ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Identification and Characterization of the Chaetoviridin and Chaetomugilin Gene Cluster in Chaetomium globosum Reveal Dual Functions of an Iterative Highly-Reducing Polyketide Synthase

View Author Information
Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
§ Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
Cite this: J. Am. Chem. Soc. 2012, 134, 43, 17900–17903
Publication Date (Web):October 16, 2012
https://doi.org/10.1021/ja3090498
Copyright © 2012 American Chemical Society

    Article Views

    3740

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    We report the identification and characterization of the caz biosynthetic cluster from Chaetomium globosum and the characterization of a highly reducing polyketide synthase (PKS) that acts in both a sequential and convergent manner with a nonreducing PKS to form the chaetomugilin and chaetoviridin azaphilones. Genetic inactivation studies verified the involvement of individual caz genes in the biosynthesis of the azaphilones. Through in vitro reconstitution, we demonstrated the in vitro synthesis of chaetoviridin A from the pyranoquinone intermediate cazisochromene using the highly reducing PKS and an acyltransferase.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Experimental details and NMR spectroscopic data. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 88 publications.

    1. Ye Wang, Katherine J. Torma, Joshua B. Pyser, Paul M. Zimmerman, Alison R. H. Narayan. Substrate-Selective Catalysis Enabled Synthesis of Azaphilone Natural Products. ACS Central Science 2024, 10 (3) , 708-716. https://doi.org/10.1021/acscentsci.3c01405
    2. Ke Xu, Ruijuan Li, Rongxiu Zhu, Xiaobin Li, Yuliang Xu, Qiaobian He, Fei Xie, Yanan Qiao, Xiaoyi Luan, Hongxiang Lou. Xylarins A–D, Two Pairs of Diastereoisomeric Isoindoline Alkaloids from the Endolichenic Fungus Xylaria sp.. Organic Letters 2021, 23 (20) , 7751-7754. https://doi.org/10.1021/acs.orglett.1c02730
    3. Marian Frank, Rudolf Hartmann, Malte Plenker, Attila Mándi, Tibor Kurtán, Ferhat Can Özkaya, Werner E. G. Müller, Matthias U. Kassack, Alexandra Hamacher, Wenhan Lin, Zhen Liu, Peter Proksch. Brominated Azaphilones from the Sponge-Associated Fungus Penicillium canescens Strain 4.14.6a. Journal of Natural Products 2019, 82 (8) , 2159-2166. https://doi.org/10.1021/acs.jnatprod.9b00151
    4. Bin Liang, Xinjun Du, Ping Li, Chanchan Sun, Shuo Wang. MptriA, an Acetyltransferase Gene Involved in Pigment Biosynthesis in M. purpureus YY-1. Journal of Agricultural and Food Chemistry 2018, 66 (16) , 4129-4138. https://doi.org/10.1021/acs.jafc.8b00661
    5. Jonathan Latham, Eileen Brandenburger, Sarah A. Shepherd, Binuraj R. K. Menon, and Jason Micklefield . Development of Halogenase Enzymes for Use in Synthesis. Chemical Reviews 2018, 118 (1) , 232-269. https://doi.org/10.1021/acs.chemrev.7b00032
    6. Mehdi Makrerougras, Romain Coffinier, Samuel Oger, Arnaud Chevalier, Cyrille Sabot, and Xavier Franck . Total Synthesis and Structural Revision of Chaetoviridins A. Organic Letters 2017, 19 (15) , 4146-4149. https://doi.org/10.1021/acs.orglett.7b02053
    7. Vinayak Agarwal, Zachary D. Miles, Jaclyn M. Winter, Alessandra S. Eustáquio, Abrahim A. El Gamal, and Bradley S. Moore . Enzymatic Halogenation and Dehalogenation Reactions: Pervasive and Mechanistically Diverse. Chemical Reviews 2017, 117 (8) , 5619-5674. https://doi.org/10.1021/acs.chemrev.6b00571
    8. Michio Sato, Jacob E. Dander, Chizuru Sato, Yiu-Sun Hung, Shu-Shan Gao, Man-Cheng Tang, Leibniz Hang, Jaclyn M. Winter, Neil K. Garg, Kenji Watanabe, and Yi Tang . Collaborative Biosynthesis of Maleimide- and Succinimide-Containing Natural Products by Fungal Polyketide Megasynthases. Journal of the American Chemical Society 2017, 139 (15) , 5317-5320. https://doi.org/10.1021/jacs.7b02432
    9. Meredith A. Skiba, Andrew P. Sikkema, William D. Fiers, William H. Gerwick, David H. Sherman, Courtney C. Aldrich, and Janet L. Smith . Domain Organization and Active Site Architecture of a Polyketide Synthase C-methyltransferase. ACS Chemical Biology 2016, 11 (12) , 3319-3327. https://doi.org/10.1021/acschembio.6b00759
    10. Jing Bai, Yuanyuan Lu, Ya-ming Xu, Wei Zhang, Ming Chen, Min Lin, A. A. Leslie Gunatilaka, Yuquan Xu, and István Molnár . Diversity-Oriented Combinatorial Biosynthesis of Hybrid Polyketide Scaffolds from Azaphilone and Benzenediol Lactone Biosynthons. Organic Letters 2016, 18 (6) , 1262-1265. https://doi.org/10.1021/acs.orglett.6b00110
    11. Michio Sato, Jaclyn M. Winter, Shinji Kishimoto, Hiroshi Noguchi, Yi Tang, and Kenji Watanabe . Combinatorial Generation of Chemical Diversity by Redox Enzymes in Chaetoviridin Biosynthesis. Organic Letters 2016, 18 (6) , 1446-1449. https://doi.org/10.1021/acs.orglett.6b00380
    12. Ralph A. Cacho, Justin Thuss, Wei Xu, Randy Sanichar, Zhizeng Gao, Allison Nguyen, John C. Vederas, and Yi Tang . Understanding Programming of Fungal Iterative Polyketide Synthases: The Biochemical Basis for Regioselectivity by the Methyltransferase Domain in the Lovastatin Megasynthase. Journal of the American Chemical Society 2015, 137 (50) , 15688-15691. https://doi.org/10.1021/jacs.5b11814
    13. Jaclyn M. Winter, Duilio Cascio, David Dietrich, Michio Sato, Kenji Watanabe, Michael R. Sawaya, John C. Vederas, and Yi Tang . Biochemical and Structural Basis for Controlling Chemical Modularity in Fungal Polyketide Biosynthesis. Journal of the American Chemical Society 2015, 137 (31) , 9885-9893. https://doi.org/10.1021/jacs.5b04520
    14. Chunmei Chen, Jianping Wang, Junjun Liu, Hucheng Zhu, Bin Sun, Jing Wang, Jinwen Zhang, Zengwei Luo, Guangmin Yao, Yongbo Xue, and Yonghui Zhang . Armochaetoglobins A–J: Cytochalasan Alkaloids from Chaetomium globosum TW1-1, a Fungus Derived from the Terrestrial Arthropod Armadillidium vulgare. Journal of Natural Products 2015, 78 (6) , 1193-1201. https://doi.org/10.1021/np500626x
    15. Angelica O. Zabala, Yit-Heng Chooi, Moon Seok Choi, Hsiao-Ching Lin, and Yi Tang . Fungal Polyketide Synthase Product Chain-Length Control by Partnering Thiohydrolase. ACS Chemical Biology 2014, 9 (7) , 1576-1586. https://doi.org/10.1021/cb500284t
    16. Takehito Nakazawa, Kan’ichiro Ishiuchi, Michio Sato, Yuta Tsunematsu, Satoru Sugimoto, Yasutaka Gotanda, Hiroshi Noguchi, Kinya Hotta, and Kenji Watanabe . Targeted Disruption of Transcriptional Regulators in Chaetomium globosum Activates Biosynthetic Pathways and Reveals Transcriptional Regulator-Like Behavior of Aureonitol. Journal of the American Chemical Society 2013, 135 (36) , 13446-13455. https://doi.org/10.1021/ja405128k
    17. Jaclyn M. Winter, Grace Chiou, Ian R. Bothwell, Wei Xu, Neil K. Garg, Minkui Luo, and Yi Tang . Expanding the Structural Diversity of Polyketides by Exploring the Cofactor Tolerance of an Inline Methyltransferase Domain. Organic Letters 2013, 15 (14) , 3774-3777. https://doi.org/10.1021/ol401723h
    18. Jin-Ming Gao, Sheng-Xiang Yang, and Jian-Chun Qin . Azaphilones: Chemistry and Biology. Chemical Reviews 2013, 113 (7) , 4755-4811. https://doi.org/10.1021/cr300402y
    19. Hsiao-Ching Lin, Yit-Heng Chooi, Sourabh Dhingra, Wei Xu, Ana M. Calvo, and Yi Tang . The Fumagillin Biosynthetic Gene Cluster in Aspergillus fumigatus Encodes a Cryptic Terpene Cyclase Involved in the Formation of β-trans-Bergamotene. Journal of the American Chemical Society 2013, 135 (12) , 4616-4619. https://doi.org/10.1021/ja312503y
    20. Huaran Zhang, Yuting Huang, Yingjie Tang, Dekun Kong, Yi Zou. Genome mining of multi-substituted alkylresorcinols from a hybrid highly reducing- and type III- polyketide pathway. Chinese Chemical Letters 2024, 35 (7) , 108968. https://doi.org/10.1016/j.cclet.2023.108968
    21. Nikolai A. Löhr, Malik Rakhmanov, Jacob M. Wurlitzer, Gerald Lackner, Markus Gressler, Dirk Hoffmeister. Basidiomycete non-reducing polyketide synthases function independently of SAT domains. Fungal Biology and Biotechnology 2023, 10 (1) https://doi.org/10.1186/s40694-023-00164-z
    22. Thiago F. Sousa, Moysés B. de Araújo Júnior, Eldrinei G. Peres, Mayane P. Souza, Felipe M. A. da Silva, Lívia S. de Medeiros, Afonso D. L. de Souza, Antonia Q. L. de Souza, Michel E. B. Yamagishi, Gilvan F. da Silva, Hector H. F. Koolen, Marisa V. De Queiroz. Discovery of dual PKS involved in sclerotiorin biosynthesis in Penicillium meliponae using genome mining and gene knockout. Archives of Microbiology 2023, 205 (2) https://doi.org/10.1007/s00203-023-03414-1
    23. Chen-Yu Chiang, Masao Ohashi, Yi Tang. Deciphering chemical logic of fungal natural product biosynthesis through heterologous expression and genome mining. Natural Product Reports 2023, 40 (1) , 89-127. https://doi.org/10.1039/D2NP00050D
    24. Gordon W. Gribble. Naturally Occurring Organohalogen Compounds—A Comprehensive Review. 2023, 1-546. https://doi.org/10.1007/978-3-031-26629-4_1
    25. Atsushi Minami. A New Trend in Biosynthetic Studies of Natural Products: The Bridge Between the Amino Acid Sequence Data and the Chemical Structure. 2023, 123-145. https://doi.org/10.1007/978-981-99-1714-3_7
    26. Téo Hebra, Nicolas Pollet, David Touboul, Véronique Eparvier. Combining OSMAC, metabolomic and genomic methods for the production and annotation of halogenated azaphilones and ilicicolins in termite symbiotic fungi. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-22256-3
    27. Zi-Yun Feng, Pei-Zhi Huang, Song-Jie Jiang, Shi-Jin Shen, Jian-Jun Chen. Three new highly oxygenated azaphilones from an endophytic fungus Penicillium sp. LZUC-S1. Tetrahedron Letters 2022, 113 , 154260. https://doi.org/10.1016/j.tetlet.2022.154260
    28. Jaiyfungkhong Phakeovilay, Witcha Imaram, Supachai Vuttipongchaikij, Waraporn Bunnak, Colin M. Lazarus, Pakorn Wattana-Amorn. C -Methylation controls the biosynthetic programming of alternapyrone. Organic & Biomolecular Chemistry 2022, 20 (25) , 5050-5054. https://doi.org/10.1039/D2OB00947A
    29. Daren W. Brown, Hye-Seon Kim, Amy E. McGovern, Crystal E. Probyn, Robert H. Proctor. Genus-wide analysis of Fusarium polyketide synthases reveals broad chemical potential. Fungal Genetics and Biology 2022, 160 , 103696. https://doi.org/10.1016/j.fgb.2022.103696
    30. Bastien Cochereau, Laurence Meslet-Cladière, Yves François Pouchus, Olivier Grovel, Catherine Roullier. Halogenation in Fungi: What Do We Know and What Remains to Be Discovered?. Molecules 2022, 27 (10) , 3157. https://doi.org/10.3390/molecules27103157
    31. Elizabeth Skellam. Biosynthesis of fungal polyketides by collaborating and trans -acting enzymes. Natural Product Reports 2022, 39 (4) , 754-783. https://doi.org/10.1039/D1NP00056J
    32. Esteban Charria-Girón, Frank Surup, Yasmina Marin-Felix. Diversity of biologically active secondary metabolites in the ascomycete order Sordariales. Mycological Progress 2022, 21 (4) https://doi.org/10.1007/s11557-022-01775-3
    33. Abdelsattar M. Omar, Gamal A. Mohamed, Sabrin R. M. Ibrahim. Chaetomugilins and Chaetoviridins—Promising Natural Metabolites: Structures, Separation, Characterization, Biosynthesis, Bioactivities, Molecular Docking, and Molecular Dynamics. Journal of Fungi 2022, 8 (2) , 127. https://doi.org/10.3390/jof8020127
    34. Xiangfeng Meng, Yu Fang, Mingyang Ding, Yanyu Zhang, Kaili Jia, Zhongye Li, Jérôme Collemare, Weifeng Liu. Developing fungal heterologous expression platforms to explore and improve the production of natural products from fungal biodiversity. Biotechnology Advances 2022, 54 , 107866. https://doi.org/10.1016/j.biotechadv.2021.107866
    35. Daren Brown, Hye-Seon Kim, Amy McGovern, Crystal Probyn, Robert H. Proctor. Genus-Wide Analysis of Fusarium Polyketide Synthases Reveals Broad Chemical Potential. SSRN Electronic Journal 2022, 134 https://doi.org/10.2139/ssrn.4001455
    36. Thiago Fernandes Sousa, Moyses B. de Araujo-Junior, Eldrinei G. Peres, Mayane P. Souza, Felipe M. A. da Silva, Lívia S. de Medeiros, Afonso DL Souza, Antonia Q. L. de Souza, Michel E. B. Yamagishi, Gilvan F. da Silva, Hector H. F. Koolen, Marisa V. de Queiroz. Genome Mining and Gene Knockout Approaches Lead to Discovery of the Biosynthetic Pathway of Sclerotiorin and Sclerotiorin-Like Azaphilones in Penicillium Meliponae. SSRN Electronic Journal 2022, 34 https://doi.org/10.2139/ssrn.4096292
    37. Lesley-Ann Giddings, David J. Newman. Extremophilic Fungi from Marine Environments: Underexplored Sources of Antitumor, Anti-Infective and Other Biologically Active Agents. Marine Drugs 2022, 20 (1) , 62. https://doi.org/10.3390/md20010062
    38. Anna Tippelt, Markus Nett. Saccharomyces cerevisiae as host for the recombinant production of polyketides and nonribosomal peptides. Microbial Cell Factories 2021, 20 (1) https://doi.org/10.1186/s12934-021-01650-y
    39. Katherine Williams, Claudio Greco, Andrew M. Bailey, Christine L. Willis. Core Steps to the Azaphilone Family of Fungal Natural Products. ChemBioChem 2021, 22 (21) , 3027-3036. https://doi.org/10.1002/cbic.202100240
    40. Meng-Yue Yang, Yu-Xin Wang, Qing-Hua Chang, Long-Fei Li, Yun-Feng Liu, Fei Cao. Cytochalasans and azaphilones: suitable chemotaxonomic markers for the Chaetomium species. Applied Microbiology and Biotechnology 2021, 105 (21-22) , 8139-8155. https://doi.org/10.1007/s00253-021-11630-2
    41. Kazunari Sakai, Masato Iwatsuki, Taichi Kaneta, Aoi Kimishima, Yukihiro Asami, Toshiaki Sunazuka, Rokuro Masuma, Kenichi Nonaka. Sesquicillin F, a new insecticidal meroterpenoid produced by Mariannaea macrochlamydospora FKI-4735. The Journal of Antibiotics 2021, 74 (11) , 817-820. https://doi.org/10.1038/s41429-021-00456-9
    42. Junya Takino, Akari Kotani, Taro Ozaki, Wenquan Peng, Jie Yu, Yian Guo, Susumu Mochizuki, Kazuya Akimitsu, Masaru Hashimoto, Tao Ye, Atsushi Minami, Hideaki Oikawa. Biochemistry‐Guided Prediction of the Absolute Configuration of Fungal Reduced Polyketides. Angewandte Chemie 2021, 133 (43) , 23591-23599. https://doi.org/10.1002/ange.202110658
    43. Junya Takino, Akari Kotani, Taro Ozaki, Wenquan Peng, Jie Yu, Yian Guo, Susumu Mochizuki, Kazuya Akimitsu, Masaru Hashimoto, Tao Ye, Atsushi Minami, Hideaki Oikawa. Biochemistry‐Guided Prediction of the Absolute Configuration of Fungal Reduced Polyketides. Angewandte Chemie International Edition 2021, 60 (43) , 23403-23411. https://doi.org/10.1002/anie.202110658
    44. Charlotte Crowe, Samuel Molyneux, Sunil V. Sharma, Ying Zhang, Danai S. Gkotsi, Helen Connaris, Rebecca J. M. Goss. Halogenases: a palette of emerging opportunities for synthetic biology–synthetic chemistry and C–H functionalisation. Chemical Society Reviews 2021, 50 (17) , 9443-9481. https://doi.org/10.1039/D0CS01551B
    45. Téo Hebra, Nicolas Elie, Salomé Poyer, Elsa Van Elslande, David Touboul, Véronique Eparvier. Dereplication, Annotation, and Characterization of 74 Potential Antimicrobial Metabolites from Penicillium Sclerotiorum Using t-SNE Molecular Networks. Metabolites 2021, 11 (7) , 444. https://doi.org/10.3390/metabo11070444
    46. Coralie Pavesi, Victor Flon, Stéphane Mann, Stéphane Leleu, Soizic Prado, Xavier Franck. Biosynthesis of azaphilones: a review. Natural Product Reports 2021, 38 (6) , 1058-1071. https://doi.org/10.1039/D0NP00080A
    47. E. Kuhnert, J.C. Navarro-Muñoz, K. Becker, M. Stadler, J. Collemare, R.J. Cox. Secondary metabolite biosynthetic diversity in the fungal family Hypoxylaceae and Xylaria hypoxylon. Studies in Mycology 2021, 99 (1) , 100118-100118. https://doi.org/10.1016/j.simyco.2021.100118
    48. Anastasia Landeis, Markus Schmidt-Heydt, . Sequencing and Analysis of the Entire Genome of the Mycoparasitic Fungus Trichoderma afroharzianum. Microbiology Resource Announcements 2021, 10 (15) https://doi.org/10.1128/MRA.00211-21
    49. Joshua P. Torres, Zhenjian Lin, Jaclyn M. Winter, Patrick J. Krug, Eric W. Schmidt. Animal biosynthesis of complex polyketides in a photosynthetic partnership. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-16376-5
    50. Thomas Isbrandt, Jens C. Frisvad, Anja Madsen, Thomas O. Larsen. New azaphilones from Aspergillus neoglaber. AMB Express 2020, 10 (1) https://doi.org/10.1186/s13568-020-01078-4
    51. Guan Pang, Tingting Sun, Zhenzhong Yu, Tao Yuan, Wei Liu, Hong Zhu, Qi Gao, Dongqing Yang, Christian P. Kubicek, Jian Zhang, Qirong Shen. Azaphilones biosynthesis complements the defence mechanism of Trichoderma guizhouense against oxidative stress. Environmental Microbiology 2020, 22 (11) , 4808-4824. https://doi.org/10.1111/1462-2920.15246
    52. Liwen Zhang, Opemipo Esther Fasoyin, István Molnár, Yuquan Xu. Secondary metabolites from hypocrealean entomopathogenic fungi: novel bioactive compounds. Natural Product Reports 2020, 37 (9) , 1181-1206. https://doi.org/10.1039/C9NP00065H
    53. Jesse W. Cain, Kristin I. Miller, John A. Kalaitzis, Rocky Chau, Brett A. Neilan. Genome mining of a fungal endophyte of Taxus yunnanensis (Chinese yew) leads to the discovery of a novel azaphilone polyketide, lijiquinone. Microbial Biotechnology 2020, 13 (5) , 1415-1427. https://doi.org/10.1111/1751-7915.13568
    54. Siwen Yuan, Jannu Vinay Gopal, Shuya Ren, Litong Chen, Lan Liu, Zhizeng Gao. Anticancer fungal natural products: Mechanisms of action and biosynthesis. European Journal of Medicinal Chemistry 2020, 202 , 112502. https://doi.org/10.1016/j.ejmech.2020.112502
    55. Glenna J. Kramer, Sheila Pimentel‐Elardo, Justin R. Nodwell. Dual‐PKS Cluster for Biosynthesis of a Light‐Induced Secondary Metabolite Found from Genome Sequencing of Hyphodiscus hymeniophilus Fungus. ChemBioChem 2020, 21 (15) , 2116-2120. https://doi.org/10.1002/cbic.201900689
    56. Chunmei Chen, Huaming Tao, Weihao Chen, Bin Yang, Xuefeng Zhou, Xiaowei Luo, Yonghong Liu. Recent advances in the chemistry and biology of azaphilones. RSC Advances 2020, 10 (17) , 10197-10220. https://doi.org/10.1039/D0RA00894J
    57. Xuenian Huang, Wei Zhang, Shen Tang, Suhui Wei, Xuefeng Lu. Collaborative Biosynthesis of a Class of Bioactive Azaphilones by Two Separate Gene Clusters Containing Four PKS/NRPSs with Transcriptional Crosstalk in Fungi. Angewandte Chemie 2020, 132 (11) , 4379-4383. https://doi.org/10.1002/ange.201915514
    58. Xuenian Huang, Wei Zhang, Shen Tang, Suhui Wei, Xuefeng Lu. Collaborative Biosynthesis of a Class of Bioactive Azaphilones by Two Separate Gene Clusters Containing Four PKS/NRPSs with Transcriptional Crosstalk in Fungi. Angewandte Chemie International Edition 2020, 59 (11) , 4349-4353. https://doi.org/10.1002/anie.201915514
    59. Jeffrey T. Mindrebo, Ashay Patel, Laëtitia E. Misson, Woojoo E. Kim, Tony D. Davis, Qing Zhe Ni, James J. La Clair, Michael D. Burkart. Structural Basis of Acyl-Carrier Protein Interactions in Fatty Acid and Polyketide Biosynthesis. 2020, 61-122. https://doi.org/10.1016/B978-0-12-409547-2.14662-1
    60. Eun Bin Go, Yi Tang. Fungal Highly-Reducing Polyketide Synthases and Associated Natural Products. 2020, 333-364. https://doi.org/10.1016/B978-0-12-409547-2.14732-8
    61. Russell J. Cox, Elizabeth J. Skellam. Fungal Non-Reducing Polyketide Synthases. 2020, 266-312. https://doi.org/10.1016/B978-0-12-409547-2.14780-8
    62. 哲麟 郑. Research Progress in Microbial Halogenases and Their Industrial Applications. Advances in Microbiology 2020, 09 (04) , 141-155. https://doi.org/10.12677/AMB.2020.94020
    63. Zheng Wang, Francesc López-Giráldez, Junrui Wang, Frances Trail, Jeffrey P. Townsend, . Integrative Activity of Mating Loci, Environmentally Responsive Genes, and Secondary Metabolism Pathways during Sexual Development of Chaetomium globosum. mBio 2019, 10 (6) https://doi.org/10.1128/mBio.02119-19
    64. Mengbin Chen, Qikun Liu, Shu-Shan Gao, Abbegayle E. Young, Steven E. Jacobsen, Yi Tang. Genome mining and biosynthesis of a polyketide from a biofertilizer fungus that can facilitate reductive iron assimilation in plant. Proceedings of the National Academy of Sciences 2019, 116 (12) , 5499-5504. https://doi.org/10.1073/pnas.1819998116
    65. Dominik A. Herbst, Craig A. Townsend, Timm Maier. The architectures of iterative type I PKS and FAS. Natural Product Reports 2018, 35 (10) , 1046-1069. https://doi.org/10.1039/C8NP00039E
    66. Nayim Sepay, Chayan Guha, Sanhita Maity, Asok K. Mallik. Synthesis of 6,12‐Methanobenzo[ d ]pyrano[3,4‐ g ][1,3]dioxocin‐1(12 H )‐ones and Study of Their Interaction with DNA and β‐Lactoglobulin. European Journal of Organic Chemistry 2017, 2017 (40) , 6013-6022. https://doi.org/10.1002/ejoc.201701224
    67. Bijinu Balakrishnan, Yoon Ji Lim, Seok Hyun Hwang, Doh Won Lee, Si-Hyung Park, Hyung-Jin Kwon. Selective production of red azaphilone pigments in a Monascus purpureus mppDEG deletion mutant. Journal of Applied Biological Chemistry 2017, 60 (3) , 249-256. https://doi.org/10.3839/jabc.2017.040
    68. Meng-Hua Wang, Tao Jiang, Gang Ding, Shu-Bin Niu, Xue-Wei Wang, Meng Yu, Yu-Cheng Gu, Qiu-Bo Zhang, Jia-Huan Chen, Hong-Mei Jia, Zhong-Mei Zou. Molecular epigenetic approach activates silent gene cluster producing dimeric bis-spiro-azaphilones in Chaetomium globosum CBS148.51. The Journal of Antibiotics 2017, 70 (6) , 801-804. https://doi.org/10.1038/ja.2017.4
    69. Yohann Daguerre, Véronique Edel-Hermann, Christian Steinberg. Fungal Genes and Metabolites Associated with the Biocontrol of Soil-borne Plant Pathogenic Fungi. 2017, 33-104. https://doi.org/10.1007/978-3-319-25001-4_27
    70. Steffen Friedrich, Franziska Hemmerling, Frederick Lindner, Anna Warnke, Johannes Wunderlich, Gesche Berkhan, Frank Hahn. Characterisation of the Broadly-Specific O-Methyl-transferase JerF from the Late Stages of Jerangolid Biosynthesis. Molecules 2016, 21 (11) , 1443. https://doi.org/10.3390/molecules21111443
    71. Gang Wang, Zhiguo Liu, Runmao Lin, Erfeng Li, Zhenchuan Mao, Jian Ling, Yuhong Yang, Wen-Bing Yin, Bingyan Xie, . Biosynthesis of Antibiotic Leucinostatins in Bio-control Fungus Purpureocillium lilacinum and Their Inhibition on Phytophthora Revealed by Genome Mining. PLOS Pathogens 2016, 12 (7) , e1005685. https://doi.org/10.1371/journal.ppat.1005685
    72. Chunmei Chen, Jing Wang, Hucheng Zhu, Jianping Wang, Yongbo Xue, Guangzheng Wei, Yi Guo, Dongdong Tan, Jinwen Zhang, Chunping Yin, Yonghui Zhang. Chaephilones A and B, Two New Azaphilone Derivatives Isolated from Chaetomium globosum. Chemistry & Biodiversity 2016, 13 (4) , 422-426. https://doi.org/10.1002/cbdv.201500117
    73. Carly Bond, Yi Tang, Li Li. Saccharomyces cerevisiae as a tool for mining, studying and engineering fungal polyketide synthases. Fungal Genetics and Biology 2016, 89 , 52-61. https://doi.org/10.1016/j.fgb.2016.01.005
    74. Yohann Daguerre, Véronique Edel-Hermann, Christian Steinberg. Fungal Genes and Metabolites Associated with the Biocontrol of Soil-borne Plant Pathogenic Fungi. 2016, 1-72. https://doi.org/10.1007/978-3-319-19456-1_27-1
    75. Michio Sato, Fumitoshi Yagishita, Takashi Mino, Nahoko Uchiyama, Ashay Patel, Yit‐Heng Chooi, Yukihiro Goda, Wei Xu, Hiroshi Noguchi, Tsuyoshi Yamamoto, Kinya Hotta, Kendall N. Houk, Yi Tang, Kenji Watanabe. Involvement of Lipocalin‐like CghA in Decalin‐Forming Stereoselective Intramolecular [4+2] Cycloaddition. ChemBioChem 2015, 16 (16) , 2294-2298. https://doi.org/10.1002/cbic.201500386
    76. Yue Yang, Bin Liu, Xinjun Du, Ping Li, Bin Liang, Xiaozhen Cheng, Liangcheng Du, Di Huang, Lei Wang, Shuo Wang. Complete genome sequence and transcriptomics analyses reveal pigment biosynthesis and regulatory mechanisms in an industrial strain, Monascus purpureus YY-1. Scientific Reports 2015, 5 (1) https://doi.org/10.1038/srep08331
    77. Makoto Hashimoto, Daigo Wakana, Miki Ueda, Daisuke Kobayashi, Yukihiro Goda, Isao Fujii. Product identification of non-reducing polyketide synthases with C-terminus methyltransferase domain from Talaromyces stipitatus using Aspergillus oryzae heterologous expression. Bioorganic & Medicinal Chemistry Letters 2015, 25 (7) , 1381-1384. https://doi.org/10.1016/j.bmcl.2015.02.057
    78. Michio Sato, Haruka Yamada, Kinya Hotta, Kenji Watanabe. Elucidation of the shanorellin biosynthetic pathway and functional analysis of associated enzymes. MedChemComm 2015, 6 (3) , 425-430. https://doi.org/10.1039/C4MD00352G
    79. Steffen Friedrich, Frank Hahn. Opportunities for enzyme catalysis in natural product chemistry. Tetrahedron 2015, 71 (10) , 1473-1508. https://doi.org/10.1016/j.tet.2014.12.026
    80. Ralph A. Cacho, Yi Tang, Yit-Heng Chooi. Next-generation sequencing approach for connecting secondary metabolites to biosynthetic gene clusters in fungi. Frontiers in Microbiology 2015, 5 https://doi.org/10.3389/fmicb.2014.00774
    81. Hirokazu Kage, Elena Riva, James S. Parascandolo, Martin F. Kreutzer, Manuela Tosin, Markus Nett. Chemical chain termination resolves the timing of ketoreduction in a partially reducing iterative type I polyketide synthase. Organic & Biomolecular Chemistry 2015, 13 (47) , 11414-11417. https://doi.org/10.1039/C5OB02009C
    82. Yohann Daguerre, Katarzyna Siegel, Véronique Edel-Hermann, Christian Steinberg. Fungal proteins and genes associated with biocontrol mechanisms of soil-borne pathogens: a review. Fungal Biology Reviews 2014, 28 (4) , 97-125. https://doi.org/10.1016/j.fbr.2014.11.001
    83. Bijinu Balakrishnan, Chien-Chi Chen, Tzu-Ming Pan, Hyung-Jin Kwon. Mpp7 controls regioselective Knoevenagel condensation during the biosynthesis of Monascus azaphilone pigments. Tetrahedron Letters 2014, 55 (9) , 1640-1643. https://doi.org/10.1016/j.tetlet.2014.01.090
    84. Ahmed al Fahad, Amira Abood, Katja M. Fisch, Anna Osipow, Jack Davison, Marija Avramović, Craig P. Butts, Jörn Piel, Thomas J. Simpson, Russell J. Cox. Oxidative dearomatisation: the key step of sorbicillinoid biosynthesis. Chem. Sci. 2014, 5 (2) , 523-527. https://doi.org/10.1039/C3SC52911H
    85. Balakrishnan Bijinu, Jae-Won Suh, Si-Hyung Park, Hyung-Jin Kwon. Delineating Monascus azaphilone pigment biosynthesis: oxidoreductive modifications determine the ring cyclization pattern in azaphilone biosynthesis. RSC Adv. 2014, 4 (103) , 59405-59408. https://doi.org/10.1039/C4RA11713A
    86. Bijinu Balakrishnan, Suman Karki, Shih-Hau Chiu, Hyun-Ju Kim, Jae-Won Suh, Bora Nam, Yeo-Min Yoon, Chien-Chi Chen, Hyung-Jin Kwon. Genetic localization and in vivo characterization of a Monascus azaphilone pigment biosynthetic gene cluster. Applied Microbiology and Biotechnology 2013, 97 (14) , 6337-6345. https://doi.org/10.1007/s00253-013-4745-9
    87. Robert A. Hill, Andrew Sutherland. Hot off the press. Nat. Prod. Rep. 2013, 30 (2) , 213-217. https://doi.org/10.1039/C2NP90051C
    88. Sebastián O. Simonetti, Enrique L. Larghi, Andrea B. J. Bracca, Teodoro S. Kaufman. Angular tricyclic benzofurans and related natural products of fungal origin. Isolation, biological activity and synthesis. Natural Product Reports 2013, 30 (7) , 941. https://doi.org/10.1039/c3np70014c

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect