ACS Publications. Most Trusted. Most Cited. Most Read
Monothiol Glutaredoxins Function in Storing and Transporting [Fe2S2] Clusters Assembled on IscU Scaffold Proteins
My Activity

Figure 1Loading Img
  • Open Access
Communication

Monothiol Glutaredoxins Function in Storing and Transporting [Fe2S2] Clusters Assembled on IscU Scaffold Proteins
Click to copy article linkArticle link copied!

View Author Information
Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, Georgia 30602, United States
Open PDFSupporting Information (1)

Journal of the American Chemical Society

Cite this: J. Am. Chem. Soc. 2012, 134, 37, 15213–15216
Click to copy citationCitation copied!
https://doi.org/10.1021/ja306061x
Published September 10, 2012
Copyright © 2012 American Chemical Society

Abstract

Click to copy section linkSection link copied!

In the bacterial ISC system for iron–sulfur cluster assembly, IscU acts as a primary scaffold protein, and the molecular co-chaperones HscA and HscB specifically interact with IscU to facilitate ATP-driven cluster transfer. In this work, cluster transfer from Azotobacter vinelandii [Fe2S2]2+ cluster-bound IscU to apo-Grx5, a general purpose monothiol glutaredoxin in A. vinelandii, was monitored by circular dichroism spectroscopy, in the absence and in the presence of HscA/HscB/Mg-ATP. The results indicate a 700-fold enhancement in the rate of [Fe2S2]2+ cluster transfer in the presence of the co-chaperones and Mg-ATP, yielding a second-order rate constant of 20 000 M–1 min–1 at 23 °C. Thus, HscA and HscB are required for efficient ATP-dependent [Fe2S2]2+ cluster transfer from IscU to Grx5. The results support a role for monothiol Grx’s in storing and transporting [Fe2S2]2+ clusters assembled on IscU and illustrate the limitations of interpreting in vitro cluster transfer studies involving [Fe2S2]-IscU in the absence of the dedicated HscA/HscB co-chaperone system.

Copyright © 2012 American Chemical Society

The ubiquitous and essential IscU protein serves as the primary scaffold for cysteine desulfurase-mediated iron–sulfur cluster assembly in the ISC machinery for cluster biogenesis that is used by many bacteria and in eukaryotic mitochondria. (1-3) Under reconstitution conditions, the initial product is a stable form containing one [Fe2S2]2+ cluster per homodimer, [Fe2S2]-IscU, which is slowly converted under strictly anaerobic conditions into a form containing one [Fe4S4]2+ cluster per homodimer, [Fe4S4]-IscU, via reductive coupling of two [Fe2S2]2+ clusters at the subunit interface. (4, 5)In vivo studies have shown that IscU-type proteins have critical roles in the maturation of both [Fe2S2] and [Fe4S4] cluster-containing proteins under aerobic and anaerobic conditions. (6) Taken together with recent structural evidence that the initial product of IscS/IscU cluster biosynthesis is an IscU monomer with a solvent-exposed [Fe2S2] cluster, (3) there is little doubt that the stable [Fe2S2]-IscU dimer is physiologically relevant for initiating cellular [Fe2S2] cluster trafficking. Moreover, the bacterial isc operon also contains an essential and dedicated molecular co-chaperone system, HscA/HscB in bacteria (Ssq1/Jac1 in yeast mitochondria), which serves to specifically enhance the rate of [Fe2S2]2+ cluster transfer from the [Fe2S2]-IscU dimer to apo acceptor proteins such as Isc ferredoxin (Fdx) in an ATP-dependent reaction. (7, 8) However, it is currently unclear if IscU transfers clusters directly to acceptor proteins or via proposed intermediate cluster carrier proteins such as the A-type, (9, 10) Nfu-type, (11, 12) or monothiol glutaredoxins (Grx’s). (13, 14)

In vivo studies in Saccharomyces cerevisiae have demonstrated an important role for Grx5 in Fe–S cluster biogenesis. (15) Yeast Grx5 is a member of a ubiquitous and well-defined class of monothiol Grx’s with CGFS active sites that exhibit low glutathione-dependent thiol–disulfide oxidoreductase activity. (14) Rather, 55Fe-radiolabeled immunoprecipitation studies have indicated a role in facilitating transfer of Fe–S clusters assembled on Isu1, a yeast homologue of IscU. (16) Moreover, spectroscopic and structural studies have shown that monothiol Grx’s can bind subunit-bridging [Fe2S2]2+ clusters, ligated by the active-site cysteines of each monomer and two glutathiones, that can be rapidly transferred to physiologically relevant acceptor proteins. (13, 17, 18) However, there is currently no direct evidence for [Fe2S2]2+ cluster transfer from IscU to apo monothiol Grx’s. In this work, we present direct spectroscopic evidence for rapid, ATP-driven, [Fe2S2]2+ cluster transfer from [Fe2S2]-IscU to apo-Grx5 in the presence of HscA and HscB using recombinant proteins from Azotobacter vinelandii. The results demonstrate the critical role that HscA and HscB play in facilitating cluster transfer from [Fe2S2]-IscU to monothiol Grx’s and suggest an important role for monothiol Grx’s in the trafficking of [Fe2S2]2+ clusters assembled on IscU. The experimental methods for expressing, purifying, and assaying the proteins used in this work and the protocols used for cluster transfer reactions are described in the Supporting Information.

The marked differences in the CD spectra of the [Fe2S2]2+ centers in A. vinelandii IscU and Grx5, red and blue spectra, respectively, in Figure 1, make this the method of choice for monitoring cluster transfer between these two proteins. No cluster transfer was observed from [Fe2S2]-Grx5 to apo-IscU over a period of 3 h using a 2-fold excess of [Fe2S2] clusters per apo-IscU dimer, in the presence of physiologically relevant levels of glutathione (3 mM). However, the reverse reaction involving cluster transfer from [Fe2S2]-IscU to apo-Grx5 does occur, albeit very slowly, in the presence of 3 mM glutathione. This is shown in Figure 1, which indicates ∼30% cluster transfer over a period of 3 h, using IscU containing 0.9 [Fe2S2]2+ cluster per homodimer and a 1.7-fold excess of dimeric Grx5 per IscU [Fe2S2] cluster. In contrast, in the presence of HscA, HscB, Mg-ATP, and KCl (required for optimal ATPase activity of HscA), the CD spectrum of [Fe2S2]-IscU is perturbed by binding to HscA and HscB, as previously observed, (7) and the rate of cluster transfer from [Fe2S2]-IscU to apo-Grx5 is dramatically enhanced, going to completion within 6 min of initiating the reaction by the addition of Mg-ATP, see Figure 2.

Figure 1

Figure 1. Time course of cluster transfer from A. vinelandii [Fe2S2]-IscU (45 μM in [Fe2S2]2+ clusters) to apo-Grx5 (150 μM in monomer) monitored by UV–visible CD spectroscopy at 23 °C. (A) CD spectra recorded at 0, 7, 20, 40, 60, 80, 120, and 180 min after adding [Fe2S2]-IscU to apo-Grx5 in 100 mM Tris-HCl buffer, pH 7.8, with 3 mM glutathione. (B) Simulated CD spectra corresponding to quantitative [Fe2S2]2+ cluster transfer from [Fe2S2]-IscU to apo-Grx5 in 10% increments. Δε values are based on the [Fe2S2]2+ cluster concentration, and the path length was 1 cm.

Figure 2

Figure 2. Time course of cluster transfer from A. vinelandii [Fe2S2]-IscU to apo-Grx in the presence of 0.10 mM A. vinelandii HscA and HscB, 40 mM MgCl2, 2 mM ATP, and 150 mM KCl monitored by UV–visible CD spectroscopy at room temperature. CD spectra were recorded at 3, 6, 10, 14, 18, 22, 26, 30, 40, 50, and 60 min after the addition of Mg-ATP to the reaction mixture. All other conditions are the same as described in Figure 1.

Rate constants for [Fe2S2]-IscU to apo-Grx5 cluster transfer in the absence and in the presence of the co-chaperones, Mg-ATP and KCl, were quantitatively assessed by fitting CD intensities as a function of time to second-order kinetics based on the initial concentrations of donor and acceptor, see Figure 3. The rate constant increases ∼700-fold, from 30 to 20 000 M–1 min–1, on addition of the co-chaperones, Mg-ATP and KCl. This is much greater than the ∼20-fold increase (from 36 to 800 M–1 min–1) in the rate of cluster transfer from [Fe2S2]-IscU to apo-IscFdx that occurs on addition of the same co-chaperones. (7) This suggests that [Fe2S2]-IscU is unlikely to be the immediate [Fe2S2] cluster donor for maturation of IscFdx, which functions as an essential electron donor for ISC-mediated cluster assembly in A. vinelandii. (19) Rather, as discussed below, IscFdx may receive [Fe2S2] clusters directly from Grx5.

Figure 3

Figure 3. Comparison of the kinetics of cluster transfer from A. vinelandii [Fe2S2]-IscU to apo-Grx5 in the presence and in the absence of HscA/HscB/ATP. All conditions are the same as described in Figures 1 and 2. The data in the presence of HscA/HscB/ATP (■) were obtained by continuously monitoring the CD intensity at 460 nm after initiation of the reaction with Mg-ATP, and the solid line is a best-fit simulation to second-order kinetics with a rate constant of 20 000 M–1 min–1. The data in the absence of HscA/HscB/ATP (•) were obtained by monitoring the difference in the CD intensity at 457 and 408 nm, and the solid line is a best-fit simulation to second-order kinetics with a rate constant of 30 M–1 min–1.

The ability of Grx5 to rapidly and quantitatively accept [Fe2S2]2+ clusters from [Fe2S2]-IscU in the presence of the co-chaperones, in an ATP-dependent reaction, supports a physiological role for monothiol Grx’s in the trafficking of [Fe2S2]2+ clusters that are assembled on IscU. Monothiol Grx’s therefore have the capacity to store and/or deliver [Fe2S2]2+ clusters assembled on U-type scaffold proteins. Interestingly, slow and reversible [Fe2S2] cluster exchange via direct protein interaction between human Isu and Grx2, in the absence of the human Fe–S cluster biogenesis co-chaperone system (HSPA9 and HSC20) (20, 21) and Mg-ATP, has recently been reported by monitoring loss or gain in disulfide oxidoreductase activity and isothermal titration calorimetry. (22) Although human Grx2 (CSYC active site) is a dithiol Grx and has not been implicated in Fe–S cluster biogenesis, it has been shown to exist in a mononuclear apo form with high disulfide oxidoreductase activity and a [Fe2S2]2+ cluster-bridged dimer, ligated by the first active-site cysteine of each Grx2 monomer and two glutathiones, which lacks disulfide oxidoreductase activity. (23) In light of the stability of the cluster-bound form with respect to cluster transfer and sensitivity to oxidative stress, the [Fe2S2]2+ cluster on human Grx2 has been proposed to function as a sensor that responds to oxidative stress by activating the disulfide oxidoreductase activity via cluster degradation. (24)

A [Fe2S2]2+ cluster storage function for monothiol Grx’s may be required under Fe-replete conditions, and the extent of cluster loading may be an important sensor of the cellular Fe–S cluster status. This latter hypothesis is supported by the accumulating evidence that the Fe regulon in yeast is controlled by the extent of [Fe2S2] cluster-loading of the cytosolic Grx3 and Grx4 monothiol glutaredoxins. (25-27) In S. cerevisiae, the sensing mechanism involves interaction of the [Fe2S2]2+ cluster-bound form of the Grx3 or Grx4 homodimer with a BolA-type protein, termed Fra2, to form a less labile [Fe2S2]2+ cluster-bound Grx3/4-Fra2 heterodimer that prevents accumulation of the Aft transcription factor in the nucleus, where it functions in activating Fe uptake systems. A related Fe or Fe–S cluster regulatory function may also occur in bacteria since a stable [Fe2S2]2+ cluster-bound Grx4/BolA heterodimer has been reported in Escherichia coli, where Grx4 is the sole monothiol Grx. (28) An homologous BolA protein is also present in A. vinelandii. Alternatively, either the [Fe2S2]2+ cluster-bound monothiol Grx homodimer or the Grx-BolA heterodimer may serve to regulate Fe–S cluster biogenesis in bacteria by acting as the [Fe2S2]2+ cluster donor for IscR, which acts as a transcriptional repressor of the entire isc operon in its [Fe2S2]2+ cluster-bound form. (29)

In addition to a potential [Fe2S2]2+ cluster storage or sensing role for monothiol Grx’s, the available evidence for rapid cluster transfer to physiologically relevant acceptor proteins suggests a role as a delivery system for clusters assembled on primary scaffold proteins. This was first demonstrated in plant chloroplasts, in which [Fe2S2]2+ cluster-bound monothiol GrxS14 was found to rapidly and quantitatively transfer its [Fe2S2] cluster to apo plant Fdx with a second-order rate contant of 20 000 M–1 min–1 at 23 °C. (11) Subsequently, cluster transfer from [Fe2S2]-Grx4 to apo-IscFdx in E. coli was demonstrated, although the rate constant was not determined. (28) Based on the CD studies shown in Figure 4, intact and quantitative cluster transfer from [Fe2S2]-Grx5 to apo-IscFdx also occurs in A. vinelandii, with a second-order rate constant of 2100 M–1 min–1 at 23 °C. This rate constant is 2–3 times larger than that reported for co-chaperone-assisted [Fe2S2] cluster transfer from IscU (800 M–1 min–1 at 23 °C), (7) indicating that Grx5 is a viable intermediate carrier protein for delivering [Fe2S2] clusters assembled on IscU to apo-IscFdx.

Figure 4

Figure 4. Time course of cluster transfer from A. vinelandii [Fe2S2]-Grx5 (32 μM in [Fe2S2]2+ clusters) to apo-IscFdx (48 μM) monitored by UV–visible CD spectroscopy at 23 °C . (A) CD spectra recorded at 6, 20, 40, 60, 80, 100, 120, and 160 min after adding [Fe2S2]-Grx5 to apo-IscFdx in 100 mM Tris-HCl buffer, pH 7.8, with 2 mM dithiothreitol. The arrows indicate the direction of intensity change with increasing time at selected wavelengths. Inset shows kinetic data for the cluster transfer measured at 434 nm, and the solid line is a best-fit simulation to second-order kinetics with a rate constant of 2100 M–1 min–1. (B) Simulated CD spectra corresponding to quantitative [Fe2S2]2+ cluster transfer from [Fe2S2]-Grx5 to apo-IscFdx in 10% increments. Δε values are based on the [Fe2S2]2+ cluster concentration, and the path length was 1 cm.

Much work needs to be done to identify specific cluster acceptor proteins for [Fe2S2]2+ cluster-bound forms of monothiol Grx’s. These could be other proposed carrier proteins such as A-type and Nfu-type proteins and/or specific apo Fe–S proteins and enzymes. Identifying the specificity of [Fe2S2] cluster-bound forms of monothiol Grx’s with respect to acceptor proteins is under active investigation in our laboratory. In addition, since IscU functions as a catalyst for Fe–S cluster assembly, (30) it is clearly important to develop a robust in vitro catalytic system that includes the co-chaperones for investigating cluster assembly on target proteins using Fe(II) and cysteine as the primary substrates.

Supporting Information

Click to copy section linkSection link copied!

Experimental methods for expressing, purifying, and assaying the proteins used in this work and protocols used for cluster transfer reactions. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

Click to copy section linkSection link copied!

  • Corresponding Author
    • Michael K. Johnson - Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, Georgia 30602, United States
  • Authors
    • Priyanka Shakamuri - Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, Georgia 30602, United States
    • Bo Zhang - Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, Georgia 30602, United States
  • Author Contributions

    P.S. and B.Z. contributed equally to this work.

  • Notes
    The authors declare no competing financial interest.

Acknowledgment

Click to copy section linkSection link copied!

We thank Dr. Dennis Dean and co-workers for providing plasmids for the recombinant expression of A. vinelandii IscU, HscA, HscB, Grx5, and IscFdx. This work was supported by a grant from the NIH (GM62542 to M.K.J.)

References

Click to copy section linkSection link copied!

This article references 30 other publications.

  1. 1
    Johnson, D. C.; Dean, D. R.; Smith, A. D.; Johnson, M. K. Annu. Rev. Biochem. 2005, 74, 247
  2. 2
    Lill, R. Nature 2009, 460, 831
  3. 3
    Marinoni, E. N.; de Oliveira, J. S.; Nicolet, Y.; Raulfs, E. C.; Amara, P.; Dean, D. R.; Fontecilla-Camps, J. C. Angew. Chem., Int. Ed. 2012, 51, 5439
  4. 4
    Agar, J. N.; Krebs, B.; Frazzon, J.; Huynh, B. H.; Dean, D. R.; Johnson, M. K. Biochemistry 2000, 39, 7856
  5. 5
    Chandramouli, K.; Unciuleac, M.-C.; Naik, S.; Dean, D. R.; Huynh, B. H.; Johnson, M. K. Biochemistry 2007, 46, 6804
  6. 6
    Mühlenhoff, U.; Richter, N.; Pines, O.; Pierik, A. J.; Lill, R. J. Biol. Chem. 2011, 286, 41205
  7. 7
    Chandramouli, K.; Johnson, M. K. Biochemistry 2006, 45, 11087
  8. 8
    Vickery, L. E.; Cupp-Vickery, J. R. Crit. Rev. Biochem. Mol. Biol. 2007, 42, 95
  9. 9
    Ollagnier-de-Choudens, S.; Sanakis, Y.; Fontecave, M. J. Biol. Inorg. Chem. 2004, 9, 828
  10. 10
    Vinella, D.; Brochier-Armanet, C.; Loiseau, L.; Talla, E.; Barras, F. PLoS Genet. 2009, 5, e1000497
  11. 11
    Bandyopadhyay, S.; Naik, S.; O’Carroll, I. P.; Huynh, B. H.; Dean, D. R.; Johnson, M. K.; Dos Santos, P. C. J. Biol. Chem. 2008, 283, 14092
  12. 12
    Angelini, S.; Gerez, C.; Ollagnier-de-Choudens, S.; Sanakis, Y.; Fontecave, M.; Barras, F.; Py, B. J. Biol. Chem. 2008, 289, 14084
  13. 13
    Bandyopadhyay, S.; Gama, F.; Molina-Navarro, M. M.; Gualberto, J. M.; Claxton, R.; Naik, S. G.; Huynh, B. H.; Herrero, E.; Jacquot, J.-P.; Johnson, M. K.; Rouhier, N. EMBO J. 2008, 27, 1122
  14. 14
    Rouhier, N.; Couturier, J.; Johnson, M. K.; Jacquot, J. P. Trends Biochem. Sci. 2010, 35, 43
  15. 15
    Rodríguez-Manzaneque, M. T.; Tamarit, J.; Bellí, G.; Ros, J.; Herrero, E. Mol. Biol. Cell 2002, 13, 1109
  16. 16
    Mühlenhoff, U.; Gerber, J.; Richhardt, N.; Lill, R. EMBO J. 2003, 22, 4815
  17. 17
    Picciocchi, A.; Saguez, C.; Boussac, A.; Cassier-Chauvat, C.; Chauvat, F. Biochemistry 2007, 46, 15018
  18. 18
    Iwema, T.; Picciocchi, A.; Traore, D. A.; Ferrer, J. L.; Chauvat, F.; Jacquamet, L. Biochemistry 2009, 48, 6041
  19. 19
    Johnson, D. C.; Unciuleac, M.-C.; Dean, D. R. J. Bacteriol. 2006, 188, 7551
  20. 20
    Uhrigshardt, H.; Singh, A.; Kovtunovych, G.; Ghosh, M.; Rouault, T. A. Hum. Mol. Genet. 2010, 3816
  21. 21
    Rouault, T. A.; Tong, W. H. Cell 2008, 24, 398
  22. 22
    Qi, W.; Cowan, J. A. Chem. Commun. 2011, 47, 4889
  23. 23
    Johansson, C.; Kavanagh, K. L.; Gileadi, O.; Oppermann, U. J. Biol. Chem. 2007, 282, 3077
  24. 24
    Lillig, C. H.; Berndt, C.; Vergnolle, O.; Lonn, M. E.; Hudermann, C.; Bill, E.; Holmgren, A. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 8168
  25. 25
    Ojeda, L.; Keller, G.; Muhlenhoff, U.; Rutherford, J. C.; Lill, R.; Winge, D. R. J. Biol. Chem. 2006, 281, 17661
  26. 26
    Li, H.; Mapolelo, D. T.; Dingra, N. N.; Naik, S. G.; Lees, N. S.; Hoffman, B. M.; Riggs-Gelasco, P. J.; Huynh, B. H.; Johnson, M. K.; Outten, C. E. Biochemistry 2009, 48, 9569
  27. 27
    Li, H.; Mapolelo, D. T.; Dingra, N. N.; Keller, G.; Riggs-Gelasco, P. J.; Winge, D. R.; Johnson, M. K.; Outten, C. E. J. Biol. Chem. 2011, 286, 867
  28. 28
    Yeung, N.; Gold, B.; Liu, N. L.; Prathapam, R.; Sterling, H. J.; Williams, E. R.; Butland, G. Biochemistry 2011, 50, 8957
  29. 29
    Schwartz, C. J.; Giel, J. L.; Patschkowski, T.; Luther, C.; Ruzicka, F. J.; Beinert, H.; Kiley, P. J. Proc. Natl. Acad. Sci. U.S.A. 2011, 98, 14895
  30. 30
    Bonomi, F.; Iametti, S.; Ta, D. T.; Vickery, L. E. J. Biol. Chem. 2005, 280, 29513

Cited By

Click to copy section linkSection link copied!
Citation Statements
Explore this article's citation statements on scite.ai

This article is cited by 82 publications.

  1. Kouhei Kunichika, Ryosuke Nakamura, Takashi Fujishiro, Yasuhiro Takahashi. The Structure of the Dimeric State of IscU Harboring Two Adjacent [2Fe–2S] Clusters Provides Mechanistic Insights into Cluster Conversion to [4Fe–4S]. Biochemistry 2021, 60 (20) , 1569-1572. https://doi.org/10.1021/acs.biochem.1c00112
  2. Cheng-Wei Lin, Jacob W. McCabe, David H. Russell, David P. Barondeau. Molecular Mechanism of ISC Iron–Sulfur Cluster Biogenesis Revealed by High-Resolution Native Mass Spectrometry. Journal of the American Chemical Society 2020, 142 (13) , 6018-6029. https://doi.org/10.1021/jacs.9b11454
  3. James N. Vranish, Deepika Das, and David P. Barondeau . Real-Time Kinetic Probes Support Monothiol Glutaredoxins As Intermediate Carriers in Fe–S Cluster Biosynthetic Pathways. ACS Chemical Biology 2016, 11 (11) , 3114-3121. https://doi.org/10.1021/acschembio.6b00632
  4. Daniel L. M. Suess, Jon M. Kuchenreuther, Liliana De La Paz, James R. Swartz, and R. David Britt . Biosynthesis of the [FeFe] Hydrogenase H Cluster: A Central Role for the Radical SAM Enzyme HydG. Inorganic Chemistry 2016, 55 (2) , 478-487. https://doi.org/10.1021/acs.inorgchem.5b02274
  5. Nicholas G. Fox, Mrinmoy Chakrabarti, Sean P. McCormick, Paul A. Lindahl, and David P. Barondeau . The Human Iron–Sulfur Assembly Complex Catalyzes the Synthesis of [2Fe-2S] Clusters on ISCU2 That Can Be Transferred to Acceptor Molecules. Biochemistry 2015, 54 (25) , 3871-3879. https://doi.org/10.1021/bi5014485
  6. James N. Vranish, William K. Russell, Lusa E. Yu, Rachael M. Cox, David H. Russell, and David P. Barondeau . Fluorescent Probes for Tracking the Transfer of Iron–Sulfur Cluster and Other Metal Cofactors in Biosynthetic Reaction Pathways. Journal of the American Chemical Society 2015, 137 (1) , 390-398. https://doi.org/10.1021/ja510998s
  7. Bo Zhang, Sibali Bandyopadhyay, Priyanka Shakamuri, Sunil G. Naik, Boi Hanh Huynh, Jérémy Couturier, Nicolas Rouhier, and Michael K. Johnson . Monothiol Glutaredoxins Can Bind Linear [Fe3S4]+ and [Fe4S4]2+ Clusters in Addition to [Fe2S2]2+ Clusters: Spectroscopic Characterization and Functional Implications. Journal of the American Chemical Society 2013, 135 (40) , 15153-15164. https://doi.org/10.1021/ja407059n
  8. Huanyao Gao, Sowmya Subramanian, Jérémy Couturier, Sunil G. Naik, Sung-Kun Kim, Thomas Leustek, David B. Knaff, Hui-Chen Wu, Florence Vignols, Boi Hanh Huynh, Nicolas Rouhier, and Michael K. Johnson . Arabidopsis thaliana Nfu2 Accommodates [2Fe-2S] or [4Fe-4S] Clusters and Is Competent for in Vitro Maturation of Chloroplast [2Fe-2S] and [4Fe-4S] Cluster-Containing Proteins. Biochemistry 2013, 52 (38) , 6633-6645. https://doi.org/10.1021/bi4007622
  9. Claire E. Fisher, Daniel W. Bak, Kennedy E. Miller, Clorissa L. Washington-Hughes, Anna M. Dickfoss, Eranthie Weerapana, Béatrice Py, F. Wayne Outten. Escherichia coli monothiol glutaredoxin GrxD replenishes Fe-S clusters to the essential ErpA A-type carrier under low iron stress. Journal of Biological Chemistry 2024, 300 (8) , 107506. https://doi.org/10.1016/j.jbc.2024.107506
  10. Qiaozhi Luo, Zhongjian Shen, Nipapan Kanjana, Xingkai Guo, Huihui Wu, Lisheng Zhang. Molecular Identification of the Glutaredoxin 5 Gene That Plays Important Roles in Antioxidant Defense in Arma chinensis (Fallou). Insects 2024, 15 (7) , 537. https://doi.org/10.3390/insects15070537
  11. Mengmeng Zhou, Eva-Maria Hanschmann, Axel Römer, Thomas Linn, Sebastian Friedrich Petry. The significance of glutaredoxins for diabetes mellitus and its complications. Redox Biology 2024, 71 , 103043. https://doi.org/10.1016/j.redox.2024.103043
  12. Rui Fan, Shigui Jiang, Yundong Li, Qibin Yang, Song Jiang, Jianhua Huang, Lishi Yang, Xu Chen, Falin Zhou. Molecular Characterization and Expression Analysis of Glutaredoxin 5 in Black Tiger Shrimp (Penaeus monodon) and Correlation Analysis Between the SNPs of PmGrx5 and Ammonia-N Stress Tolerance Trait. Frontiers in Marine Science 2022, 9 https://doi.org/10.3389/fmars.2022.909827
  13. Tirthankar Bandyopadhyay, Caryn E. Outten. The role of thiols in iron–sulfur cluster biogenesis. 2022, 487-506. https://doi.org/10.1016/B978-0-323-90219-9.00004-2
  14. Zechariah Thompson, Insiya Fidai, Christine Wachnowsky, Amber L. Hendricks, J.A. Cowan. Spectroscopic and functional characterization of the [2Fe–2S] scaffold protein Nfu from Synechocystis PCC6803. Biochimie 2022, 192 , 51-62. https://doi.org/10.1016/j.biochi.2021.09.013
  15. Stéphane L. Benoit, Stephanie Agudelo, Robert J. Maier. A two-hybrid system reveals previously uncharacterized protein–protein interactions within the Helicobacter pylori NIF iron–sulfur maturation system. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-90003-1
  16. Mohammad Sadik, Mohammad Afsar, Ravishankar Ramachandran, Saman Habib. [Fe–S] biogenesis and unusual assembly of the ISC scaffold complex in the Plasmodium falciparum mitochondrion. Molecular Microbiology 2021, 116 (2) , 606-623. https://doi.org/10.1111/mmi.14735
  17. Sakiko Sato, Yumeka Matsushima, Miaki Kanazawa, Naoyuki Tanaka, Takashi Fujishiro, Kouhei Kunichika, Ryosuke Nakamura, Hiroaki Tomioka, Kei Wada, Yasuhiro Takahashi. Evidence for dynamic in vivo interconversion of the conformational states of IscU during iron–sulfur cluster biosynthesis. Molecular Microbiology 2021, 115 (4) , 807-818. https://doi.org/10.1111/mmi.14646
  18. Stefania Iametti, Francesco Bonomi, Alberto Barbiroli. Circular Dichroism to Probe the Synthesis, Transfer, and Stability of Fe-S Clusters. 2021, 209-229. https://doi.org/10.1007/978-1-0716-1605-5_12
  19. Carsten Berndt, Loïck Christ, Nicolas Rouhier, Ulrich Mühlenhoff. Glutaredoxins with iron-sulphur clusters in eukaryotes - Structure, function and impact on disease. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2021, 1862 (1) , 148317. https://doi.org/10.1016/j.bbabio.2020.148317
  20. Evan A. Talib, Caryn E. Outten. Iron-sulfur cluster biogenesis, trafficking, and signaling: Roles for CGFS glutaredoxins and BolA proteins. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2021, 1868 (1) , 118847. https://doi.org/10.1016/j.bbamcr.2020.118847
  21. Joseph J. Braymer, Sven A. Freibert, Magdalena Rakwalska-Bange, Roland Lill. Mechanistic concepts of iron-sulfur protein biogenesis in Biology. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2021, 1868 (1) , 118863. https://doi.org/10.1016/j.bbamcr.2020.118863
  22. Sheila C. Bonitatibus, Daniel W. Bak, Bin Li, Sean J. Elliott. Iron-Sulfur Clusters: Biochemical Aspects. 2021, 103-123. https://doi.org/10.1016/B978-0-08-102688-5.00107-0
  23. Clare R. Harding, Saima M. Sidik, Boryana Petrova, Nina F. Gnädig, John Okombo, Alice L. Herneisen, Kurt E. Ward, Benedikt M. Markus, Elizabeth A. Boydston, David A. Fidock, Sebastian Lourido. Genetic screens reveal a central role for heme metabolism in artemisinin susceptibility. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-18624-0
  24. Tamanna Azam, Jonathan Przybyla-Toscano, Florence Vignols, Jérémy Couturier, Nicolas Rouhier, Michael K. Johnson. The Arabidopsis Mitochondrial Glutaredoxin GRXS15 Provides [2Fe-2S] Clusters for ISCA-Mediated [4Fe-4S] Cluster Maturation. International Journal of Molecular Sciences 2020, 21 (23) , 9237. https://doi.org/10.3390/ijms21239237
  25. Ulrich Mühlenhoff, Joseph J. Braymer, Stefan Christ, Nicole Rietzschel, Marta A. Uzarska, Benjamin D. Weiler, Roland Lill. Glutaredoxins and iron-sulfur protein biogenesis at the interface of redox biology and iron metabolism. Biological Chemistry 2020, 401 (12) , 1407-1428. https://doi.org/10.1515/hsz-2020-0237
  26. Batoul Srour, Sylvain Gervason, Beata Monfort, Benoit D’Autréaux. Mechanism of Iron–Sulfur Cluster Assembly: In the Intimacy of Iron and Sulfur Encounter. Inorganics 2020, 8 (10) , 55. https://doi.org/10.3390/inorganics8100055
  27. Trnka Daniel, Hossain Md Faruq, Jordt Laura Magdalena, Gellert Manuela, Lillig Christopher Horst. Role of GSH and Iron-Sulfur Glutaredoxins in Iron Metabolism—Review. Molecules 2020, 25 (17) , 3860. https://doi.org/10.3390/molecules25173860
  28. Roland Lill, Sven-A. Freibert. Mechanisms of Mitochondrial Iron-Sulfur Protein Biogenesis. Annual Review of Biochemistry 2020, 89 (1) , 471-499. https://doi.org/10.1146/annurev-biochem-013118-111540
  29. Mengxuan Jia, Sambuddha Sen, Christine Wachnowsky, Insiya Fidai, James A. Cowan, Vicki H. Wysocki. Characterization of [2Fe–2S]‐Cluster‐Bridged Protein Complexes and Reaction Intermediates by use of Native Mass Spectrometric Methods. Angewandte Chemie 2020, 132 (17) , 6790-6794. https://doi.org/10.1002/ange.201915615
  30. Mengxuan Jia, Sambuddha Sen, Christine Wachnowsky, Insiya Fidai, James A. Cowan, Vicki H. Wysocki. Characterization of [2Fe–2S]‐Cluster‐Bridged Protein Complexes and Reaction Intermediates by use of Native Mass Spectrometric Methods. Angewandte Chemie International Edition 2020, 59 (17) , 6724-6728. https://doi.org/10.1002/anie.201915615
  31. Corentin Baussier, Soufyan Fakroun, Corinne Aubert, Sarah Dubrac, Pierre Mandin, Béatrice Py, Frédéric Barras. Making iron-sulfur cluster: structure, regulation and evolution of the bacterial ISC system. 2020, 1-39. https://doi.org/10.1016/bs.ampbs.2020.01.001
  32. Christina Ploumi, Emmanouil Kyriakakis, Nektarios Tavernarakis. Dynamics of Iron Homeostasis in Health and Disease: Molecular Mechanisms and Methods for Iron Determination. 2019, 105-145. https://doi.org/10.1007/978-981-13-0989-2_5
  33. Kai Cai, John L. Markley. NMR as a Tool to Investigate the Processes of Mitochondrial and Cytosolic Iron-Sulfur Cluster Biosynthesis. Molecules 2018, 23 (9) , 2213. https://doi.org/10.3390/molecules23092213
  34. Joshua A. Olive, J.A. Cowan. Role of the HSPA9/HSC20 chaperone pair in promoting directional human iron-sulfur cluster exchange involving monothiol glutaredoxin 5. Journal of Inorganic Biochemistry 2018, 184 , 100-107. https://doi.org/10.1016/j.jinorgbio.2018.04.007
  35. Rafal Dutkiewicz, Malgorzata Nowak. Molecular chaperones involved in mitochondrial iron–sulfur protein biogenesis. JBIC Journal of Biological Inorganic Chemistry 2018, 23 (4) , 569-579. https://doi.org/10.1007/s00775-017-1504-x
  36. Stéphane L. Benoit, Ashley A. Holland, Michael K. Johnson, Robert J. Maier. Iron–sulfur protein maturation in Helicobacter pylori : identifying a Nfu‐type cluster carrier protein and its iron–sulfur protein targets. Molecular Microbiology 2018, 108 (4) , 379-396. https://doi.org/10.1111/mmi.13942
  37. Andrew Melber, Dennis R. Winge. Steps Toward Understanding Mitochondrial Fe/S Cluster Biogenesis. 2018, 265-292. https://doi.org/10.1016/bs.mie.2017.09.004
  38. Angela-Nadia Albetel, Caryn E. Outten. Characterization of Glutaredoxin Fe–S Cluster-Binding Interactions Using Circular Dichroism Spectroscopy. 2018, 327-353. https://doi.org/10.1016/bs.mie.2017.11.003
  39. Sven-Andreas Freibert, Benjamin D. Weiler, Eckhard Bill, Antonio J. Pierik, Ulrich Mühlenhoff, Roland Lill. Biochemical Reconstitution and Spectroscopic Analysis of Iron–Sulfur Proteins. 2018, 197-226. https://doi.org/10.1016/bs.mie.2017.11.034
  40. Simone Ciofi-Baffoni, Veronica Nasta, Lucia Banci. Protein networks in the maturation of human iron–sulfur proteins. Metallomics 2018, 10 (1) , 49-72. https://doi.org/10.1039/C7MT00269F
  41. Christine Wachnowsky, Yushi Liu, Taejin Yoon, J. A. Cowan. Regulation of human Nfu activity in Fe‐S cluster delivery—characterization of the interaction between Nfu and the HSPA 9/Hsc20 chaperone complex. The FEBS Journal 2018, 285 (2) , 391-410. https://doi.org/10.1111/febs.14353
  42. Brian J. Vaccaro, Sonya M. Clarkson, James F. Holden, Dong-Woo Lee, Chang-Hao Wu, Farris L. Poole II, Julien J. H. Cotelesage, Mark J. Hackett, Sahel Mohebbi, Jingchuan Sun, Huilin Li, Michael K. Johnson, Graham N. George, Michael W. W. Adams. Biological iron-sulfur storage in a thioferrate-protein nanoparticle. Nature Communications 2017, 8 (1) https://doi.org/10.1038/ncomms16110
  43. Nathaniel A. Wesley, Christine Wachnowsky, Insiya Fidai, J. A. Cowan. Analysis of NFU ‐1 metallocofactor binding‐site substitutions—impacts on iron–sulfur cluster coordination and protein structure and function. The FEBS Journal 2017, 284 (22) , 3817-3837. https://doi.org/10.1111/febs.14270
  44. Nathaniel A. Wesley, Christine Wachnowsky, Insiya Fidai, J. A. Cowan. Understanding the molecular basis for multiple mitochondrial dysfunctions syndrome 1 ( MMDS 1): impact of a disease‐causing Gly189Arg substitution on NFU 1. The FEBS Journal 2017, 284 (22) , 3838-3848. https://doi.org/10.1111/febs.14271
  45. Sandrine Ollagnier de Choudens, Hélène Puccio. FeS Cluster Assembly: ISC System in Bacteria and Eukarya. 2017, 1-19. https://doi.org/10.1002/9781119951438.eibc2467
  46. Jonathan Przybyla‐Toscano, Thomas Roret, Jérémy Couturier, Nicolas Rouhier. FeS Cluster Assembly: Role of Monothiol Grxs and Nfu Proteins. 2017, 1-19. https://doi.org/10.1002/9781119951438.eibc2470
  47. Joseph J. Braymer, Roland Lill. Iron–sulfur cluster biogenesis and trafficking in mitochondria. Journal of Biological Chemistry 2017, 292 (31) , 12754-12763. https://doi.org/10.1074/jbc.R117.787101
  48. Ilya Shlar, Samir Droby, Victor Rodov. Modes of antibacterial action of curcumin under dark and light conditions: A toxicoproteomics approach. Journal of Proteomics 2017, 160 , 8-20. https://doi.org/10.1016/j.jprot.2017.03.008
  49. Christine Wachnowsky, Nathaniel A. Wesley, Insiya Fidai, J.A. Cowan. Understanding the Molecular Basis of Multiple Mitochondrial Dysfunctions Syndrome 1 (MMDS1)—Impact of a Disease-Causing Gly208Cys Substitution on Structure and Activity of NFU1 in the Fe/S Cluster Biosynthetic Pathway. Journal of Molecular Biology 2017, 429 (6) , 790-807. https://doi.org/10.1016/j.jmb.2017.01.021
  50. Prasenjit Prasad Saha, Vinaya Vishwanathan, Kondalarao Bankapalli, Patrick D’Silva. Iron-Sulfur Protein Assembly in Human Cells. 2017, 25-65. https://doi.org/10.1007/112_2017_5
  51. Christine Wachnowsky, James A. Cowan. In Vitro Studies of Cellular Iron–Sulfur Cluster Biosynthesis, Trafficking, and Transport. 2017, 55-82. https://doi.org/10.1016/bs.mie.2017.06.045
  52. Rafal Dutkiewicz, Malgorzata Nowak, Elizabeth A. Craig, Jaroslaw Marszalek. Fe–S Cluster Hsp70 Chaperones: The ATPase Cycle and Protein Interactions. 2017, 161-184. https://doi.org/10.1016/bs.mie.2017.07.004
  53. Stephen P. Dzul, Agostinho G. Rocha, Swati Rawat, Ashoka Kandegedara, April Kusowski, Jayashree Pain, Anjaneyulu Murari, Debkumar Pain, Andrew Dancis, Timothy L. Stemmler. In vitro characterization of a novel Isu homologue from Drosophila melanogaster for de novo FeS-cluster formation. Metallomics 2017, 9 (1) , 48-60. https://doi.org/10.1039/C6MT00163G
  54. Christine Wachnowsky, Insiya Fidai, James A. Cowan. Cytosolic iron–sulfur cluster transfer—a proposed kinetic pathway for reconstitution of glutaredoxin 3. FEBS Letters 2016, 590 (24) , 4531-4540. https://doi.org/10.1002/1873-3468.12491
  55. Christine Wachnowsky, Insiya Fidai, J. A. Cowan. Iron–sulfur cluster exchange reactions mediated by the human Nfu protein. JBIC Journal of Biological Inorganic Chemistry 2016, 21 (7) , 825-836. https://doi.org/10.1007/s00775-016-1381-8
  56. Huangen Ding. Iron Homeostasis and Iron–Sulfur Cluster Assembly in Escherichia Coli. 2016, 203-214. https://doi.org/10.1002/9781119004813.ch17
  57. Ameya A. Mashruwala, Shiven Bhatt, Saroj Poudel, Eric S. Boyd, Jeffrey M. Boyd, . The DUF59 Containing Protein SufT Is Involved in the Maturation of Iron-Sulfur (FeS) Proteins during Conditions of High FeS Cofactor Demand in Staphylococcus aureus. PLOS Genetics 2016, 12 (8) , e1006233. https://doi.org/10.1371/journal.pgen.1006233
  58. . Intracellular Iron Utilisation. 2016, 265-299. https://doi.org/10.1002/9781118925645.ch8
  59. Yuxi Shan, Gino Cortopassi. Mitochondrial Hspa9/Mortalin regulates erythroid differentiation via iron-sulfur cluster assembly. Mitochondrion 2016, 26 , 94-103. https://doi.org/10.1016/j.mito.2015.12.005
  60. Insiya Fidai, Christine Wachnowsky, J. A. Cowan. Mapping cellular Fe–S cluster uptake and exchange reactions – divergent pathways for iron–sulfur cluster delivery to human ferredoxins. Metallomics 2016, 8 (12) , 1283-1293. https://doi.org/10.1039/C6MT00193A
  61. Jingwei Li, Stephen A. Pearson, Kevin D. Fenk, J. A. Cowan. Glutathione-coordinated [2Fe–2S] cluster is stabilized by intramolecular salt bridges. JBIC Journal of Biological Inorganic Chemistry 2015, 20 (8) , 1221-1227. https://doi.org/10.1007/s00775-015-1301-3
  62. Lucia Banci, Simone Ciofi-Baffoni, Karolina Gajda, Riccardo Muzzioli, Riccardo Peruzzini, Julia Winkelmann. N-terminal domains mediate [2Fe-2S] cluster transfer from glutaredoxin-3 to anamorsin. Nature Chemical Biology 2015, 11 (10) , 772-778. https://doi.org/10.1038/nchembio.1892
  63. Stefania Iametti, Alberto Barbiroli, Francesco Bonomi. Functional implications of the interaction between HscB and IscU in the biosynthesis of FeS clusters. JBIC Journal of Biological Inorganic Chemistry 2015, 20 (6) , 1039-1048. https://doi.org/10.1007/s00775-015-1285-z
  64. Nunziata Maio, Tracey A. Rouault. Iron –sulfur cluster biogenesis in mammalian cells: New insights into the molecular mechanisms of cluster delivery. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2015, 1853 (6) , 1493-1512. https://doi.org/10.1016/j.bbamcr.2014.09.009
  65. Jérémy Couturier, Jonathan Przybyla-Toscano, Thomas Roret, Claude Didierjean, Nicolas Rouhier. The roles of glutaredoxins ligating Fe–S clusters: Sensing, transfer or repair functions?. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2015, 1853 (6) , 1513-1527. https://doi.org/10.1016/j.bbamcr.2014.09.018
  66. B. Blanc, C. Gerez, S. Ollagnier de Choudens. Assembly of Fe/S proteins in bacterial systems. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2015, 1853 (6) , 1436-1447. https://doi.org/10.1016/j.bbamcr.2014.12.009
  67. Heeyong Yoon, Simon A. B. Knight, Alok Pandey, Jayashree Pain, Serdar Turkarslan, Debkumar Pain, Andrew Dancis, . Turning Saccharomyces cerevisiae into a Frataxin-Independent Organism. PLOS Genetics 2015, 11 (5) , e1005135. https://doi.org/10.1371/journal.pgen.1005135
  68. Jing Yang, Guoqiang Tan, Ting Zhang, Robert H. White, Jianxin Lu, Huangen Ding. Deletion of the Proposed Iron Chaperones IscA/SufA Results in Accumulation of a Red Intermediate Cysteine Desulfurase IscS in Escherichia coli. Journal of Biological Chemistry 2015, 290 (22) , 14226-14234. https://doi.org/10.1074/jbc.M115.654269
  69. Mario Piccioli, Paola Turano. Transient iron coordination sites in proteins: Exploiting the dual nature of paramagnetic NMR. Coordination Chemistry Reviews 2015, 284 , 313-328. https://doi.org/10.1016/j.ccr.2014.05.007
  70. Ameya A. Mashruwala, Yun Y. Pang, Zuelay Rosario‐Cruz, Harsimranjit K. Chahal, Meredith A. Benson, Laura A. Mike, Eric P. Skaar, Victor J. Torres, William M. Nauseef, Jeffrey M. Boyd. Nfu facilitates the maturation of iron‐sulfur proteins and participates in virulence in S taphylococcus aureus. Molecular Microbiology 2015, 95 (3) , 383-409. https://doi.org/10.1111/mmi.12860
  71. Oliver Stehling, Claudia Wilbrecht, Roland Lill. Mitochondrial iron–sulfur protein biogenesis and human disease. Biochimie 2014, 100 , 61-77. https://doi.org/10.1016/j.biochi.2014.01.010
  72. Lucia Banci, Diego Brancaccio, Simone Ciofi-Baffoni, Rebecca Del Conte, Ravisekhar Gadepalli, Maciej Mikolajczyk, Sara Neri, Mario Piccioli, Julia Winkelmann. [2Fe-2S] cluster transfer in iron–sulfur protein biogenesis. Proceedings of the National Academy of Sciences 2014, 111 (17) , 6203-6208. https://doi.org/10.1073/pnas.1400102111
  73. Nunziata Maio, Anamika Singh, Helge Uhrigshardt, Neetu Saxena, Wing-Hang Tong, Tracey A. Rouault. Cochaperone Binding to LYR Motifs Confers Specificity of Iron Sulfur Cluster Delivery. Cell Metabolism 2014, 19 (3) , 445-457. https://doi.org/10.1016/j.cmet.2014.01.015
  74. Béatrice Roche, Laurent Aussel, Benjamin Ezraty, Pierre Mandin, Béatrice Py, Frédéric Barras. Reprint of: Iron/sulfur proteins biogenesis in prokaryotes: Formation, regulation and diversity. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2013, 1827 (8-9) , 923-937. https://doi.org/10.1016/j.bbabio.2013.05.001
  75. Marta A. Uzarska, Rafal Dutkiewicz, Sven-Andreas Freibert, Roland Lill, Ulrich Mühlenhoff, . The mitochondrial Hsp70 chaperone Ssq1 facilitates Fe/S cluster transfer from Isu1 to Grx5 by complex formation. Molecular Biology of the Cell 2013, 24 (12) , 1830-1841. https://doi.org/10.1091/mbc.e12-09-0644
  76. Bruno Manta, Marcelo Comini, Andrea Medeiros, Martín Hugo, Madia Trujillo, Rafael Radi. Trypanothione: A unique bis-glutathionyl derivative in trypanosomatids. Biochimica et Biophysica Acta (BBA) - General Subjects 2013, 1830 (5) , 3199-3216. https://doi.org/10.1016/j.bbagen.2013.01.013
  77. Sylvain Boutigny, Avneesh Saini, Edward E.K. Baidoo, Natasha Yeung, Jay D. Keasling, Gareth Butland. Physical and Functional Interactions of a Monothiol Glutaredoxin and an Iron Sulfur Cluster Carrier Protein with the Sulfur-donating Radical S-Adenosyl-l-methionine Enzyme MiaB. Journal of Biological Chemistry 2013, 288 (20) , 14200-14211. https://doi.org/10.1074/jbc.M113.460360
  78. Béatrice Roche, Laurent Aussel, Benjamin Ezraty, Pierre Mandin, Béatrice Py, Frédéric Barras. Iron/sulfur proteins biogenesis in prokaryotes: Formation, regulation and diversity. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2013, 1827 (3) , 455-469. https://doi.org/10.1016/j.bbabio.2012.12.010
  79. Vahab Ali, Tomoyoshi Nozaki. Iron–Sulphur Clusters, Their Biosynthesis, and Biological Functions in Protozoan Parasites. 2013, 1-92. https://doi.org/10.1016/B978-0-12-407705-8.00001-X
  80. Jeffrey M Skerker, Dacia Leon, Morgan N Price, Jordan S Mar, Daniel R Tarjan, Kelly M Wetmore, Adam M Deutschbauer, Jason K Baumohl, Stefan Bauer, Ana B Ibáñez, Valerie D Mitchell, Cindy H Wu, Ping Hu, Terry Hazen, Adam P Arkin. Dissecting a complex chemical stress: chemogenomic profiling of plant hydrolysates. Molecular Systems Biology 2013, 9 (1) https://doi.org/10.1038/msb.2013.30
  81. Daphne T. Mapolelo, Bo Zhang, Sajini Randeniya, Angela-Nadia Albetel, Haoran Li, Jérémy Couturier, Caryn E. Outten, Nicolas Rouhier, Michael K. Johnson. Monothiol glutaredoxins and A-type proteins: partners in Fe–S cluster trafficking. Dalton Transactions 2013, 42 (9) , 3107. https://doi.org/10.1039/c2dt32263c
  82. Andrew Dancis, Paul A. Lindahl. Iron: Mitochondrial Iron Metabolism and the Synthesis of Iron–Sulfur Clusters. 2004, 1-17. https://doi.org/10.1002/9781119951438.eibc2147

Journal of the American Chemical Society

Cite this: J. Am. Chem. Soc. 2012, 134, 37, 15213–15216
Click to copy citationCitation copied!
https://doi.org/10.1021/ja306061x
Published September 10, 2012
Copyright © 2012 American Chemical Society

Article Views

1699

Altmetric

-

Citations

Learn about these metrics

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • Abstract

    Figure 1

    Figure 1. Time course of cluster transfer from A. vinelandii [Fe2S2]-IscU (45 μM in [Fe2S2]2+ clusters) to apo-Grx5 (150 μM in monomer) monitored by UV–visible CD spectroscopy at 23 °C. (A) CD spectra recorded at 0, 7, 20, 40, 60, 80, 120, and 180 min after adding [Fe2S2]-IscU to apo-Grx5 in 100 mM Tris-HCl buffer, pH 7.8, with 3 mM glutathione. (B) Simulated CD spectra corresponding to quantitative [Fe2S2]2+ cluster transfer from [Fe2S2]-IscU to apo-Grx5 in 10% increments. Δε values are based on the [Fe2S2]2+ cluster concentration, and the path length was 1 cm.

    Figure 2

    Figure 2. Time course of cluster transfer from A. vinelandii [Fe2S2]-IscU to apo-Grx in the presence of 0.10 mM A. vinelandii HscA and HscB, 40 mM MgCl2, 2 mM ATP, and 150 mM KCl monitored by UV–visible CD spectroscopy at room temperature. CD spectra were recorded at 3, 6, 10, 14, 18, 22, 26, 30, 40, 50, and 60 min after the addition of Mg-ATP to the reaction mixture. All other conditions are the same as described in Figure 1.

    Figure 3

    Figure 3. Comparison of the kinetics of cluster transfer from A. vinelandii [Fe2S2]-IscU to apo-Grx5 in the presence and in the absence of HscA/HscB/ATP. All conditions are the same as described in Figures 1 and 2. The data in the presence of HscA/HscB/ATP (■) were obtained by continuously monitoring the CD intensity at 460 nm after initiation of the reaction with Mg-ATP, and the solid line is a best-fit simulation to second-order kinetics with a rate constant of 20 000 M–1 min–1. The data in the absence of HscA/HscB/ATP (•) were obtained by monitoring the difference in the CD intensity at 457 and 408 nm, and the solid line is a best-fit simulation to second-order kinetics with a rate constant of 30 M–1 min–1.

    Figure 4

    Figure 4. Time course of cluster transfer from A. vinelandii [Fe2S2]-Grx5 (32 μM in [Fe2S2]2+ clusters) to apo-IscFdx (48 μM) monitored by UV–visible CD spectroscopy at 23 °C . (A) CD spectra recorded at 6, 20, 40, 60, 80, 100, 120, and 160 min after adding [Fe2S2]-Grx5 to apo-IscFdx in 100 mM Tris-HCl buffer, pH 7.8, with 2 mM dithiothreitol. The arrows indicate the direction of intensity change with increasing time at selected wavelengths. Inset shows kinetic data for the cluster transfer measured at 434 nm, and the solid line is a best-fit simulation to second-order kinetics with a rate constant of 2100 M–1 min–1. (B) Simulated CD spectra corresponding to quantitative [Fe2S2]2+ cluster transfer from [Fe2S2]-Grx5 to apo-IscFdx in 10% increments. Δε values are based on the [Fe2S2]2+ cluster concentration, and the path length was 1 cm.

  • References


    This article references 30 other publications.

    1. 1
      Johnson, D. C.; Dean, D. R.; Smith, A. D.; Johnson, M. K. Annu. Rev. Biochem. 2005, 74, 247
    2. 2
      Lill, R. Nature 2009, 460, 831
    3. 3
      Marinoni, E. N.; de Oliveira, J. S.; Nicolet, Y.; Raulfs, E. C.; Amara, P.; Dean, D. R.; Fontecilla-Camps, J. C. Angew. Chem., Int. Ed. 2012, 51, 5439
    4. 4
      Agar, J. N.; Krebs, B.; Frazzon, J.; Huynh, B. H.; Dean, D. R.; Johnson, M. K. Biochemistry 2000, 39, 7856
    5. 5
      Chandramouli, K.; Unciuleac, M.-C.; Naik, S.; Dean, D. R.; Huynh, B. H.; Johnson, M. K. Biochemistry 2007, 46, 6804
    6. 6
      Mühlenhoff, U.; Richter, N.; Pines, O.; Pierik, A. J.; Lill, R. J. Biol. Chem. 2011, 286, 41205
    7. 7
      Chandramouli, K.; Johnson, M. K. Biochemistry 2006, 45, 11087
    8. 8
      Vickery, L. E.; Cupp-Vickery, J. R. Crit. Rev. Biochem. Mol. Biol. 2007, 42, 95
    9. 9
      Ollagnier-de-Choudens, S.; Sanakis, Y.; Fontecave, M. J. Biol. Inorg. Chem. 2004, 9, 828
    10. 10
      Vinella, D.; Brochier-Armanet, C.; Loiseau, L.; Talla, E.; Barras, F. PLoS Genet. 2009, 5, e1000497
    11. 11
      Bandyopadhyay, S.; Naik, S.; O’Carroll, I. P.; Huynh, B. H.; Dean, D. R.; Johnson, M. K.; Dos Santos, P. C. J. Biol. Chem. 2008, 283, 14092
    12. 12
      Angelini, S.; Gerez, C.; Ollagnier-de-Choudens, S.; Sanakis, Y.; Fontecave, M.; Barras, F.; Py, B. J. Biol. Chem. 2008, 289, 14084
    13. 13
      Bandyopadhyay, S.; Gama, F.; Molina-Navarro, M. M.; Gualberto, J. M.; Claxton, R.; Naik, S. G.; Huynh, B. H.; Herrero, E.; Jacquot, J.-P.; Johnson, M. K.; Rouhier, N. EMBO J. 2008, 27, 1122
    14. 14
      Rouhier, N.; Couturier, J.; Johnson, M. K.; Jacquot, J. P. Trends Biochem. Sci. 2010, 35, 43
    15. 15
      Rodríguez-Manzaneque, M. T.; Tamarit, J.; Bellí, G.; Ros, J.; Herrero, E. Mol. Biol. Cell 2002, 13, 1109
    16. 16
      Mühlenhoff, U.; Gerber, J.; Richhardt, N.; Lill, R. EMBO J. 2003, 22, 4815
    17. 17
      Picciocchi, A.; Saguez, C.; Boussac, A.; Cassier-Chauvat, C.; Chauvat, F. Biochemistry 2007, 46, 15018
    18. 18
      Iwema, T.; Picciocchi, A.; Traore, D. A.; Ferrer, J. L.; Chauvat, F.; Jacquamet, L. Biochemistry 2009, 48, 6041
    19. 19
      Johnson, D. C.; Unciuleac, M.-C.; Dean, D. R. J. Bacteriol. 2006, 188, 7551
    20. 20
      Uhrigshardt, H.; Singh, A.; Kovtunovych, G.; Ghosh, M.; Rouault, T. A. Hum. Mol. Genet. 2010, 3816
    21. 21
      Rouault, T. A.; Tong, W. H. Cell 2008, 24, 398
    22. 22
      Qi, W.; Cowan, J. A. Chem. Commun. 2011, 47, 4889
    23. 23
      Johansson, C.; Kavanagh, K. L.; Gileadi, O.; Oppermann, U. J. Biol. Chem. 2007, 282, 3077
    24. 24
      Lillig, C. H.; Berndt, C.; Vergnolle, O.; Lonn, M. E.; Hudermann, C.; Bill, E.; Holmgren, A. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 8168
    25. 25
      Ojeda, L.; Keller, G.; Muhlenhoff, U.; Rutherford, J. C.; Lill, R.; Winge, D. R. J. Biol. Chem. 2006, 281, 17661
    26. 26
      Li, H.; Mapolelo, D. T.; Dingra, N. N.; Naik, S. G.; Lees, N. S.; Hoffman, B. M.; Riggs-Gelasco, P. J.; Huynh, B. H.; Johnson, M. K.; Outten, C. E. Biochemistry 2009, 48, 9569
    27. 27
      Li, H.; Mapolelo, D. T.; Dingra, N. N.; Keller, G.; Riggs-Gelasco, P. J.; Winge, D. R.; Johnson, M. K.; Outten, C. E. J. Biol. Chem. 2011, 286, 867
    28. 28
      Yeung, N.; Gold, B.; Liu, N. L.; Prathapam, R.; Sterling, H. J.; Williams, E. R.; Butland, G. Biochemistry 2011, 50, 8957
    29. 29
      Schwartz, C. J.; Giel, J. L.; Patschkowski, T.; Luther, C.; Ruzicka, F. J.; Beinert, H.; Kiley, P. J. Proc. Natl. Acad. Sci. U.S.A. 2011, 98, 14895
    30. 30
      Bonomi, F.; Iametti, S.; Ta, D. T.; Vickery, L. E. J. Biol. Chem. 2005, 280, 29513
  • Supporting Information

    Supporting Information


    Experimental methods for expressing, purifying, and assaying the proteins used in this work and protocols used for cluster transfer reactions. This material is available free of charge via the Internet at http://pubs.acs.org.


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.