Concepts for Stereoselective Acrylate InsertionClick to copy article linkArticle link copied!
Abstract

Various phosphinesulfonato ligands and the corresponding palladium complexes [{((P∧O)PdMeCl)-μ-M}n] ([{(X1-Cl)-μ-M}n], (P∧O) = κ2-P,O-Ar2PC6H4SO2O) with symmetric (Ar = 2-MeOC6H4, 2-CF3C6H4, 2,6-(MeO)2C6H3, 2,6-(iPrO)2C6H3, 2-(2′,6′-(MeO)2C6H3)C6H4) and asymmetric substituted phosphorus atoms (Ar1 = 2,6-(MeO)2C6H3, Ar2 = 2′-(2,6-(MeO)2C6H3)C6H4; Ar1 = 2,6-(MeO)2C6H3, Ar2 = 2-cHexOC6H4) were synthesized. Analyses of molecular motions and dynamics by variable temperature NMR studies and line shape analysis were performed for the free ligands and the complexes. The highest barriers of ΔG⧧ = 44–64 kJ/mol were assigned to an aryl rotation process, and the flexibility of the ligand framework was found to be a key obstacle to a more effective stereocontrol. An increase of steric bulk at the aryl substituents raises the motional barriers but diminishes insertion rates and regioselectivity. The stereoselectivity of the first and the second methyl acrylate (MA) insertion into the Pd–Me bond of in situ generated complexes X1 was investigated by NMR and DFT methods. The substitution pattern of the ligand clearly affects the first MA insertion, resulting in a stereoselectivity of up to 6:1 for complexes with an asymmetric substituted phosphorus. In the consecutive insertion, the stereoselectivity is diminished in all cases. DFT analysis of the corresponding insertion transition states revealed that a selectivity for the first insertion with asymmetric (P∧O) complexes is diminished in the consecutive insertions due to uncooperatively working enantiomorphic and chain end stereocontrol. From these observations, further concepts are developed.
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 62 publications.
- Shuoyan Xiong, Heather A. Spinney, Brad C. Bailey, Briana S. Henderson, Adjeoda A. Tekpor, Matthew R. Espinosa, Paramita Saha, Theodor Agapie. Switchable Synthesis of Ethylene/Acrylate Copolymers by a Dinickel Catalyst: Evidence for Chain Growth on Both Nickel Centers and Concepts of Cation Exchange Polymerization. ACS Catalysis 2024, 14
(7)
, 5260-5268. https://doi.org/10.1021/acscatal.4c00156
- Shuoyan Xiong, Alexandria Hong, Priyabrata Ghana, Brad C. Bailey, Heather A. Spinney, Hannah Bailey, Briana S. Henderson, Steve Marshall, Theodor Agapie. Acrylate-Induced β-H Elimination in Coordination Insertion Copolymerizaton Catalyzed by Nickel. Journal of the American Chemical Society 2023, 145
(48)
, 26463-26471. https://doi.org/10.1021/jacs.3c10800
- Lixin Cao, Zhengguo Cai, Mingyuan Li. Synthesis and Characterization of Phosphinobenzenamine Palladium Complexes and Their Application in Ethylene Polymerization and Copolymerization with Polar Monomers. Organometallics 2022, 41
(23)
, 3538-3545. https://doi.org/10.1021/acs.organomet.2c00389
- Stephen L. J. Luckham, Kyoko Nozaki. Toward the Copolymerization of Propylene with Polar Comonomers. Accounts of Chemical Research 2021, 54
(2)
, 344-355. https://doi.org/10.1021/acs.accounts.0c00628
- Gregor Voit, Sangeth Jenthra, Markus Hölscher, Thomas Weyhermüller, Walter Leitner. Reversible Insertion of Carbon Dioxide at Phosphine Sulfonamido PdII–Aryl Complexes. Organometallics 2020, 39
(24)
, 4465-4473. https://doi.org/10.1021/acs.organomet.0c00560
- Da-Ae Park, Seunghwan Byun, Ji Yeon Ryu, Jinyoung Lee, Junseong Lee, Sukwon Hong. Abnormal N-Heterocyclic Carbene–Palladium Complexes for the Copolymerization of Ethylene and Polar Monomers. ACS Catalysis 2020, 10
(10)
, 5443-5453. https://doi.org/10.1021/acscatal.0c00802
- Satej S. Deshmukh, Shahaji R. Gaikwad, Nilesh R. Mote, Manod M, Rajesh G. Gonnade, Samir H. Chikkali. Neutral Imino-Methyl Benzenesulfonate-Ligated Pd(II) Complexes and Implications in Ethylene Polymerization. ACS Omega 2019, 4
(5)
, 9502-9511. https://doi.org/10.1021/acsomega.9b00709
- Jiajie Sun, Min Chen, Gen Luo, Changle Chen, Yi Luo. Diphosphazane-monoxide and Phosphine-sulfonate Palladium Catalyzed Ethylene Copolymerization with Polar Monomers: A Computational Study. Organometallics 2019, 38
(3)
, 638-646. https://doi.org/10.1021/acs.organomet.8b00796
- Tao Liang, Changle Chen. Position Makes the Difference: Electronic Effects in Nickel-Catalyzed Ethylene Polymerizations and Copolymerizations. Inorganic Chemistry 2018, 57
(23)
, 14913-14919. https://doi.org/10.1021/acs.inorgchem.8b02687
- Jonathan Potier, Basile Commarieu, Armand Soldera, Jerome P. Claverie. Thermodynamic Control in the Catalytic Insertion Polymerization of Norbornenes as Rationale for the Lack of Reactivity of Endo-Substituted Norbornenes. ACS Catalysis 2018, 8
(7)
, 6047-6054. https://doi.org/10.1021/acscatal.8b00393
- Rebecca E. Black and Richard F. Jordan . Synthesis and Reactivity of Palladium(II) Alkyl Complexes that Contain Phosphine-cyclopentanesulfonate Ligands. Organometallics 2017, 36
(17)
, 3415-3428. https://doi.org/10.1021/acs.organomet.7b00572
- Shuhuang Zhong, Yingxin Tan, Liu Zhong, Jie Gao, Heng Liao, Long Jiang, Haiyang Gao, and Qing Wu . Precision Synthesis of Ethylene and Polar Monomer Copolymers by Palladium-Catalyzed Living Coordination Copolymerization. Macromolecules 2017, 50
(15)
, 5661-5669. https://doi.org/10.1021/acs.macromol.7b01132
- Shahaji R. Gaikwad, Satej S. Deshmukh, Vijay S. Koshti, Suparna Poddar, Rajesh G. Gonnade, Pattuparambil R. Rajamohanan, and Samir H. Chikkali . Reactivity of Difunctional Polar Monomers and Ethylene Copolymerization: A Comprehensive Account. Macromolecules 2017, 50
(15)
, 5748-5758. https://doi.org/10.1021/acs.macromol.7b01356
- Min Chen and Changle Chen . Rational Design of High-Performance Phosphine Sulfonate Nickel Catalysts for Ethylene Polymerization and Copolymerization with Polar Monomers. ACS Catalysis 2017, 7
(2)
, 1308-1312. https://doi.org/10.1021/acscatal.6b03394
- Nicole Schuster, Thomas Rünzi, and Stefan Mecking . Reactivity of Functionalized Vinyl Monomers in Insertion Copolymerization. Macromolecules 2016, 49
(4)
, 1172-1179. https://doi.org/10.1021/acs.macromol.5b02749
- Xiao-Yan Wang, Yong-Xia Wang, Yue-Sheng Li, and Li Pan . Convenient Syntheses and Versatile Functionalizations of Isotactic Polypropylene Containing Plentiful Pendant Styrene Groups with High Efficiency. Macromolecules 2015, 48
(7)
, 1991-1998. https://doi.org/10.1021/acs.macromol.5b00128
- Natalie Margraf and Georg Manolikakes . One-Pot Synthesis of Aryl Sulfones from Organometallic Reagents and Iodonium Salts. The Journal of Organic Chemistry 2015, 80
(5)
, 2582-2600. https://doi.org/10.1021/jo5027518
- Zhongbao Jian, Moritz C. Baier, and Stefan Mecking . Suppression of Chain Transfer in Catalytic Acrylate Polymerization via Rapid and Selective Secondary Insertion. Journal of the American Chemical Society 2015, 137
(8)
, 2836-2839. https://doi.org/10.1021/jacs.5b00179
- Xiaoyuan Zhou, Ka-Cheong Lau, Benjamin J. Petro, and Richard F. Jordan . cis/trans Isomerization of o-Phosphino-Arenesulfonate Palladium Methyl Complexes. Organometallics 2014, 33
(24)
, 7209-7214. https://doi.org/10.1021/om501007q
- Ge Feng, Matthew P. Conley, and Richard F. Jordan . Differentiation between Chelate Ring Inversion and Aryl Rotation in a CF3-Substituted Phosphine-Sulfonate Palladium Methyl Complex. Organometallics 2014, 33
(17)
, 4486-4496. https://doi.org/10.1021/om500699t
- Yanlu Zhang, Yanchun Cao, Xuebing Leng, Changle Chen, and Zheng Huang . Cationic Palladium(II) Complexes of Phosphine–Sulfonamide Ligands: Synthesis, Characterization, and Catalytic Ethylene Oligomerization. Organometallics 2014, 33
(14)
, 3738-3745. https://doi.org/10.1021/om5004094
- Nathan D. Contrella, Jessica R. Sampson, and Richard F. Jordan . Copolymerization of Ethylene and Methyl Acrylate by Cationic Palladium Catalysts That Contain Phosphine-Diethyl Phosphonate Ancillary Ligands. Organometallics 2014, 33
(13)
, 3546-3555. https://doi.org/10.1021/om5004489
- Zhongbao Jian, Philipp Wucher, and Stefan Mecking . Heterocycle-Substituted Phosphinesulfonato Palladium(II) Complexes for Insertion Copolymerization of Methyl Acrylate. Organometallics 2014, 33
(11)
, 2879-2888. https://doi.org/10.1021/om500400a
- Brad P. Carrow and Kyoko Nozaki . Transition-Metal-Catalyzed Functional Polyolefin Synthesis: Effecting Control through Chelating Ancillary Ligand Design and Mechanistic Insights. Macromolecules 2014, 47
(8)
, 2541-2555. https://doi.org/10.1021/ma500034g
- Xiaoyan Wang, Yongxia Wang, Xincui Shi, Jingyu Liu, Changle Chen, and Yuesheng Li . Syntheses of Well-Defined Functional Isotactic Polypropylenes via Efficient Copolymerization of Propylene with ω-Halo-α-alkenes by Post-metallocene Hafnium Catalyst. Macromolecules 2014, 47
(2)
, 552-559. https://doi.org/10.1021/ma4022696
- Juean Deng, Haiyang Gao, Fangming Zhu, and Qing Wu . Synthesis and Structure of Imine–N-Heterocyclic Carbene Palladium Complexes and Their Catalytic Behavior in Norbornene Polymerization. Organometallics 2013, 32
(16)
, 4507-4515. https://doi.org/10.1021/om400268y
- Philipp Wucher, Verena Goldbach, and Stefan Mecking . Electronic Influences in Phosphinesulfonato Palladium(II) Polymerization Catalysts. Organometallics 2013, 32
(16)
, 4516-4522. https://doi.org/10.1021/om400297x
- Qingkun Yang, Xiaohui Kang, Yu Liu, Hongliang Mu, Zhongbao Jian. Ultrahigh Molecular Weight Ethylene–Acrylate Copolymers Synthesized with Highly Active Neutral Nickel Catalysts. Angewandte Chemie 2025, 137
(19)
https://doi.org/10.1002/ange.202421904
- Qingkun Yang, Xiaohui Kang, Yu Liu, Hongliang Mu, Zhongbao Jian. Ultrahigh Molecular Weight Ethylene–Acrylate Copolymers Synthesized with Highly Active Neutral Nickel Catalysts. Angewandte Chemie International Edition 2025, 64
(19)
https://doi.org/10.1002/anie.202421904
- Yong-Qing Li, Gui-Ping Cao, Yu-Cai Cao. Enhanced mechanical properties of acrylate and 5-vinyl-2-norbornene-based ethylene terpolymers: rational design and synthesis using remotely modulated phosphine–sulfonate palladium complexes. Polymer Chemistry 2024, 15
(45)
, 4662-4672. https://doi.org/10.1039/D4PY00722K
- Zhanshan Ma, Nan Nie, Wenmin Pang, Ao Chen, Dan Peng. Enhancing Suppression of Chain Transfer via Installing Bulky N‐
ortho
‐Aryl Substituents into α‐Diimine Nickel System. ChemCatChem 2024, 58 https://doi.org/10.1002/cctc.202400619
- Xiaowei Zhang, Fei Lin, Mengxue Cao, Mingjiang Zhong. Rare earth–cobalt bimetallic catalysis mediates stereocontrolled living radical polymerization of acrylamides. Nature Synthesis 2023, 2
(9)
, 855-863. https://doi.org/10.1038/s44160-023-00311-9
- Shi‐Huan Li, Ru‐Chao Pan, Bai‐Hao Ren, Jian‐Wei Yang, Xiaohui Kang, Ye Liu. Cationic Palladium Catalyzed Nonalternating Copolymerization of Ethylene with Carbon Monoxide: Microstructure Analysis and Computational Study
†. Chinese Journal of Chemistry 2023, 41
(4)
, 417-423. https://doi.org/10.1002/cjoc.202200450
- Hongliang Mu, Zhongbao Jian. Stereoselective Copolymerization of Olefin with Polar Monomers to Access Stereoregular Functionalized Polyolefins. Organic Materials 2022, 4
(04)
, 178-189. https://doi.org/10.1055/a-1945-0777
- Xu‐ling Wang, Yan‐Ping Zhang, Li Pan, Fei Wang, Shui‐yuan Luo, Yue‐sheng Li. Reactivity of Phosphino‐naphtholate Nickel Complexes and Their Catalysis of Copolymerization with Polar Monomers. ChemCatChem 2022, 14
(5)
https://doi.org/10.1002/cctc.202101736
- Andleeb Mehmood, Xiaowei Xu, Waseem Raza, Deepak Kukkar, Ki-Hyun Kim, Yi Luo. Computational study of the copolymerization mechanism of ethylene with methyl 2-acetamidoacrylate catalyzed by phosphine-sulfonate palladium complexes. New Journal of Chemistry 2021, 45
(36)
, 16670-16678. https://doi.org/10.1039/D1NJ02698D
- Chen Zou, Daohong Liao, Wenmin Pang, Min Chen, Chen Tan. Versatile PNPO ligands for palladium and nickel catalyzed ethylene polymerization and copolymerization with polar monomers. Journal of Catalysis 2021, 393 , 281-289. https://doi.org/10.1016/j.jcat.2020.11.023
- Falk William Seidel, Izumi Tomizawa, Kyoko Nozaki. Expedient Synthetic Identification of a P‐Stereogenic Ligand Motif for the Palladium‐Catalyzed Preparation of Isotactic Polar Polypropylenes. Angewandte Chemie 2020, 132
(50)
, 22780-22790. https://doi.org/10.1002/ange.202009027
- Falk William Seidel, Izumi Tomizawa, Kyoko Nozaki. Expedient Synthetic Identification of a P‐Stereogenic Ligand Motif for the Palladium‐Catalyzed Preparation of Isotactic Polar Polypropylenes. Angewandte Chemie International Edition 2020, 59
(50)
, 22591-22601. https://doi.org/10.1002/anie.202009027
- Shahaji R. Gaikwad, Ketan Patel, Satej S. Deshmukh, Nilesh R. Mote, Rajkumar S. Birajdar, Satish P. Pandole, Jeetender Chugh, Samir H. Chikkali. Palladium‐Catalyzed Insertion of Ethylene and 1,1‐Disubstituted Difunctional Olefins: An Experimental and Computational Study. ChemPlusChem 2020, 85
(6)
, 1200-1209. https://doi.org/10.1002/cplu.202000309
- Yue Zhang, Yixin Zhang, Yue Chi, Zhongbao Jian. Influence of initiating groups on phosphino-phenolate nickel catalyzed ethylene (co)polymerization. Dalton Transactions 2020, 49
(8)
, 2636-2644. https://doi.org/10.1039/C9DT04482E
- Chen Zou, Chen Tan, Wenmin Pang, Changle Chen. Amidine/Phosphine‐Oxide‐Based Nickel Catalysts for Ethylene Polymerization and Copolymerization. ChemCatChem 2019, 11
(21)
, 5339-5344. https://doi.org/10.1002/cctc.201901114
- Cheng Du, Liu Zhong, Jie Gao, Shuhuang Zhong, Heng Liao, Haiyang Gao, Qing Wu. Living (co)polymerization of ethylene and bio-based furfuryl acrylate using dibenzobarrelene derived α-diimine palladium catalysts. Polymer Chemistry 2019, 10
(16)
, 2029-2038. https://doi.org/10.1039/C9PY00126C
- Jian Xia, Yixin Zhang, Xiaoqiang Hu, Xin Ma, Lei Cui, Jianfu Zhang, Zhongbao Jian. Sterically very bulky aliphatic/aromatic phosphine-sulfonate palladium catalysts for ethylene polymerization and copolymerization with polar monomers. Polymer Chemistry 2019, 10
(4)
, 546-554. https://doi.org/10.1039/C8PY01568F
- Lin Ding, Hailong Cheng, Yanqing Li, Ryo Tanaka, Takeshi Shiono, Zhengguo Cai. Efficient ethylene copolymerization with polar monomers using palladium anilinonaphthoquinone catalysts. Polymer Chemistry 2018, 9
(45)
, 5476-5482. https://doi.org/10.1039/C8PY01292J
- Min Chen, Changle Chen. A Versatile Ligand Platform for Palladium‐ and Nickel‐Catalyzed Ethylene Copolymerization with Polar Monomers. Angewandte Chemie 2018, 130
(12)
, 3148-3152. https://doi.org/10.1002/ange.201711753
- Min Chen, Changle Chen. A Versatile Ligand Platform for Palladium‐ and Nickel‐Catalyzed Ethylene Copolymerization with Polar Monomers. Angewandte Chemie International Edition 2018, 57
(12)
, 3094-3098. https://doi.org/10.1002/anie.201711753
- Changwen Hong, Xuelin Sui, Ziqian Li, Wenmin Pang, Min Chen. Phosphine phosphonic amide nickel catalyzed ethylene polymerization and copolymerization with polar monomers. Dalton Transactions 2018, 47
(25)
, 8264-8267. https://doi.org/10.1039/C8DT01018H
- Shuoyan Xiong, Lihua Guo, Shumiao Zhang, Zhe Liu. Asymmetric Cationic [P, O] Type Palladium Complexes in Olefin Homopolymerization and Copolymerization. Chinese Journal of Chemistry 2017, 35
(8)
, 1209-1221. https://doi.org/10.1002/cjoc.201600898
- Bangpei Yang, Shuoyan Xiong, Changle Chen. Manipulation of polymer branching density in phosphine-sulfonate palladium and nickel catalyzed ethylene polymerization. Polym. Chem. 2017, 8
(40)
, 6272-6276. https://doi.org/10.1039/C7PY01281K
- Yusuke Ota, Shingo Ito, Minoru Kobayashi, Shinichi Kitade, Kazuya Sakata, Takao Tayano, Kyoko Nozaki. Crystalline Isotactic Polar Polypropylene from the Palladium‐Catalyzed Copolymerization of Propylene and Polar Monomers. Angewandte Chemie 2016, 128
(26)
, 7631-7635. https://doi.org/10.1002/ange.201600819
- Yusuke Ota, Shingo Ito, Minoru Kobayashi, Shinichi Kitade, Kazuya Sakata, Takao Tayano, Kyoko Nozaki. Crystalline Isotactic Polar Polypropylene from the Palladium‐Catalyzed Copolymerization of Propylene and Polar Monomers. Angewandte Chemie International Edition 2016, 55
(26)
, 7505-7509. https://doi.org/10.1002/anie.201600819
- Jesús Campos, Joaquín López‐Serrano, Riccardo Peloso, Ernesto Carmona. Methyl Complexes of the Transition Metals. Chemistry – A European Journal 2016, 22
(19)
, 6432-6457. https://doi.org/10.1002/chem.201504483
- Ge Feng, Alexander S. Filatov, Richard F. Jordan. Crystal structure of (
n
-butyl)[2-(2,6-dimethoxyphenyl)-6-methylphenyl](2-methoxyphenyl)phosphonium chloride monohydrate. Acta Crystallographica Section E Crystallographic Communications 2016, 72
(2)
, 174-177. https://doi.org/10.1107/S2056989015024780
- Yusuke Mitsushige, Brad P. Carrow, Shingo Ito, Kyoko Nozaki. Ligand-controlled insertion regioselectivity accelerates copolymerisation of ethylene with methyl acrylate by cationic bisphosphine monoxide–palladium catalysts. Chemical Science 2016, 7
(1)
, 737-744. https://doi.org/10.1039/C5SC03361F
- Zhongbao Jian, Laura Falivene, Philipp Wucher, Philipp Roesle, Lucia Caporaso, Luigi Cavallo, Inigo Göttker‐Schnetmann, Stefan Mecking. Insights into Functional‐Group‐Tolerant Polymerization Catalysis with Phosphine–Sulfonamide Palladium(II) Complexes. Chemistry – A European Journal 2015, 21
(5)
, 2062-2075. https://doi.org/10.1002/chem.201404856
- A. Rajaraman, A. R. Sahoo, F. Hild, C. Fischmeister, M. Achard, C. Bruneau. Ruthenium(
ii
) and iridium(
iii
) complexes featuring NHC–sulfonate chelate. Dalton Transactions 2015, 44
(40)
, 17467-17472. https://doi.org/10.1039/C5DT02867A
- Anita Plazinska, Wojciech Plazinski, Krzysztof Jozwiak. Fast, metadynamics‐based method for prediction of the stereochemistry‐dependent relative free energies of ligand–receptor interactions. Journal of Computational Chemistry 2014, 35
(11)
, 876-882. https://doi.org/10.1002/jcc.23563
- Fan Jiang, Mathieu Achard, Christian Bruneau. Synthesis and Applications in Catalysis of Metal Complexes with Chelating Phosphinosulfonate Ligands. 2014, 159-218. https://doi.org/10.1016/B978-0-12-800976-5.00003-5
- Włodzimierz Buchowicz, Joanna Conder, Dymitr Hryciuk, Janusz Zachara. Nickel-mediated polymerization of methyl methacrylate. Journal of Molecular Catalysis A: Chemical 2014, 381 , 16-20. https://doi.org/10.1016/j.molcata.2013.09.034
- Boris Neuwald, Laura Falivene, Lucia Caporaso, Luigi Cavallo, Stefan Mecking. Exploring Electronic and Steric Effects on the Insertion and Polymerization Reactivity of Phosphinesulfonato Pd
II
Catalysts. Chemistry – A European Journal 2013, 19
(52)
, 17773-17788. https://doi.org/10.1002/chem.201301365
- Fan Jiang, Kedong Yuan, Mathieu Achard, Christian Bruneau. Ruthenium‐Containing Phosphinesulfonate Chelate for the Hydrogenation of Aryl Ketones. Chemistry – A European Journal 2013, 19
(31)
, 10343-10352. https://doi.org/10.1002/chem.201301201
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.