ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

A New View of Electrochemistry at Highly Oriented Pyrolytic Graphite

View Author Information
Department of Chemistry and MOAC Doctoral Training Centre, University of Warwick, Coventry CV4 7AL, U.K.
Cite this: J. Am. Chem. Soc. 2012, 134, 49, 20117–20130
Publication Date (Web):November 12, 2012
https://doi.org/10.1021/ja308615h
Copyright © 2012 American Chemical Society

    Article Views

    7392

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Major new insights on electrochemical processes at graphite electrodes are reported, following extensive investigations of two of the most studied redox couples, Fe(CN)64–/3– and Ru(NH3)63+/2+. Experiments have been carried out on five different grades of highly oriented pyrolytic graphite (HOPG) that vary in step-edge height and surface coverage. Significantly, the same electrochemical characteristic is observed on all surfaces, independent of surface quality: initial cyclic voltammetry (CV) is close to reversible on freshly cleaved surfaces (>400 measurements for Fe(CN)64–/3– and >100 for Ru(NH3)63+/2+), in marked contrast to previous studies that have found very slow electron transfer (ET) kinetics, with an interpretation that ET only occurs at step edges. Significantly, high spatial resolution electrochemical imaging with scanning electrochemical cell microscopy, on the highest quality mechanically cleaved HOPG, demonstrates definitively that the pristine basal surface supports fast ET, and that ET is not confined to step edges. However, the history of the HOPG surface strongly influences the electrochemical behavior. Thus, Fe(CN)64–/3– shows markedly diminished ET kinetics with either extended exposure of the HOPG surface to the ambient environment or repeated CV measurements. In situ atomic force microscopy (AFM) reveals that the deterioration in apparent ET kinetics is coupled with the deposition of material on the HOPG electrode, while conducting-AFM highlights that, after cleaving, the local surface conductivity of HOPG deteriorates significantly with time. These observations and new insights are not only important for graphite, but have significant implications for electrochemistry at related carbon materials such as graphene and carbon nanotubes.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Additional details on capacitance measurements, experimental procedures, step-edge analysis using AFM, and FE-SEM and C-AFM experiments. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 226 publications.

    1. Binu Varghese, Hareesh Suresh, Sarith P. Sathian. Are Surface Nanobubbles Stabilized by Hydrophobic Attraction? Insights from Molecular Dynamics and Potential of Mean Force Simulations. The Journal of Physical Chemistry C 2024, 128 (8) , 3473-3484. https://doi.org/10.1021/acs.jpcc.3c06558
    2. Minkyung Kang, Cameron L. Bentley, J. Tyler Mefford, William C. Chueh, Patrick R. Unwin. Multiscale Analysis of Electrocatalytic Particle Activities: Linking Nanoscale Measurements and Ensemble Behavior. ACS Nano 2023, 17 (21) , 21493-21505. https://doi.org/10.1021/acsnano.3c06335
    3. Hana Tarábková, Pavel Janda. Effect of Graphite Aging on Its Wetting Properties and Surface Blocking by Gaseous Nanodomains. Langmuir 2023, 39 (39) , 14154-14161. https://doi.org/10.1021/acs.langmuir.3c02151
    4. Sakthivel Srinivas, Sakkarapalayam Murugesan Senthil Kumar, Annamalai Senthil Kumar. Edge and Basal Plane Anisotropy of a Preanodized Pencil Graphite Electrode Surface Revealed Using Scanning Electrochemical Microscopy and Electrocatalytic Dopamine Oxidation as a Molecular Probe. Langmuir 2023, 39 (36) , 12563-12575. https://doi.org/10.1021/acs.langmuir.3c01112
    5. Ruobing Bai, Nathan L. Tolman, Zhenbo Peng, Haitao Liu. Influence of Atmospheric Contaminants on the Work Function of Graphite. Langmuir 2023, 39 (34) , 12159-12165. https://doi.org/10.1021/acs.langmuir.3c01459
    6. Jeremy May, Dipak Koirala, Forrest Dalbec, Joshua Russell, Hui Xiong, Elena Echeverria, David N. McIlroy, I. Francis Cheng. Superhydrophilicity and Antifouling Behavior in Electrochemically Oxidized Nanocrystalline Pseudographite. Industrial & Engineering Chemistry Research 2023, 62 (17) , 6687-6696. https://doi.org/10.1021/acs.iecr.3c00140
    7. Rama Kant, Gaurav Kumar Mishra. Theory for Heterogeneous Electron Transfer Kinetics on Nanocorrugated Atomic Stepped Metal Electrodes. The Journal of Physical Chemistry C 2023, 127 (14) , 6884-6899. https://doi.org/10.1021/acs.jpcc.2c08690
    8. Nathan L. Tolman, Ruobing Bai, Haitao Liu. Hydrocarbons in the Meniscus: Effects on Conductive Atomic Force Microscopy. Langmuir 2023, 39 (12) , 4274-4281. https://doi.org/10.1021/acs.langmuir.2c03222
    9. Yuanjiao Li, Alban Morel, Danick Gallant, Janine Mauzeroll. Controlling Surface Contact, Oxygen Transport, and Pitting of Surface Oxide via Single-Channel Scanning Electrochemical Cell Microscopy. Analytical Chemistry 2022, 94 (42) , 14603-14610. https://doi.org/10.1021/acs.analchem.2c02459
    10. Robert M. Stolz, Anna F. Kolln, Brunno C. Rocha, Anna Brinks, Aileen M. Eagleton, Lukasz Mendecki, Harish Vashisth, Katherine A. Mirica. Epitaxial Self-Assembly of Interfaces of 2D Metal–Organic Frameworks for Electroanalytical Detection of Neurotransmitters. ACS Nano 2022, 16 (9) , 13869-13883. https://doi.org/10.1021/acsnano.2c02529
    11. Chen Fang, Andrew Dopilka, Yueran Gu, Vassilia Zorba, Robert Kostecki, Gao Liu. Molecular Langmuir–Blodgett Film for Silicon Anode Interface Engineering. ACS Applied Energy Materials 2022, 5 (9) , 11655-11661. https://doi.org/10.1021/acsaem.2c02130
    12. Anur Yadav, Michel Wehrhold, Tilmann J. Neubert, Rodrigo M. Iost, Kannan Balasubramanian. Fast Electron Transfer Kinetics at an Isolated Graphene Edge Nanoelectrode with and without Nanoparticles: Implications for Sensing Electroactive Species. ACS Applied Nano Materials 2020, 3 (12) , 11725-11735. https://doi.org/10.1021/acsanm.0c02171
    13. Fakher M. Rabboh, Glen D. O’Neil. Voltammetric pH Measurements in Unadulterated Foodstuffs, Urine, and Serum with 3D-Printed Graphene/Poly(Lactic Acid) Electrodes. Analytical Chemistry 2020, 92 (22) , 14999-15006. https://doi.org/10.1021/acs.analchem.0c02902
    14. Yuanjiao Li, Alban Morel, Danick Gallant, Janine Mauzeroll. Oil-Immersed Scanning Micropipette Contact Method Enabling Long-term Corrosion Mapping. Analytical Chemistry 2020, 92 (18) , 12415-12422. https://doi.org/10.1021/acs.analchem.0c02177
    15. Justin Mitchell Hurst, Min A. Kim, Zhenbo Peng, Lei Li, Haitao Liu. Assessing and Mitigating Surface Contamination of Carbon Electrode Materials. Chemistry of Materials 2019, 31 (18) , 7133-7142. https://doi.org/10.1021/acs.chemmater.9b01758
    16. Yi Xiao, Yi Su, Xiaodong Liu, Weilin Xu. Defect-Driven Heterogeneous Electron Transfer between an Individual Graphene Sheet and Electrode. The Journal of Physical Chemistry Letters 2019, 10 (18) , 5402-5407. https://doi.org/10.1021/acs.jpclett.9b02134
    17. Chengyi Wu, Ding-Shyue Yang. Ordered Structures and Morphology-Induced Phase Transitions at Graphite–Acetonitrile Interfaces. The Journal of Physical Chemistry C 2019, 123 (36) , 22390-22396. https://doi.org/10.1021/acs.jpcc.9b06440
    18. Daniel Martín-Yerga, Agustín Costa-García, Patrick R. Unwin. Correlative Voltammetric Microscopy: Structure–Activity Relationships in the Microscopic Electrochemical Behavior of Screen Printed Carbon Electrodes. ACS Sensors 2019, 4 (8) , 2173-2180. https://doi.org/10.1021/acssensors.9b01021
    19. Enrico Daviddi, Katerina L. Gonos, Alex W. Colburn, Cameron L. Bentley, Patrick R. Unwin. Scanning Electrochemical Cell Microscopy (SECCM) Chronopotentiometry: Development and Applications in Electroanalysis and Electrocatalysis. Analytical Chemistry 2019, 91 (14) , 9229-9237. https://doi.org/10.1021/acs.analchem.9b02091
    20. Matěj Velický, Peter S. Toth, Colin R. Woods, Kostya S. Novoselov, Robert A. W. Dryfe. Electrochemistry of the Basal Plane versus Edge Plane of Graphite Revisited. The Journal of Physical Chemistry C 2019, 123 (18) , 11677-11685. https://doi.org/10.1021/acs.jpcc.9b01010
    21. Sergey V. Pavlov, Renat R. Nazmutdinov, Maxim V. Fedorov, Sergey A. Kislenko. Role of Graphene Edges in the Electron Transfer Kinetics: Insight from Theory and Molecular Modeling. The Journal of Physical Chemistry C 2019, 123 (11) , 6627-6634. https://doi.org/10.1021/acs.jpcc.8b12531
    22. Cameron L. Bentley, Minkyung Kang, Patrick R. Unwin. Nanoscale Surface Structure–Activity in Electrochemistry and Electrocatalysis. Journal of the American Chemical Society 2019, 141 (6) , 2179-2193. https://doi.org/10.1021/jacs.8b09828
    23. Pawin Iamprasertkun, Wisit Hirunpinyopas, Ashok Keerthi, Bin Wang, Boya Radha, Mark A. Bissett, Robert A. W. Dryfe. Capacitance of Basal Plane and Edge-Oriented Highly Ordered Pyrolytic Graphite: Specific Ion Effects. The Journal of Physical Chemistry Letters 2019, 10 (3) , 617-623. https://doi.org/10.1021/acs.jpclett.8b03523
    24. Martin Robinson, Alexandr N. Simonov, Jie Zhang, Alan M. Bond, David Gavaghan. Separating the Effects of Experimental Noise from Inherent System Variability in Voltammetry: The [Fe(CN)6]3–/4– Process. Analytical Chemistry 2019, 91 (3) , 1944-1953. https://doi.org/10.1021/acs.analchem.8b04238
    25. O. Charles Nwamba, Elena Echeverria, David N. McIlroy, Aaron Austin, Jean’ne M. Shreeve, D. Eric Aston. Thermal Modification of Graphite for Fast Electron Transport and Increased Capacitance. ACS Applied Nano Materials 2019, 2 (1) , 228-240. https://doi.org/10.1021/acsanm.8b01887
    26. Cameron L. Bentley, James Edmondson, Gabriel N. Meloni, David Perry, Viacheslav Shkirskiy, Patrick R. Unwin. Nanoscale Electrochemical Mapping. Analytical Chemistry 2019, 91 (1) , 84-108. https://doi.org/10.1021/acs.analchem.8b05235
    27. Niraja Kurapati, Pavithra Pathirathna, Ran Chen, Shigeru Amemiya. Voltammetric Measurement of Adsorption Isotherm for Ferrocene Derivatives on Highly Oriented Pyrolytic Graphite. Analytical Chemistry 2018, 90 (22) , 13632-13639. https://doi.org/10.1021/acs.analchem.8b03883
    28. César A. Ortiz-Ledón, Cynthia G. Zoski. Fabrication of Glass-Insulated Ultramicrometer to Submicrometer Carbon Fiber Electrodes to Support a Single Nanoparticle and Nanoparticle Ensembles in Electrocatalytic Investigations. Analytical Chemistry 2018, 90 (21) , 12616-12624. https://doi.org/10.1021/acs.analchem.8b02785
    29. Glen D. O’Neil, Han-wen Kuo, Duncan N. Lomax, John Wright, Daniel V. Esposito. Scanning Line Probe Microscopy: Beyond the Point Probe. Analytical Chemistry 2018, 90 (19) , 11531-11537. https://doi.org/10.1021/acs.analchem.8b02852
    30. Lucas-Alexandre Stern, Piotr Mocny, Heron Vrubel, Tugba Bilgic, Harm-Anton Klok, and Xile Hu . Polymer-Brush-Templated Three-Dimensional Molybdenum Sulfide Catalyst for Hydrogen Evolution. ACS Applied Materials & Interfaces 2018, 10 (7) , 6253-6261. https://doi.org/10.1021/acsami.7b16679
    31. Faduma M. Maddar, David Perry, and Patrick R. Unwin . Confined Crystallization of Organic Materials in Nanopipettes: Tracking the Early Stages of Crystal Growth and Making Seeds for Unusual Polymorphs. Crystal Growth & Design 2017, 17 (12) , 6565-6571. https://doi.org/10.1021/acs.cgd.7b01224
    32. Joseph F. Parker, Gabrielle E. Kamm, Ashlee D. McGovern, Paul A. DeSario, Debra R. Rolison, Justin C. Lytle, and Jeffrey W. Long . Rewriting Electron-Transfer Kinetics at Pyrolytic Carbon Electrodes Decorated with Nanometric Ruthenium Oxide. Langmuir 2017, 33 (37) , 9416-9425. https://doi.org/10.1021/acs.langmuir.7b01107
    33. Sumona Sinha, Santanu Pan, Samiran Choudhury, Jaivardhan Sinha, and Anjan Barman . Extrinsic Spin–Orbit Coupling-Induced Large Modulation of Gilbert Damping Coefficient in CoFeB Thin Film on the Graphene Stack with Different Defect Density. The Journal of Physical Chemistry C 2017, 121 (32) , 17442-17449. https://doi.org/10.1021/acs.jpcc.7b02790
    34. Edwin C. Mitchell, Lars E. Dunaway, Gregory S. McCarty, and Leslie A. Sombers . Spectroelectrochemical Characterization of the Dynamic Carbon-Fiber Surface in Response to Electrochemical Conditioning. Langmuir 2017, 33 (32) , 7838-7846. https://doi.org/10.1021/acs.langmuir.7b01443
    35. Sze-yin Tan, Jie Zhang, Alan M. Bond, Julie V. Macpherson, and Patrick R. Unwin . Influence of Tip and Substrate Properties and Nonsteady-State Effects on Nanogap Kinetic Measurements: Response to Comment on “Impact of Adsorption on Scanning Electrochemical Microscopy Voltammetry and Implications for Nanogap Measurements”. Analytical Chemistry 2017, 89 (13) , 7273-7276. https://doi.org/10.1021/acs.analchem.7b01664
    36. Ruben Bartali, Michal Otyepka, Martin Pykal, Petr Lazar, Victor Micheli, Gloria Gottardi, and Nadhira Laidani . Interaction of the Helium, Hydrogen, Air, Argon, and Nitrogen Bubbles with Graphite Surface in Water. ACS Applied Materials & Interfaces 2017, 9 (20) , 17517-17525. https://doi.org/10.1021/acsami.6b16493
    37. Sara Chakri, Anisha N. Patel, Isabelle Frateur, Frédéric Kanoufi, Eliane M. M. Sutter, T. T. Mai Tran, Bernard Tribollet, and Vincent Vivier . Imaging of a Thin Oxide Film Formation from the Combination of Surface Reflectivity and Electrochemical Methods. Analytical Chemistry 2017, 89 (10) , 5303-5310. https://doi.org/10.1021/acs.analchem.6b04921
    38. Hyun Gu Kim and Han-Bo-Ram Lee . Atomic Layer Deposition on 2D Materials. Chemistry of Materials 2017, 29 (9) , 3809-3826. https://doi.org/10.1021/acs.chemmater.6b05103
    39. Karen B. Ricardo, Anqin Xu, Muhammad Salim, Feng Zhou, and Haitao Liu . Deposition of DNA Nanostructures on Highly Oriented Pyrolytic Graphite. Langmuir 2017, 33 (16) , 3991-3997. https://doi.org/10.1021/acs.langmuir.6b03836
    40. Sze-yin Tan, Patrick R. Unwin, Julie V. Macpherson, Jie Zhang, and Alan M. Bond . Probing Electrode Heterogeneity Using Fourier-Transformed Alternating Current Voltammetry: Application to a Dual-Electrode Configuration. Analytical Chemistry 2017, 89 (5) , 2830-2837. https://doi.org/10.1021/acs.analchem.6b03924
    41. Noora Isoaho, Emilia Peltola, Sami Sainio, Niklas Wester, Vera Protopopova, Benjamin P. Wilson, Jari Koskinen, and Tomi Laurila . Carbon Nanostructure Based Platform for Enzymatic Glutamate Biosensors. The Journal of Physical Chemistry C 2017, 121 (8) , 4618-4626. https://doi.org/10.1021/acs.jpcc.6b10612
    42. Rossella Yivlialin, Gianlorenzo Bussetti, Marta Penconi, Alberto Bossi, Franco Ciccacci, Marco Finazzi, and Lamberto Duò . Vacuum-Deposited Porphyrin Protective Films on Graphite: Electrochemical Atomic Force Microscopy Investigation during Anion Intercalation. ACS Applied Materials & Interfaces 2017, 9 (4) , 4100-4105. https://doi.org/10.1021/acsami.6b12359
    43. Andrew Kozbial, Charlie Trouba, Haitao Liu, and Lei Li . Characterization of the Intrinsic Water Wettability of Graphite Using Contact Angle Measurements: Effect of Defects on Static and Dynamic Contact Angles. Langmuir 2017, 33 (4) , 959-967. https://doi.org/10.1021/acs.langmuir.6b04193
    44. Yasufumi Takahashi, Akichika Kumatani, Hitoshi Shiku, and Tomokazu Matsue . Scanning Probe Microscopy for Nanoscale Electrochemical Imaging. Analytical Chemistry 2017, 89 (1) , 342-357. https://doi.org/10.1021/acs.analchem.6b04355
    45. Andrew Kozbial, Feng Zhou, Zhiting Li, Haitao Liu, and Lei Li . Are Graphitic Surfaces Hydrophobic?. Accounts of Chemical Research 2016, 49 (12) , 2765-2773. https://doi.org/10.1021/acs.accounts.6b00447
    46. Camila Molena de Assis, Thu Huong Ho, Hercilio Gomes de Melo, Michel Keddam, Mireille Turmine, and Vincent Vivier . Electrochemical Impedance Spectroscopy in a Droplet of Solution for the Investigation of Liquid/Solid Interface. Analytical Chemistry 2016, 88 (24) , 12108-12115. https://doi.org/10.1021/acs.analchem.6b02795
    47. Sharel P. E, Yang-Rae Kim, David Perry, Cameron L. Bentley, and Patrick R. Unwin . Nanoscale Electrocatalysis of Hydrazine Electro-Oxidation at Blistered Graphite Electrodes. ACS Applied Materials & Interfaces 2016, 8 (44) , 30458-30466. https://doi.org/10.1021/acsami.6b10940
    48. Yuqin Zou, Alex S. Walton, Ian A. Kinloch, and Robert A. W. Dryfe . Investigation of the Differential Capacitance of Highly Ordered Pyrolytic Graphite as a Model Material of Graphene. Langmuir 2016, 32 (44) , 11448-11455. https://doi.org/10.1021/acs.langmuir.6b02910
    49. Xianwen Mao, Fei Guo, Esther H. Yan, Gregory C. Rutledge, and T. Alan Hatton . Remarkably High Heterogeneous Electron Transfer Activity of Carbon-Nanotube-Supported Reduced Graphene Oxide. Chemistry of Materials 2016, 28 (20) , 7422-7432. https://doi.org/10.1021/acs.chemmater.6b03024
    50. Je Hyun Bae, Yun Yu, and Michael V. Mirkin . Scanning Electrochemical Microscopy Study of Electron-Transfer Kinetics and Catalysis at Nanoporous Electrodes. The Journal of Physical Chemistry C 2016, 120 (37) , 20651-20658. https://doi.org/10.1021/acs.jpcc.6b01620
    51. Patrick R. Unwin, Aleix G. Güell, and Guohui Zhang . Nanoscale Electrochemistry of sp2 Carbon Materials: From Graphite and Graphene to Carbon Nanotubes. Accounts of Chemical Research 2016, 49 (9) , 2041-2048. https://doi.org/10.1021/acs.accounts.6b00301
    52. Guohui Zhang, Marc Walker, and Patrick R. Unwin . Low-Voltage Voltammetric Electrowetting of Graphite Surfaces by Ion Intercalation/Deintercalation. Langmuir 2016, 32 (30) , 7476-7484. https://doi.org/10.1021/acs.langmuir.6b01506
    53. Ranjit A. Patil, Cheng-Ping Chang, Rupesh S. Devan, Yung Liou, and Yuan-Ron Ma . Impact of Nanosize on Supercapacitance: Study of 1D Nanorods and 2D Thin-Films of Nickel Oxide. ACS Applied Materials & Interfaces 2016, 8 (15) , 9872-9880. https://doi.org/10.1021/acsami.6b00487
    54. Guohui Zhang, Aleix G. Güell, Paul M. Kirkman, Robert A. Lazenby, Thomas S. Miller, and Patrick R. Unwin . Versatile Polymer-Free Graphene Transfer Method and Applications. ACS Applied Materials & Interfaces 2016, 8 (12) , 8008-8016. https://doi.org/10.1021/acsami.6b00681
    55. Sze-yin Tan, Jie Zhang, Alan M. Bond, Julie V. Macpherson, and Patrick R. Unwin . Impact of Adsorption on Scanning Electrochemical Microscopy Voltammetry and Implications for Nanogap Measurements. Analytical Chemistry 2016, 88 (6) , 3272-3280. https://doi.org/10.1021/acs.analchem.5b04715
    56. Zhiting Li, Andrew Kozbial, Nikoloz Nioradze, David Parobek, Ganesh Jagadeesh Shenoy, Muhammad Salim, Shigeru Amemiya, Lei Li, and Haitao Liu . Water Protects Graphitic Surface from Airborne Hydrocarbon Contamination. ACS Nano 2016, 10 (1) , 349-359. https://doi.org/10.1021/acsnano.5b04843
    57. Minkyung Kang, David Perry, Yang-Rae Kim, Alex W. Colburn, Robert A. Lazenby, and Patrick R. Unwin . Time-Resolved Detection and Analysis of Single Nanoparticle Electrocatalytic Impacts. Journal of the American Chemical Society 2015, 137 (34) , 10902-10905. https://doi.org/10.1021/jacs.5b05856
    58. Yang-Rae Kim, Stanley C. S. Lai, Kim McKelvey, Guohui Zhang, David Perry, Thomas S. Miller, and Patrick R. Unwin . Nucleation and Aggregative Growth of Palladium Nanoparticles on Carbon Electrodes: Experiment and Kinetic Model. The Journal of Physical Chemistry C 2015, 119 (30) , 17389-17397. https://doi.org/10.1021/acs.jpcc.5b03513
    59. Kiran Bano, Jie Zhang, and Alan M. Bond , Patrick R. Unwin and Julie V. Macpherson . Diminished Electron Transfer Kinetics for [Ru(NH3)6]3+/2+, [α-SiW12O40]4–/5–, and [α-SiW12O40]5–/6– Processes at Boron-Doped Diamond Electrodes. The Journal of Physical Chemistry C 2015, 119 (22) , 12464-12472. https://doi.org/10.1021/acs.jpcc.5b02642
    60. Nikoloz Nioradze, Ran Chen, Niraja Kurapati, Anastasia Khvataeva-Domanov, Stéphane Mabic, and Shigeru Amemiya . Organic Contamination of Highly Oriented Pyrolytic Graphite As Studied by Scanning Electrochemical Microscopy. Analytical Chemistry 2015, 87 (9) , 4836-4843. https://doi.org/10.1021/acs.analchem.5b00213
    61. Aleix G. Güell, Anatolii S. Cuharuc, Yang-Rae Kim, Guohui Zhang, Sze-yin Tan, Neil Ebejer, and Patrick R. Unwin . Redox-Dependent Spatially Resolved Electrochemistry at Graphene and Graphite Step Edges. ACS Nano 2015, 9 (4) , 3558-3571. https://doi.org/10.1021/acsnano.5b00550
    62. Jin-Hui Zhong, Jie Zhang, Xi Jin, Jun-Yang Liu, Qiongyu Li, Mao-Hua Li, Weiwei Cai, De-Yin Wu, Dongping Zhan, and Bin Ren . Quantitative Correlation between Defect Density and Heterogeneous Electron Transfer Rate of Single Layer Graphene. Journal of the American Chemical Society 2014, 136 (47) , 16609-16617. https://doi.org/10.1021/ja508965w
    63. Matěj Velický, Dan F. Bradley, Adam J. Cooper, Ernie W. Hill, Ian A. Kinloch, Artem Mishchenko, Konstantin S. Novoselov, Hollie V. Patten, Peter S. Toth, Anna T. Valota, Stephen D. Worrall, and Robert A. W. Dryfe . Electron Transfer Kinetics on Mono- and Multilayer Graphene. ACS Nano 2014, 8 (10) , 10089-10100. https://doi.org/10.1021/nn504298r
    64. Alexandr N. Simonov, Graham P. Morris, Elena A. Mashkina, Blair Bethwaite, Kathryn Gillow, Ruth E. Baker, David J. Gavaghan, and Alan M. Bond . Inappropriate Use of the Quasi-Reversible Electrode Kinetic Model in Simulation-Experiment Comparisons of Voltammetric Processes That Approach the Reversible Limit. Analytical Chemistry 2014, 86 (16) , 8408-8417. https://doi.org/10.1021/ac5019952
    65. Guohui Zhang, Paul M. Kirkman, Anisha N. Patel, Anatolii S. Cuharuc, Kim McKelvey, and Patrick R. Unwin . Molecular Functionalization of Graphite Surfaces: Basal Plane versus Step Edge Electrochemical Activity. Journal of the American Chemical Society 2014, 136 (32) , 11444-11451. https://doi.org/10.1021/ja505266d
    66. Jabulani R. Barber, Hyo Jae Yoon, Carleen M. Bowers, Martin M. Thuo, Benjamin Breiten, Diana M. Gooding, and George M. Whitesides . Influence of Environment on the Measurement of Rates of Charge Transport across AgTS/SAM//Ga2O3/EGaIn Junctions. Chemistry of Materials 2014, 26 (13) , 3938-3947. https://doi.org/10.1021/cm5014784
    67. Andrew J. Wain, Andrew J. Pollard, and Christoph Richter . High-Resolution Electrochemical and Topographical Imaging Using Batch-Fabricated Cantilever Probes. Analytical Chemistry 2014, 86 (10) , 5143-5149. https://doi.org/10.1021/ac500946v
    68. Gareth P. Keeley, Niall McEvoy, Hugo Nolan, Michael Holzinger, Serge Cosnier, and Georg S. Duesberg . Electroanalytical Sensing Properties of Pristine and Functionalized Multilayer Graphene. Chemistry of Materials 2014, 26 (5) , 1807-1812. https://doi.org/10.1021/cm403501r
    69. Anisha N. Patel, Sze-yin Tan, Thomas S. Miller, Julie V. Macpherson, and Patrick R. Unwin . Comparison and Reappraisal of Carbon Electrodes for the Voltammetric Detection of Dopamine. Analytical Chemistry 2013, 85 (24) , 11755-11764. https://doi.org/10.1021/ac401969q
    70. Graham P. Morris, Alexandr N. Simonov, Elena A. Mashkina, Rafel Bordas, Kathryn Gillow, Ruth E. Baker, David J. Gavaghan, and Alan M. Bond . A Comparison of Fully Automated Methods of Data Analysis and Computer Assisted Heuristic Methods in an Electrode Kinetic Study of the Pathologically Variable [Fe(CN)6]3–/4– Process by AC Voltammetry. Analytical Chemistry 2013, 85 (24) , 11780-11787. https://doi.org/10.1021/ac4022105
    71. Kevin C. Leonard and Allen J. Bard . The Study of Multireactional Electrochemical Interfaces via a Tip Generation/Substrate Collection Mode of Scanning Electrochemical Microscopy: The Hydrogen Evolution Reaction for Mn in Acidic Solution. Journal of the American Chemical Society 2013, 135 (42) , 15890-15896. https://doi.org/10.1021/ja407395m
    72. Laura A. Hutton, James G. Iacobini, Eleni Bitziou, Robert B. Channon, Mark E. Newton, and Julie V. Macpherson . Examination of the Factors Affecting the Electrochemical Performance of Oxygen-Terminated Polycrystalline Boron-Doped Diamond Electrodes. Analytical Chemistry 2013, 85 (15) , 7230-7240. https://doi.org/10.1021/ac401042t
    73. Bo Zhang, Lixin Fan, Huawei Zhong, Yuwen Liu, and Shengli Chen . Graphene Nanoelectrodes: Fabrication and Size-Dependent Electrochemistry. Journal of the American Chemical Society 2013, 135 (27) , 10073-10080. https://doi.org/10.1021/ja402456b
    74. Nicole L. Ritzert, Joaquín Rodríguez-López, Cen Tan, and Héctor D. Abruña . Kinetics of Interfacial Electron Transfer at Single-Layer Graphene Electrodes in Aqueous and Nonaqueous Solutions. Langmuir 2013, 29 (5) , 1683-1694. https://doi.org/10.1021/la3042549
    75. Anisha N. Patel, Kim McKelvey, and Patrick R. Unwin . Nanoscale Electrochemical Patterning Reveals the Active Sites for Catechol Oxidation at Graphite Surfaces. Journal of the American Chemical Society 2012, 134 (50) , 20246-20249. https://doi.org/10.1021/ja3095894
    76. Septia Kholimatussadiah, Chia-Ling Hsu, Shang-Wei Ke, Tsu-Chin Chou, Yung-Fu Wu, Rositsa Yakimova, Akichika Kumatani, Kuei-Hsien Chen, Li-Chyong Chen, He-Yun Du. In-situ observation of hydrogen nanobubbles formation on graphene surface by AFM-SECM. Electrochimica Acta 2024, 493 , 144425. https://doi.org/10.1016/j.electacta.2024.144425
    77. Gunani Jayamaha, Mahin Maleki, Cameron L. Bentley, Minkyung Kang. Practical guidelines for the use of scanning electrochemical cell microscopy (SECCM). The Analyst 2024, 149 (9) , 2542-2555. https://doi.org/10.1039/D4AN00117F
    78. Maciej Fronczak, Zoltán Károly, Predrag Banković, Zorica Mojović. The influence of precursor selection on electrochemical properties of radiofrequency thermal plasma synthesized graphene. Microchemical Journal 2024, 199 , 110079. https://doi.org/10.1016/j.microc.2024.110079
    79. Shuai Liu, Guilhem Pignol, Corinne Lagrost, Bingwei Mao, Jiawei Yan, Philippe Hapiot. Electron Transfer Kinetics at Single‐Layer Graphene/Ionic Liquid Interfaces. ChemElectroChem 2024, 11 (6) https://doi.org/10.1002/celc.202300658
    80. Ilya Sterin, Anna Tverdokhlebova, Oleh Smutok, Evgeny Katz. Chemically modifying electrodes—a classical tool box. Journal of Solid State Electrochemistry 2024, 28 (3-4) , 757-827. https://doi.org/10.1007/s10008-023-05743-z
    81. A.G. Krivenko, N.S. Komarova, I.A. Kostanovskiy, D. Stolyarov, Y.M. Shul’ga, S.V. Savilov, R. Yu. Novotortsev, Yu. A. Dobrovolsky, S.M. Aldoshin, J. Ni. Features of electrochemical behavior of graphene films on metal foams. Materials Technology 2023, 38 (1) https://doi.org/10.1080/10667857.2023.2211374
    82. Bozhao Wu, Yongping Kang, Cai Lu, Langquan Shui, Wengen Ouyang, Qi Peng, Qiankun He, Ze Liu. A Simple Method to Measure the Contact Angle of Metal Droplets on Graphite. Nanomanufacturing and Metrology 2023, 6 (1) https://doi.org/10.1007/s41871-023-00207-4
    83. India R. Wright, Lachlan F. Gaudin, Lisandra L. Martin, Cameron L. Bentley. Spatially-resolved bioelectrochemistry with scanning electrochemical cell microscopy: A microscale study of coenzyme Q10 modified carbon electrodes. Electrochimica Acta 2023, 471 , 143362. https://doi.org/10.1016/j.electacta.2023.143362
    84. John F. Cassidy, Rafaela C. de Carvalho, Anthony J. Betts. Use of Inner/Outer Sphere Terminology in Electrochemistry—A Hexacyanoferrate II/III Case Study. Electrochem 2023, 4 (3) , 313-349. https://doi.org/10.3390/electrochem4030022
    85. Ashwin K.V. Mruthunjaya, Alastair M. Hodges, Ronald C. Chatelier, Angel A.J. Torriero. Calibration-free disposable electrochemical sensor with co-facing electrodes: Theory and characterisation with fixed and changing mediator concentration. Electrochimica Acta 2023, 460 , 142596. https://doi.org/10.1016/j.electacta.2023.142596
    86. Lucas F. de Lima, André L. Ferreira, Ishani Ranjan, Ronald G. Collman, William R. de Araujo, Cesar de la Fuente-Nunez. A bacterial cellulose-based and low-cost electrochemical biosensor for ultrasensitive detection of SARS-CoV-2. Cell Reports Physical Science 2023, 4 (8) , 101476. https://doi.org/10.1016/j.xcrp.2023.101476
    87. Sakthivel Srinivas, Annamalai Senthil Kumar. Surface-Activated Pencil Graphite Electrode for Dopamine Sensor Applications: A Critical Review. Biosensors 2023, 13 (3) , 353. https://doi.org/10.3390/bios13030353
    88. Stanley Udochukwu Ofoegbu, Mário Guerreiro Silva Ferreira, Helena I. S. Nogueira, Mikhail Zheludkevich. Comparison of the Electrochemical Response of Carbon-Fiber-Reinforced Plastic (CFRP), Glassy Carbon, and Highly Ordered Pyrolytic Graphite (HOPG) in Near-Neutral Aqueous Chloride Media. C 2023, 9 (1) , 7. https://doi.org/10.3390/c9010007
    89. Shingo KAJIKAWA, Sho MORITA, Hiroshi USUKI, Naohiko SUGITA. Development of the spindle shaft for machining center using high thermal conductivity material. Journal of Advanced Mechanical Design, Systems, and Manufacturing 2023, 17 (6) , JAMDSM0065-JAMDSM0065. https://doi.org/10.1299/jamdsm.2023jamdsm0065
    90. András Pálinkás, György Kálvin, Péter Vancsó, Konrád Kandrai, Márton Szendrő, Gergely Németh, Miklós Németh, Áron Pekker, József S. Pap, Péter Petrik, Katalin Kamarás, Levente Tapasztó, Péter Nemes-Incze. The composition and structure of the ubiquitous hydrocarbon contamination on van der Waals materials. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-34641-7
    91. Guilhem Pignol, Patricia Bassil, Jean-Marie Fontmorin, Didier Floner, Florence Geneste, Philippe Hapiot. Electrochemical Properties of Carbon Fibers from Felts. Molecules 2022, 27 (19) , 6584. https://doi.org/10.3390/molecules27196584
    92. Alina I. Inozemtseva, Artem V. Sergeev, Kirill S. Napolskii, Sergey E. Kushnir, Vladislav Belov, Daniil M. Itkis, Dmitry Yu. Usachov, Lada V. Yashina. Graphene electrochemistry: ‘Adiabaticity’ of electron transfer. Electrochimica Acta 2022, 427 , 140901. https://doi.org/10.1016/j.electacta.2022.140901
    93. George Hasegawa. Free-standing and binder-free porous monolithic electrodes prepared via sol–gel processes. Journal of Sol-Gel Science and Technology 2022, 103 (2) , 637-679. https://doi.org/10.1007/s10971-022-05862-5
    94. Giada Caniglia, Gözde Tezcan, Gabriel N. Meloni, Patrick R. Unwin, Christine Kranz. Probing and Visualizing Interfacial Charge at Surfaces in Aqueous Solution. Annual Review of Analytical Chemistry 2022, 15 (1) , 247-267. https://doi.org/10.1146/annurev-anchem-121521-122615
    95. Oluwasegun J. Wahab, Patrick R. Unwin. Let’s twist electrochem. Nature Chemistry 2022, 14 (3) , 248-250. https://doi.org/10.1038/s41557-022-00900-9
    96. Atsushi Miyama, Takuya Okada, Fumiki Takahashi, Jiye Jin, Hirosuke Tatsumi. Electrochemical measurements with a periodically renewable pencil electrode. Journal of Electroanalytical Chemistry 2022, 908 , 116094. https://doi.org/10.1016/j.jelechem.2022.116094
    97. Mariola Brycht, Andrzej Leniart, Sławomira Skrzypek. Application of Solid Carbon Electrodes in Voltammetric (Bio)analysis of Selected Cytostatic Drugs. 2022, 1-22. https://doi.org/10.1007/978-3-030-63957-0_35-1
    98. Mariola Brycht, Andrzej Leniart, Sławomira Skrzypek. Application of Solid Carbon Electrodes in Voltammetric (Bio)analysis of Selected Cytostatic Drugs. 2022, 761-782. https://doi.org/10.1007/978-3-030-95660-8_35
    99. Yasufumi Takahashi, Makarova Marina, Tomohiro Ando, Takeshi Fukuma. Electrochemical Image of BDD. 2022, 43-55. https://doi.org/10.1007/978-981-16-7834-9_4
    100. Dan-Qing Liu, Minkyung Kang, David Perry, Chang-Hui Chen, Geoff West, Xue Xia, Shayantan Chaudhuri, Zachary P. L. Laker, Neil R. Wilson, Gabriel N. Meloni, Marko M. Melander, Reinhard J. Maurer, Patrick R. Unwin. Adiabatic versus non-adiabatic electron transfer at 2D electrode materials. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-27339-9
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect