ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Ion Permeation by a Folded Multiblock Amphiphilic Oligomer Achieved by Hierarchical Construction of Self-Assembled Nanopores

View Author Information
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai 980-8577, Japan
School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1, Asahidai, Nomi, Ishikawa 923-1292, Japan
§ Department of Applied Chemistry, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
Cite this: J. Am. Chem. Soc. 2012, 134, 48, 19788–19794
Publication Date (Web):November 12, 2012
https://doi.org/10.1021/ja308342g
Copyright © 2012 American Chemical Society

    Article Views

    2844

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (4)»

    Abstract

    Abstract Image

    A multiblock amphiphilic molecule 1, with a tetrameric alternating sequence of hydrophilic and hydrophobic units, adopts a folded structure in a liposomal membrane like a multipass transmembrane protein, and is able to transport alkali metal cations through the membrane. Hill’s analysis and conductance measurements, analyzed by the Hille equation, revealed that the tetrameric assembly of 1 forms a 0.53 nm channel allowing for permeation of cations. Since neither 3, bearing flexible hydrophobic units and forming no stacked structures in the membrane, nor 2, a monomeric version of 1, is able to transport cations, the folded conformation of 1 in the membrane is likely essential for realizing its function. Thus, function and hierarchically formed higher-order structures of 1, is strongly correlated with each other like proteins and other biological macromolecules.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Conductance recordings, time course fluorescence measurements, calculation of bending elastic moduli, and videos of phase contrast microscopic observations of DOPC GUVs containing 1 ([1]/[DOPC] = 0.025) and 2 ([2]/[DOPC] = 0.10) in 0.20 M sucrose aqueous solution under exposure to osmotic pressure (2.5 mM NaCl). This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 53 publications.

    1. Kohei Sato, Takahiro Muraoka, Kazushi Kinbara. Supramolecular Transmembrane Ion Channels Formed by Multiblock Amphiphiles. Accounts of Chemical Research 2021, 54 (19) , 3700-3709. https://doi.org/10.1021/acs.accounts.1c00397
    2. Ryo Sasaki, Kohei Sato, Kazuhito V. Tabata, Hiroyuki Noji, Kazushi Kinbara. Synthetic Ion Channel Formed by Multiblock Amphiphile with Anisotropic Dual-Stimuli-Responsiveness. Journal of the American Chemical Society 2021, 143 (3) , 1348-1355. https://doi.org/10.1021/jacs.0c09470
    3. Takahiro Muraoka, Kaori Umetsu, Kazuhito V. Tabata, Tsutomu Hamada, Hiroyuki Noji, Takashi Yamashita, and Kazushi Kinbara . Mechano-Sensitive Synthetic Ion Channels. Journal of the American Chemical Society 2017, 139 (49) , 18016-18023. https://doi.org/10.1021/jacs.7b09515
    4. Tanmoy Saha, Amitosh Gautam, Arnab Mukherjee, Mayurika Lahiri, and Pinaki Talukdar . Chloride Transport through Supramolecular Barrel-Rosette Ion Channels: Lipophilic Control and Apoptosis-Inducing Activity. Journal of the American Chemical Society 2016, 138 (50) , 16443-16451. https://doi.org/10.1021/jacs.6b10379
    5. Anja Achilles, Ruth Bärenwald, Bob-Dan Lechner, Stefan Werner, Helgard Ebert, Carsten Tschierske, Alfred Blume, Kirsten Bacia, Kay Saalwächter. Self-Assembly of X-Shaped Bolapolyphiles in Lipid Membranes: Solid-State NMR Investigations. Langmuir 2016, 32 (3) , 673-682. https://doi.org/10.1021/acs.langmuir.5b03712
    6. M. Kesava Reddy, E. Varathan, Nitin P. Lobo, Arun Roy, T. Narasimhaswamy, and K. V. Ramanathan . Monolayer to Interdigitated Partial Bilayer Smectic C Transition in Thiophene-Based Spacer Mesogens: X-ray Diffraction and 13C Nuclear Magnetic Resonance Studies. Langmuir 2015, 31 (39) , 10831-10842. https://doi.org/10.1021/acs.langmuir.5b02327
    7. Takahiro Muraoka, Takahiro Endo, Kazuhito V. Tabata, Hiroyuki Noji, Satoru Nagatoishi, Kouhei Tsumoto, Rui Li, and Kazushi Kinbara . Reversible Ion Transportation Switch by a Ligand-Gated Synthetic Supramolecular Ion Channel. Journal of the American Chemical Society 2014, 136 (44) , 15584-15595. https://doi.org/10.1021/ja5070312
    8. Pengyang Xin, Pingping Zhu, Pei Su, Jun-Li Hou, and Zhan-Ting Li . Hydrogen-Bonded Helical Hydrazide Oligomers and Polymer That Mimic the Ion Transport of Gramicidin A. Journal of the American Chemical Society 2014, 136 (38) , 13078-13081. https://doi.org/10.1021/ja503376s
    9. Tatsuya Shima, Takahiro Muraoka, Tsutomu Hamada, Masamune Morita, Masahiro Takagi, Hajime Fukuoka, Yuichi Inoue, Takashi Sagawa, Akihiko Ishijima, Yuki Omata, Takashi Yamashita, and Kazushi Kinbara . Micrometer-Size Vesicle Formation Triggered by UV Light. Langmuir 2014, 30 (25) , 7289-7295. https://doi.org/10.1021/la5008022
    10. Naomi Sakai and Stefan Matile . Synthetic Ion Channels. Langmuir 2013, 29 (29) , 9031-9040. https://doi.org/10.1021/la400716c
    11. Luis Martínez‐Crespo, Iñigo J. Vitórica‐Yrezábal, George F. S. Whitehead, Simon J. Webb. Chemically Fueled Communication Along a Scaffolded Nanoscale Array of Squaramides. Angewandte Chemie 2023, 135 (38) https://doi.org/10.1002/ange.202307841
    12. Luis Martínez‐Crespo, Iñigo J. Vitórica‐Yrezábal, George F. S. Whitehead, Simon J. Webb. Chemically Fueled Communication Along a Scaffolded Nanoscale Array of Squaramides. Angewandte Chemie International Edition 2023, 62 (38) https://doi.org/10.1002/anie.202307841
    13. Yutaka Tamaru, Shuji Nakanishi, Kenya Tanaka, Mitsuo Umetsu, Hikaru Nakazawa, Aruto Sugiyama, Tomoyuki Ito, Naofumi Shimokawa, Masahiro Takagi. Recent research advances on non-linear phenomena in various biosystems. Journal of Bioscience and Bioengineering 2023, 136 (2) , 75-86. https://doi.org/10.1016/j.jbiosc.2023.03.012
    14. Pengyang Xin, Linqi Xu, Wenpei Dong, Linlin Mao, Jingjing Guo, Jingjing Bi, Shouwei Zhang, Yan Pei, Chang‐Po Chen. Synthetic K + Channels Constructed by Rebuilding the Core Modules of Natural K + Channels in an Artificial System. Angewandte Chemie 2023, 135 (8) https://doi.org/10.1002/ange.202217859
    15. Pengyang Xin, Linqi Xu, Wenpei Dong, Linlin Mao, Jingjing Guo, Jingjing Bi, Shouwei Zhang, Yan Pei, Chang‐Po Chen. Synthetic K + Channels Constructed by Rebuilding the Core Modules of Natural K + Channels in an Artificial System. Angewandte Chemie International Edition 2023, 62 (8) https://doi.org/10.1002/anie.202217859
    16. Jie Shen, Yongting Gu, Lingjie Ke, Qiuping Zhang, Yin Cao, Yuchao Lin, Zhen Wu, Caisheng Wu, Yuguang Mu, Yun-Long Wu, Changliang Ren, Huaqiang Zeng. Cholesterol-stabilized membrane-active nanopores with anticancer activities. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-33639-5
    17. Xiaoyuan Ji, Qian Li, Haiyun Song, Chunhai Fan. Protein‐Mimicking Nanoparticles in Biosystems. Advanced Materials 2022, 34 (37) https://doi.org/10.1002/adma.202201562
    18. Yoshimitsu Itoh, Shuo Chen, Ryota Hirahara, Takeshi Konda, Tsubasa Aoki, Takumi Ueda, Ichio Shimada, James J. Cannon, Cheng Shao, Junichiro Shiomi, Kazuhito V. Tabata, Hiroyuki Noji, Kohei Sato, Takuzo Aida. Ultrafast water permeation through nanochannels with a densely fluorous interior surface. Science 2022, 376 (6594) , 738-743. https://doi.org/10.1126/science.abd0966
    19. Taisuke Banno, Daichi Sawada, Taro Toyota. Construction of Supramolecular Systems That Achieve Lifelike Functions. Materials 2022, 15 (7) , 2391. https://doi.org/10.3390/ma15072391
    20. Kohei SATO, Kazushi KINBARA. Development of Synthetic Molecules with Protein Like Functions. Seibutsu Butsuri 2022, 62 (4) , 219-223. https://doi.org/10.2142/biophys.62.219
    21. Taisuke BANNO. Creation of Functional Giant Vesicles through Approaches of Synthetic Chemistry. Oleoscience 2022, 22 (1) , 5-13. https://doi.org/10.5650/oleoscience.22.5
    22. Laura E. Bickerton, Toby G. Johnson, Aidan Kerckhoffs, Matthew J. Langton. Supramolecular chemistry in lipid bilayer membranes. Chemical Science 2021, 12 (34) , 11252-11274. https://doi.org/10.1039/D1SC03545B
    23. Miki Mori, Kazushi Kinbara. Properties of Imidazolinium-containing Multiblock Amphiphile in Lipid Bilayer Membranes. Journal of Photopolymer Science and Technology 2021, 34 (2) , 161-165. https://doi.org/10.2494/photopolymer.34.161
    24. Yusuke Shimizu, Kohei Sato, Kazushi Kinbara. Calcium-induced reversible assembly of phosphorylated amphiphile within lipid bilayer membranes. Chemical Communications 2021, 57 (34) , 4106-4109. https://doi.org/10.1039/D1CC01111A
    25. Dominika Kozon, Piotr Bednarczyk, Adam Szewczyk, Dominik Jańczewski. Regulation of Lipid Bilayer Ion Permeability by Antibacterial Polymethyloxazoline‐Polyethyleneimine Copolymers. ChemBioChem 2021, 22 (6) , 1020-1029. https://doi.org/10.1002/cbic.202000656
    26. Miki Mori, Kohei Sato, Toru Ekimoto, Shinichi Okumura, Mitsunori Ikeguchi, Kazuhito V. Tabata, Hiroyuki Noji, Kazushi Kinbara. Imidazolinium‐based Multiblock Amphiphile as Transmembrane Anion Transporter. Chemistry – An Asian Journal 2021, 16 (2) , 147-157. https://doi.org/10.1002/asia.202001106
    27. Takahiro Muraoka, Daiki Noguchi, Rinshi S. Kasai, Kohei Sato, Ryo Sasaki, Kazuhito V. Tabata, Toru Ekimoto, Mitsunori Ikeguchi, Kiyoto Kamagata, Norihisa Hoshino, Hiroyuki Noji, Tomoyuki Akutagawa, Kazuaki Ichimura, Kazushi Kinbara. A synthetic ion channel with anisotropic ligand response. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-16770-z
    28. Pengyang Xin, Lingyu Zhao, Linlin Mao, Linqi Xu, Shuaimin Hou, Huiyuan Kong, Haodong Fang, Haofeng Zhu, Tao Jiang, Chang-Po Chen. Effect of charge status on the ion transport and antimicrobial activity of synthetic channels. Chemical Communications 2020, 56 (89) , 13796-13799. https://doi.org/10.1039/D0CC05730D
    29. Rui Li, Takahiro Muraoka, Kazushi Kinbara. Thermo-driven self-assembly of a PEG-containing amphiphile in a bilayer membrane. RSC Advances 2020, 10 (43) , 25758-25762. https://doi.org/10.1039/D0RA03920A
    30. Ryo Sasaki, Kohei Sato, Kazushi Kinbara. Aromatic Fluorination of Multiblock Amphiphile Enhances Its Incorporation into Lipid Bilayer Membranes. ChemistryOpen 2020, 9 (3) , 301-303. https://doi.org/10.1002/open.201900374
    31. Fugui Xu, Jiacheng Zhang, Pengfei Zhang, Xiangfeng Luan, Yiyong Mai. “Rod–coil” copolymers get self-assembled in solution. Materials Chemistry Frontiers 2019, 3 (11) , 2283-2307. https://doi.org/10.1039/C9QM00444K
    32. Michio Murakoshi, Takahiro Muraoka. Molecular Technology for Membrane Functionalization. 2019, 183-202. https://doi.org/10.1002/9783527823987.vol2_c9
    33. Pengyang Xin, Huiyuan Kong, Yonghui Sun, Lingyu Zhao, Haodong Fang, Haofeng Zhu, Tao Jiang, Jingjing Guo, Qian Zhang, Wenpei Dong, Chang‐Po Chen. Artificial K + Channels Formed by Pillararene‐Cyclodextrin Hybrid Molecules: Tuning Cation Selectivity and Generating Membrane Potential. Angewandte Chemie 2019, 131 (9) , 2805-2810. https://doi.org/10.1002/ange.201813797
    34. Pengyang Xin, Huiyuan Kong, Yonghui Sun, Lingyu Zhao, Haodong Fang, Haofeng Zhu, Tao Jiang, Jingjing Guo, Qian Zhang, Wenpei Dong, Chang‐Po Chen. Artificial K + Channels Formed by Pillararene‐Cyclodextrin Hybrid Molecules: Tuning Cation Selectivity and Generating Membrane Potential. Angewandte Chemie International Edition 2019, 58 (9) , 2779-2784. https://doi.org/10.1002/anie.201813797
    35. Kota Nabeya, Takahiro Muraoka, Norihisa Hoshino, Miho Aizawa, Takashi Kajitani, Tomoyuki Akutagawa, Atsushi Shishido, Takanori Fukushima, Kazushi Kinbara. Thermal and optical properties of multiblock macrocycles with hysteretic polymorphic transition. Materials Chemistry Frontiers 2018, 2 (5) , 969-974. https://doi.org/10.1039/C7QM00621G
    36. Kazushi Kinbara, Kaori Umetsu, Hiroki Sonobe, Takahiro Muraoka, Naofumi Shimokawa, Masahiro Takagi. Localization of transmembrane multiblock amphiphilic molecules in phase-separated vesicles. Faraday Discussions 2018, 209 , 315-328. https://doi.org/10.1039/C8FD00022K
    37. Bing Gong. Artificial water channels: inspiration, progress, and challenges. Faraday Discussions 2018, 209 , 415-427. https://doi.org/10.1039/C8FD00132D
    38. Takahiro Muraoka. Bio-inspired Multiblock Molecules for Membrane Functionalization. Biological and Pharmaceutical Bulletin 2018, 41 (3) , 294-302. https://doi.org/10.1248/bpb.b17-00652
    39. Silvio Poppe, Marco Poppe, Helgard Ebert, Marko Prehm, Changlong Chen, Feng Liu, Stefan Werner, Kirsten Bacia, Carsten Tschierske. Effects of Lateral and Terminal Chains of X-Shaped Bolapolyphiles with Oligo(phenylene ethynylene) Cores on Self-Assembly Behaviour. Part 1: Transition between Amphiphilic and Polyphilic Self-Assembly in the Bulk. Polymers 2017, 9 (12) , 471. https://doi.org/10.3390/polym9100471
    40. Pengyang Xin, Si Tan, Yonghui Sun, Qiaojv Ren, Wenpei Dong, Jingjing Guo, Tao Jiang, Chang-Po Chen. One-pot formation of hydrazide macrocycles with modified cavities: an example of pH-sensitive unimolecular cation channels. Chemical Communications 2017, 53 (38) , 5322-5325. https://doi.org/10.1039/C7CC02076G
    41. Rui Li, Takahiro Muraoka, Kazushi Kinbara. Thermally-induced lateral assembly of a PEG-containing amphiphile triggering vesicle budding. Chem. Commun. 2017, 53 (85) , 11662-11665. https://doi.org/10.1039/C7CC06489F
    42. Pengyang Xin, Yonghui Sun, Huiyuan Kong, Yaodong Wang, Si Tan, Jingjing Guo, Tao Jiang, Wenpei Dong, Chang-Po Chen. A unimolecular channel formed by dual helical peptide modified pillar[5]arene: correlating transmembrane transport properties with antimicrobial activity and haemolytic toxicity. Chem. Commun. 2017, 53 (83) , 11492-11495. https://doi.org/10.1039/C7CC06697J
    43. Takahiro Muraoka, Kazushi Kinbara. Bioinspired multi-block molecules. Chemical Communications 2016, 52 (13) , 2667-2678. https://doi.org/10.1039/C5CC08052E
    44. Chris L. Vonnegut, Blakely W. Tresca, Darren W. Johnson, Michael M. Haley. Ion and Molecular Recognition Using Aryl–Ethynyl Scaffolding. Chemistry – An Asian Journal 2015, 10 (3) , 522-535. https://doi.org/10.1002/asia.201403212
    45. Pengyang Xin, Liang Zhang, Pei Su, Jun-Li Hou, Zhan-Ting Li. Hydrazide macrocycles as effective transmembrane channels for ammonium. Chemical Communications 2015, 51 (23) , 4819-4822. https://doi.org/10.1039/C5CC00691K
    46. Sofya Kostina Berezin. Synthetic Anionophores for Basic Anions as “Presumably, OH−/Cl− Antiporters”: From the Synthetic Ion Channels to Multi-ion Hopping, Anti-Hofmeister Selectivity, and Strong Positive AMFE. The Journal of Membrane Biology 2014, 247 (8) , 651-665. https://doi.org/10.1007/s00232-014-9683-7
    47. Tatsuya Shima, Takahiro Muraoka, Norihisa Hoshino, Tomoyuki Akutagawa, Yuka Kobayashi, Kazushi Kinbara. Thermally Driven Polymorphic Transition Prompting a Naked‐Eye‐Detectable Bending and Straightening Motion of Single Crystals. Angewandte Chemie 2014, 126 (28) , 7301-7306. https://doi.org/10.1002/ange.201402560
    48. Tatsuya Shima, Takahiro Muraoka, Norihisa Hoshino, Tomoyuki Akutagawa, Yuka Kobayashi, Kazushi Kinbara. Thermally Driven Polymorphic Transition Prompting a Naked‐Eye‐Detectable Bending and Straightening Motion of Single Crystals. Angewandte Chemie International Edition 2014, 53 (28) , 7173-7178. https://doi.org/10.1002/anie.201402560
    49. Mihoko Ui, Kousuke Harima, Toshiaki Takei, Kouhei Tsumoto, Kazuhito V. Tabata, Hiroyuki Noji, Sumire Endo, Kimio Akiyama, Takahiro Muraoka, Kazushi Kinbara. Grafting synthetic transmembrane units to the engineered low-toxicity α-hemolysin to restore its hemolytic activity. Mol. BioSyst. 2014, 10 (12) , 3199-3206. https://doi.org/10.1039/C4MB00405A
    50. Tao Liu, Chunyan Bao, Haiyan Wang, Linbo Fei, Rongyan Yang, Yitao Long, Linyong Zhu. Self-assembly of crown ether-based amphiphiles for constructing synthetic ion channels: the relationship between structure and transport activity. New J. Chem. 2014, 38 (8) , 3507-3513. https://doi.org/10.1039/C4NJ00297K
    51. David Alonso Doval, Marta Dal Molin, Sandra Ward, Andrea Fin, Naomi Sakai, Stefan Matile. Planarizable push–pull oligothiophenes: in search of the perfect twist. Chem. Sci. 2014, 5 (7) , 2819-2825. https://doi.org/10.1039/C4SC00939H
    52. Guillaume Gody, Thomas Maschmeyer, Per B. Zetterlund, Sébastien Perrier. Rapid and quantitative one-pot synthesis of sequence-controlled polymers by radical polymerization. Nature Communications 2013, 4 (1) https://doi.org/10.1038/ncomms3505
    53. Takahiro Muraoka, Kazushi Kinbara. Development and Functionalization of Structural Mimics of Multipass Transmembrane Proteins. Journal of Synthetic Organic Chemistry, Japan 2013, 71 (10) , 1045-1050. https://doi.org/10.5059/yukigoseikyokaishi.71.1045

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect