam, Kallu Rajender Reddy. Synthesis of unsymmetrical phenylurea derivatives via oxidative cross coupling of aryl formamides with amines under metal-free conditions. New Journal of Chemistry 2015, 39 (2) , 805-809. https://doi.org/10.1039/C4NJ01668H
    97. Juthanat Kaeobamrung, Asan Lanui, Sirinad Mahawong, Witthawin Duangmak, Vatcharin Rukachaisirikul. One-pot synthesis of trisubstituted ureas from α-chloroaldoxime O-methanesulfonates and secondary amines. RSC Advances 2015, 5 (72) , 58587-58594. https://doi.org/10.1039/C5RA10060G
    98. Ekaterina V. Vinogradova, Peter Müller, Stephen L. Buchwald. Structural Reevaluation of the Electrophilic Hypervalent Iodine Reagent for Trifluoromethylthiolation Supported by the Crystalline Sponge Method for X‐ray Analysis. Angewandte Chemie 2014, 126 (12) , 3189-3192. https://doi.org/10.1002/ange.201310897
    99. Ekaterina V. Vinogradova, Peter Müller, Stephen L. Buchwald. Structural Reevaluation of the Electrophilic Hypervalent Iodine Reagent for Trifluoromethylthiolation Supported by the Crystalline Sponge Method for X‐ray Analysis. Angewandte Chemie International Edition 2014, 53 (12) , 3125-3128. https://doi.org/10.1002/anie.201310897
    100. Tong‐Hao Zhu, Xiao‐Ping Xu, Jia‐Jia Cao, Tian‐Qi Wei, Shun‐Yi Wang, Shun‐Jun Ji. Cobalt(II)‐Catalyzed Isocyanide Insertion Reaction with Amines under Ultrasonic Conditions: A Divergent Synthesis of Ureas, Thioureas and Azaheterocycles. Advanced Synthesis & Catalysis 2014, 356 (2-3) , 509-518. https://doi.org/10.1002/adsc.201300745
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect