ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Investigating the Dearomative Rearrangement of Biaryl Phosphine-Ligated Pd(II) Complexes

View Author Information
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
Cite this: J. Am. Chem. Soc. 2012, 134, 48, 19922–19934
Publication Date (Web):November 15, 2012
https://doi.org/10.1021/ja310351e
Copyright © 2012 American Chemical Society

    Article Views

    7026

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (3 MB)
    Supporting Info (2)»

    Abstract

    Abstract Image

    A series of monoligated L·PdII(Ar)X complexes (L = dialkyl biaryl phosphine) have been prepared and studied in an effort to better understand an unusual dearomative rearrangement previously documented in these systems. Experimental and theoretical evidence suggest a concerted process involving the unprecedented PdII-mediated insertion of an aryl group into an unactivated arene.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Procedural, spectroscopic, and X-ray crystallographic (CIF) data; kinetic graphs, including those used to determine relative rate constants; coordinates for all calculated complexes and other computational data; complete ref 35. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 75 publications.

    1. Alejandra Pita-Milleiro, Macarena G. Alférez, Juan J. Moreno, María F. Espada, Celia Maya, Jesús Campos. Unveiling the Latent Reactivity of Cp* Ligands (C5Me5–) toward Carbon Nucleophiles on an Iridium Complex. Inorganic Chemistry 2023, 62 (15) , 5961-5971. https://doi.org/10.1021/acs.inorgchem.2c04381
    2. Raquel J. Rama, Celia Maya, Francisco Molina, Ainara Nova, M. Carmen Nicasio. Important Role of NH-Carbazole in Aryl Amination Reactions Catalyzed by 2-Aminobiphenyl Palladacycles. ACS Catalysis 2023, 13 (6) , 3934-3948. https://doi.org/10.1021/acscatal.3c00075
    3. Zhi-Hao Chen, Olafs Daugulis, Maurice Brookhart. Polymerization of Terminal Acetylenes by a Bulky Monophosphine-Palladium Catalyst. Organometallics 2023, 42 (3) , 235-239. https://doi.org/10.1021/acs.organomet.2c00561
    4. Gayathri Athavan, Theo F. N. Tanner, Adrian C. Whitwood, Ian J. S. Fairlamb, Robin N. Perutz. Direct Evidence for Competitive C–H Activation by a Well-Defined Silver XPhos Complex in Palladium-Catalyzed C–H Functionalization. Organometallics 2022, 41 (22) , 3175-3184. https://doi.org/10.1021/acs.organomet.2c00063
    5. Duc N. Tran, Alexander Zhdanko, Santiago Barroso, Patrick Nieste, Ramdane Rahmani, Jan Holan, Roel Hoefnagels, Peter Reniers, Frederik Vermoortele, Stewart Duguid, Lionel Cazanave, Marek Figlus, Colin Muir, Alain Elliott, Peichao Zhao, Warren Paden, Cristina Hernandez Diaz, Stephen J. Bell, Akihiro Hashimoto, Avinash Phadke, Jason A. Wiles, Ilse Vogels, Vittorio Farina. Development of a Commercial Process for Odalasvir. Organic Process Research & Development 2022, 26 (3) , 832-848. https://doi.org/10.1021/acs.oprd.1c00237
    6. Ren-Xiao Liang, Yi-Xia Jia. Aromatic π-Components for Enantioselective Heck Reactions and Heck/Anion-Capture Domino Sequences. Accounts of Chemical Research 2022, 55 (5) , 734-745. https://doi.org/10.1021/acs.accounts.1c00781
    7. William A. Golding, Hendrik L. Schmitt, Robert J. Phipps. Systematic Variation of Ligand and Cation Parameters Enables Site-Selective C–C and C–N Cross-Coupling of Multiply Chlorinated Arenes through Substrate–Ligand Electrostatic Interactions. Journal of the American Chemical Society 2020, 142 (52) , 21891-21898. https://doi.org/10.1021/jacs.0c11056
    8. Jaime Ponce-de-León, Estefania Gioria, Jesús M. Martínez-Ilarduya, Pablo Espinet. Ranking Ligands by Their Ability to Ease (C6F5)2NiIIL → Ni0L + (C6F5)2 Coupling versus Hydrolysis: Outstanding Activity of PEWO Ligands. Inorganic Chemistry 2020, 59 (24) , 18287-18294. https://doi.org/10.1021/acs.inorgchem.0c02831
    9. Li-Ping Xu, Jose B. Roque, Richmond Sarpong, Djamaladdin G. Musaev. Reactivity and Selectivity Controlling Factors in the Pd/Dialkylbiarylphosphine-Catalyzed C–C Cleavage/Cross-Coupling of an N-Fused Bicyclo α-Hydroxy-β-Lactam. Journal of the American Chemical Society 2020, 142 (50) , 21140-21152. https://doi.org/10.1021/jacs.0c10220
    10. Felipe Verdugo, Eduardo da Concepción, Ricardo Rodiño, Martín Calvelo, José L. Mascareñas, Fernando López. Pd-Catalyzed (3 + 2) Heterocycloadditions between Alkylidenecyclopropanes and Carbonyls: Straightforward Assembly of Highly Substituted Tetrahydrofurans. ACS Catalysis 2020, 10 (14) , 7710-7718. https://doi.org/10.1021/acscatal.0c01827
    11. Yaning Wang, Junli Chai, Chang You, Jie Zhang, Xueling Mi, Long Zhang, Sanzhong Luo. π-Coordinating Chiral Primary Amine/Palladium Synergistic Catalysis for Asymmetric Allylic Alkylation. Journal of the American Chemical Society 2020, 142 (6) , 3184-3195. https://doi.org/10.1021/jacs.9b13026
    12. María Pérez-Iglesias, Rebeca Infante, Juan A. Casares, Pablo Espinet. Intriguing Behavior of an Apparently Simple Coupling Promoter Ligand, PPh2(p-C6H4–C6F5), in Their Pd Complexes. Organometallics 2019, 38 (19) , 3688-3695. https://doi.org/10.1021/acs.organomet.9b00460
    13. Corin C. Wagen, Bryan T. Ingoglia, Stephen L. Buchwald. Unexpected Formation of Hexasubstituted Arenes through a 2-fold Palladium-Mediated Ligand Arylation. The Journal of Organic Chemistry 2019, 84 (19) , 12672-12679. https://doi.org/10.1021/acs.joc.9b02091
    14. José J. Fuentes-Rivera, Mary E. Zick, M. Alexander Düfert, Phillip J. Milner. Overcoming Halide Inhibition of Suzuki–Miyaura Couplings with Biaryl Monophosphine-Based Catalysts. Organic Process Research & Development 2019, 23 (8) , 1631-1637. https://doi.org/10.1021/acs.oprd.9b00255
    15. Jessica Xu, Richard Y. Liu, Charles S. Yeung, Stephen L. Buchwald. Monophosphine Ligands Promote Pd-Catalyzed C–S Cross-Coupling Reactions at Room Temperature with Soluble Bases. ACS Catalysis 2019, 9 (7) , 6461-6466. https://doi.org/10.1021/acscatal.9b01913
    16. Andrew Quillen, Quynh Nguyen, Matthew Neiser, Kara Lindsay, Alexander Rosen, Stephen Ramirez, Stefana Costan, Nathan Johnson, Thuy Donna Do, Oscar Rodriguez, Diego Rivera, Abdurrahman Atesin, Tülay Aygan Ateşin, Lili Ma. Palladium-Catalyzed Direct α-C(sp3) Heteroarylation of Ketones under Microwave Irradiation. The Journal of Organic Chemistry 2019, 84 (12) , 7652-7663. https://doi.org/10.1021/acs.joc.9b00446
    17. Katsuya Shimomaki, Tomoya Nakajima, Joaquim Caner, Naoyuki Toriumi, Nobuharu Iwasawa. Palladium-Catalyzed Visible-Light-Driven Carboxylation of Aryl and Alkenyl Triflates by Using Photoredox Catalysts. Organic Letters 2019, 21 (12) , 4486-4489. https://doi.org/10.1021/acs.orglett.9b01340
    18. Juan J. Moreno, María F. Espada, Jesús Campos, Joaquín López-Serrano, Stuart A. Macgregor, Ernesto Carmona. Base-Promoted, Remote C–H Activation at a Cationic (η5-C5Me5)Ir(III) Center Involving Reversible C–C Bond Formation of Bound C5Me5. Journal of the American Chemical Society 2019, 141 (6) , 2205-2210. https://doi.org/10.1021/jacs.8b11752
    19. Rong-Lin Zhong, Masahiro Nagaoka, Yoshiaki Nakao, Shigeyoshi Sakaki. How To Perform Suzuki–Miyaura Reactions of Nitroarene or Nitrations of Bromoarene Using a Pd0 Phosphine Complex: Theoretical Insight and Prediction. Organometallics 2018, 37 (20) , 3480-3487. https://doi.org/10.1021/acs.organomet.8b00199
    20. Kerry L. Barnett, James R. Howard, Colin J. Treager, Adam T. Shipley, Renee M. Stullich, Fengrui Qu, Deidra L. Gerlach, Kevin H. Shaughnessy. Air-Stable [(R3P)PdCl2]2 Complexes of Neopentylphosphines as Cross-Coupling Precatalysts: Catalytic Application and Mechanism of Catalyst Activation and Deactivation. Organometallics 2018, 37 (9) , 1410-1424. https://doi.org/10.1021/acs.organomet.8b00082
    21. Joseph M. Dennis, Nicholas A. White, Richard Y. Liu, Stephen L. Buchwald. Breaking the Base Barrier: An Electron-Deficient Palladium Catalyst Enables the Use of a Common Soluble Base in C–N Coupling. Journal of the American Chemical Society 2018, 140 (13) , 4721-4725. https://doi.org/10.1021/jacs.8b01696
    22. Gustavo M. Borrajo-Calleja, Vincent Bizet, Céline Besnard, and Clément Mazet . Mechanistic Investigation of the Pd-Catalyzed Intermolecular Carboetherification and Carboamination of 2,3-Dihydrofuran: Similarities, Differences, and Evidence for Unusual Reaction Intermediates. Organometallics 2017, 36 (18) , 3553-3563. https://doi.org/10.1021/acs.organomet.7b00483
    23. Juan del Pozo, Estefanía Gioria, Pablo Espinet. Olefin Insertion Versus Cross-Coupling in trans-[Pd(Ar)X(AsPh3)2] Complexes (X = I, F, CF3) Treated with a Phosphine-EWOlefin Ligand to Induce Ar–X Coupling. Organometallics 2017, 36 (15) , 2884-2890. https://doi.org/10.1021/acs.organomet.7b00353
    24. Wenjun Zhao, Hong Geun Lee, Stephen L. Buchwald, and Jacob M. Hooker . Direct 11CN-Labeling of Unprotected Peptides via Palladium-Mediated Sequential Cross-Coupling Reactions. Journal of the American Chemical Society 2017, 139 (21) , 7152-7155. https://doi.org/10.1021/jacs.7b02761
    25. Huaiyuan Hu, Fengrui Qu, Deidra L. Gerlach, and Kevin H. Shaughnessy . Mechanistic Study of the Role of Substrate Steric Effects and Aniline Inhibition on the Bis(trineopentylphosphine)palladium(0)-Catalyzed Arylation of Aniline Derivatives. ACS Catalysis 2017, 7 (4) , 2516-2527. https://doi.org/10.1021/acscatal.7b00024
    26. Anne-Sophie Goutierre, Huu Vinh Trinh, Paolo Larini, Rodolphe Jazzar, and Olivier Baudoin . Comparative Structural Analysis of Biarylphosphine Ligands in Arylpalladium Bromide and Malonate Complexes. Organometallics 2017, 36 (1) , 129-135. https://doi.org/10.1021/acs.organomet.6b00535
    27. Aaron C. Sather and Stephen L. Buchwald . The Evolution of Pd0/PdII-Catalyzed Aromatic Fluorination. Accounts of Chemical Research 2016, 49 (10) , 2146-2157. https://doi.org/10.1021/acs.accounts.6b00247
    28. Pedro Luis Arrechea and Stephen L. Buchwald . Biaryl Phosphine Based Pd(II) Amido Complexes: The Effect of Ligand Structure on Reductive Elimination. Journal of the American Chemical Society 2016, 138 (38) , 12486-12493. https://doi.org/10.1021/jacs.6b05990
    29. Andrea Winkler, Kai Brandhorst, Matthias Freytag, Peter G. Jones, and Matthias Tamm . Palladium(II) Complexes with Anionic N-Heterocyclic Carbene–Borate Ligands as Catalysts for the Amination of Aryl Halides. Organometallics 2016, 35 (8) , 1160-1169. https://doi.org/10.1021/acs.organomet.6b00217
    30. Adrian M. Mak, Yee Hwee Lim, Howard Jong, Yong Yang, Charles W. Johannes, Edward G. Robins, and Michael B. Sullivan . Mechanistic Insights and Implications of Dearomative Rearrangement in Copper-Free Sonogashira Cross-Coupling Catalyzed by Pd-Cy*Phine. Organometallics 2016, 35 (7) , 1036-1045. https://doi.org/10.1021/acs.organomet.6b00186
    31. Lynette A. Smyth, Eric M. Phillips, Vincent S. Chan, José G. Napolitano, Rodger Henry, and Shashank Shekhar . Pd-Catalyzed Synthesis of Aryl and Heteroaryl Triflones from Reactions of Sodium Triflinate with Aryl (Heteroaryl) Triflates. The Journal of Organic Chemistry 2016, 81 (3) , 1285-1294. https://doi.org/10.1021/acs.joc.5b02523
    32. Aaron C. Sather, Hong Geun Lee, Valentina Y. De La Rosa, Yang Yang, Peter Müller, and Stephen L. Buchwald . A Fluorinated Ligand Enables Room-Temperature and Regioselective Pd-Catalyzed Fluorination of Aryl Triflates and Bromides. Journal of the American Chemical Society 2015, 137 (41) , 13433-13438. https://doi.org/10.1021/jacs.5b09308
    33. Phillip J. Milner, Yang Yang, and Stephen L. Buchwald . In-Depth Assessment of the Palladium-Catalyzed Fluorination of Five-Membered Heteroaryl Bromides. Organometallics 2015, 34 (19) , 4775-4780. https://doi.org/10.1021/acs.organomet.5b00631
    34. A. J. DeAngelis, Peter G. Gildner, Ruishan Chow, and Thomas J. Colacot . Generating Active “L-Pd(0)” via Neutral or Cationic π-Allylpalladium Complexes Featuring Biaryl/Bipyrazolylphosphines: Synthetic, Mechanistic, and Structure–Activity Studies in Challenging Cross-Coupling Reactions. The Journal of Organic Chemistry 2015, 80 (13) , 6794-6813. https://doi.org/10.1021/acs.joc.5b01005
    35. Daniel Weiliang Tay, Howard Jong, Yee Hwee Lim, Wenqin Wu, Xinying Chew, Edward G. Robins, and Charles W. Johannes . Palladium-meta-Terarylphosphine Catalyst for the Mizoroki–Heck Reaction of (Hetero)Aryl Bromides and Functional Olefins. The Journal of Organic Chemistry 2015, 80 (8) , 4054-4063. https://doi.org/10.1021/acs.joc.5b00386
    36. Phillip J. Milner, Tom Kinzel, Yong Zhang, and Stephen L. Buchwald . Studying Regioisomer Formation in the Pd-Catalyzed Fluorination of Aryl Triflates by Deuterium Labeling. Journal of the American Chemical Society 2014, 136 (44) , 15757-15766. https://doi.org/10.1021/ja509144r
    37. Brittany J. Barrett and Vlad M. Iluc . Coordination of a Hemilabile Pincer Ligand with an Olefinic Backbone to Mid-to-Late Transition Metals. Inorganic Chemistry 2014, 53 (14) , 7248-7259. https://doi.org/10.1021/ic500549z
    38. Ansis Maleckis and Melanie S. Sanford . Catalytic Cycle for Palladium-Catalyzed Decarbonylative Trifluoromethylation using Trifluoroacetic Esters as the CF3 Source. Organometallics 2014, 33 (10) , 2653-2660. https://doi.org/10.1021/om500398z
    39. Hong Geun Lee, Phillip J. Milner, and Stephen L. Buchwald . Pd-Catalyzed Nucleophilic Fluorination of Aryl Bromides. Journal of the American Chemical Society 2014, 136 (10) , 3792-3795. https://doi.org/10.1021/ja5009739
    40. Jesus Rodriguez Castanon, Natsuhiro Sano, Masashi Shiotsuki, and Fumio Sanda . New Approach to the Polymerization of Disubstituted Acetylenes by Bulky Monophosphine-Ligated Palladium Catalysts. ACS Macro Letters 2014, 3 (1) , 51-54. https://doi.org/10.1021/mz400562m
    41. Zhe Dong and Guangbin Dong . Ortho vs Ipso: Site-Selective Pd and Norbornene-Catalyzed Arene C–H Amination Using Aryl Halides. Journal of the American Chemical Society 2013, 135 (49) , 18350-18353. https://doi.org/10.1021/ja410823e
    42. Sandy Suseno and Theodor Agapie . Intramolecular Arene C–H to C–P Functionalization Mediated by Nickel(II) and Palladium(II). Organometallics 2013, 32 (11) , 3161-3164. https://doi.org/10.1021/om400424a
    43. Yuxuan Ye, Seoung‐Tae Kim, Ryan P. King, Mu‐Hyun Baik, Stephen L. Buchwald. Studying Regioisomer Formation in the Pd‐Catalyzed Fluorination of Cyclic Vinyl Triflates: Evidence for in situ Ligand Modification**. Angewandte Chemie International Edition 2023, 62 (15) https://doi.org/10.1002/anie.202300109
    44. Yuxuan Ye, Seoung‐Tae Kim, Ryan P. King, Mu‐Hyun Baik, Stephen L. Buchwald. Studying Regioisomer Formation in the Pd‐Catalyzed Fluorination of Cyclic Vinyl Triflates: Evidence for in situ Ligand Modification**. Angewandte Chemie 2023, 135 (15) https://doi.org/10.1002/ange.202300109
    45. Christopher J. Huck, Yaroslav D. Boyko, David Sarlah. Dearomative logic in natural product total synthesis. Natural Product Reports 2022, 39 (12) , 2231-2291. https://doi.org/10.1039/D2NP00042C
    46. Juan José Moreno, María F. Espada, Celia Maya, Jesús Campos, Joaquín López-Serrano, Stuart A. Macgregor, Ernesto Carmona. Isomerization of a cationic (η5-C5Me5)Ir(III) complex involving remote C–C and C–H bond formation. Polyhedron 2021, 207 , 115363. https://doi.org/10.1016/j.poly.2021.115363
    47. Elena Herrero‐Gómez, Antonio M. Echavarren, Ekaterina Vinogradova, Duc N. Tran, Jacob H. Murray, Webster Santos. Bis(1,1‐dimethylethyl)[2′,4′,6′‐tris‐(1‐methylethyl)[1,1′‐biphenyl]‐2‐yl]‐phosphine and Dicyclohexyl[2′,4′,6′‐tris(1‐methylethyl)[1,1′‐biphenyl]‐2‐yl]phosphine. 2021, 1-17. https://doi.org/10.1002/047084289X.rn00923.pub4
    48. Constanze N. Neumann, Tobias Ritter, . Transition‐Metal‐Mediated and Transition‐Metal‐Catalyzed Carbon–Fluorine Bond Formation. 2020, 1-181. https://doi.org/10.1002/0471264180.or104.03
    49. Gregory B. Boursalian, Tobias Ritter. Palladium-Mediated Fluorination for Preparing Aryl Fluorides. 2020, 497-513. https://doi.org/10.1007/978-981-10-3896-9_23
    50. Raquel J. Rama, Celia Maya, M. Carmen Nicasio. Palladium-mediated intramolecular dearomatization of ligated dialkylterphenyl phosphines. Dalton Transactions 2019, 48 (39) , 14575-14579. https://doi.org/10.1039/C9DT03201K
    51. Ryohei Doi, Akimasa Yabuta, Yoshihiro Sato. Palladium‐Catalyzed Decarboxylative Alkynylation of α‐Acyloxyketones by C(sp 3 )−O Bond Cleavage. Chemistry – A European Journal 2019, 25 (23) , 5884-5888. https://doi.org/10.1002/chem.201900582
    52. Kevin D. Dykstra, Naoko Ichiishi, Shane W. Krska, Paul F. Richardson. Emerging fluorination methods in organic chemistry relevant for life science application. 2019, 1-90. https://doi.org/10.1016/B978-0-12-812733-9.00001-5
    53. Gregory B. Boursalian, Tobias Ritter. Palladium-Mediated Fluorination for Preparing Aryl Fluorides. 2018, 1-17. https://doi.org/10.1007/978-981-10-1855-8_23-1
    54. Visannagari Ramakrishna, Morla Jhansi Rani, Nareddula Dastagiri Reddy. A Zwitterionic Palladium(II) Complex as a Precatalyst for Neat-Water-Mediated Cross-Coupling Reactions of Heteroaryl, Benzyl, and Aryl Acid Chlorides with Organoboron Reagents. European Journal of Organic Chemistry 2017, 2017 (48) , 7238-7255. https://doi.org/10.1002/ejoc.201701241
    55. Hong Geun Lee, Guillaume Lautrette, Bradley L. Pentelute, Stephen L. Buchwald. Palladium-Mediated Arylation of Lysine in Unprotected Peptides. Angewandte Chemie 2017, 129 (12) , 3225-3229. https://doi.org/10.1002/ange.201611202
    56. Hong Geun Lee, Guillaume Lautrette, Bradley L. Pentelute, Stephen L. Buchwald. Palladium-Mediated Arylation of Lysine in Unprotected Peptides. Angewandte Chemie International Edition 2017, 56 (12) , 3177-3181. https://doi.org/10.1002/anie.201611202
    57. Radomir Jasiński, Oleg M. Demchuk, Dmytro Babyuk. A Quantum-Chemical DFT Approach to Elucidation of the Chirality Transfer Mechanism of the Enantioselective Suzuki–Miyaura Cross-Coupling Reaction. Journal of Chemistry 2017, 2017 , 1-12. https://doi.org/10.1155/2017/3617527
    58. Paul Richardson. Fluorination methods for drug discovery and development. Expert Opinion on Drug Discovery 2016, 11 (10) , 983-999. https://doi.org/10.1080/17460441.2016.1223037
    59. Mark Stradiotto, Rylan J. Lundgren. Application of Sterically Demanding Phosphine Ligands in Palladium‐Catalyzed Cross‐Coupling leading to C( sp 2 )─E Bond Formation (E = NH 2 , OH , and F). 2016, 104-133. https://doi.org/10.1002/9781118839621.ch5
    60. Koji Yamamoto, Seita Kimura, Tetsuro Murahashi. σ–π Continuum in Indole–Palladium(II) Complexes. Angewandte Chemie 2016, 128 (17) , 5408-5412. https://doi.org/10.1002/ange.201601992
    61. Koji Yamamoto, Seita Kimura, Tetsuro Murahashi. σ-π Continuum in Indole-Palladium(II) Complexes. Angewandte Chemie International Edition 2016, 55 (17) , 5322-5326. https://doi.org/10.1002/anie.201601992
    62. Jesus Rodriguez-Castanon, Yukako Murayama, Natsuhiro Sano, Fumio Sanda. Polymerization of a Disubstituted Acetylene Using Palladium Catalysts. Chemistry Letters 2015, 44 (9) , 1200-1201. https://doi.org/10.1246/cl.150457
    63. Carolyn F. Rosewall, Erica L. Ingalls, Werner Kaminsky, Forrest E. Michael. Chelation-Driven Rearrangement of Primary Alkyl Aminopalladation Products to Stable Trisubstituted Alkyl-Palladium Complexes. Angewandte Chemie 2015, 127 (15) , 4640-4643. https://doi.org/10.1002/ange.201412033
    64. Carolyn F. Rosewall, Erica L. Ingalls, Werner Kaminsky, Forrest E. Michael. Chelation-Driven Rearrangement of Primary Alkyl Aminopalladation Products to Stable Trisubstituted Alkyl-Palladium Complexes. Angewandte Chemie International Edition 2015, 54 (15) , 4557-4560. https://doi.org/10.1002/anie.201412033
    65. Elena Herrero-Gómez, Antonio M. Echavarren, Ekaterina Vinogradova. Bis(1,1-dimethylethyl)[2′,4′,6′-tris-(1-methylethyl)[1,1′-biphenyl]-2-yl]-phosphine and Dicyclohexyl[2′,4′,6′-tris(1-methylethyl)[1,1′-biphenyl]-2-yl]phosphine. 2015, 1-9. https://doi.org/10.1002/047084289X.rn00923.pub2
    66. Ludovik Noël‐Duchesneau, Noël Lugan, Guy Lavigne, Agnès Labande, Vincent César. Customized Buchwald‐Type Phosphines Bearing an “Inverted” Pyrimidinium Betaine as an Aryl Group Surrogate – Synthesis and Coordination Chemistry with Gold(I). European Journal of Inorganic Chemistry 2015, 2015 (10) , 1752-1758. https://doi.org/10.1002/ejic.201403205
    67. Kang Du, Pan Guo, Yuan Chen, Zhen Cao, Zheng Wang, Wenjun Tang. Enantioselective Palladium-Catalyzed Dearomative Cyclization for the Efficient Synthesis of Terpenes and Steroids. Angewandte Chemie International Edition 2015, 54 (10) , 3033-3037. https://doi.org/10.1002/anie.201411817
    68. Kang Du, Pan Guo, Yuan Chen, Zhen Cao, Zheng Wang, Wenjun Tang. Enantioselective Palladium‐Catalyzed Dearomative Cyclization for the Efficient Synthesis of Terpenes and Steroids. Angewandte Chemie 2015, 127 (10) , 3076-3080. https://doi.org/10.1002/ange.201411817
    69. Andrés Falceto, Ernesto Carmona, Santiago Alvarez. Electronic and Structural Effects of Low-Hapticity Coordination of Arene Rings to Transition Metals. Organometallics 2014, 33 (22) , 6660-6668. https://doi.org/10.1021/om5009583
    70. Yong Yang, Xinying Chew, Charles W. Johannes, Edward G. Robins, Howard Jong, Yee Hwee Lim. A Versatile and Efficient Palladium- meta -Terarylphosphine Catalyst for the Copper-Free Sonogashira Coupling of (Hetero-)Aryl Chlorides and Alkynes. European Journal of Organic Chemistry 2014, 2014 (32) , 7184-7192. https://doi.org/10.1002/ejoc.201402699
    71. Hong Geun Lee, Phillip J. Milner, Michael T. Colvin, Loren Andreas, Stephen L. Buchwald. Structure and reactivity of [(L·Pd) n ·(1,5-cyclooctadiene)] ( n = 1–2) complexes bearing biaryl phosphine ligands. Inorganica Chimica Acta 2014, 422 , 188-192. https://doi.org/10.1016/j.ica.2014.06.008
    72. Laure Monnereau, Hani El Moll, David Sémeril, Dominique Matt, Loïc Toupet. Resorcinarenyl‐Phosphines in Suzuki–Miyaura Cross‐Coupling Reactions of Aryl Chlorides. European Journal of Inorganic Chemistry 2014, 2014 (8) , 1364-1372. https://doi.org/10.1002/ejic.201301473
    73. Mark G. McLaughlin, Matthew J. Cook. Highly diastereoselective hydrosilylations of allylic alcohols. Chem. Commun. 2014, 50 (26) , 3501-3504. https://doi.org/10.1039/C4CC00138A
    74. Ina S. Dubinsky-Davidchik, Israel Goldberg, Arkadi Vigalok, Andrei N. Vedernikov. Unprecedented 1,3-migration of the aryl ligand in metallacyclic aryl α-naphthyl Pt(iv) difluorides to produce β-arylnaphthyl Pt(ii) complexes. Chemical Communications 2013, 49 (33) , 3446. https://doi.org/10.1039/c3cc41079j
    75. M. Angeles Alvarez, Belén Alvarez, M. Esther García, Daniel García-Vivó, Miguel A. Ruiz. Stepwise hydrogenation of an arylthiophosphinidene isocyanide complex to give tethered aldimine and aminocarbene functions. Dalton Transactions 2013, 42 (31) , 11039. https://doi.org/10.1039/c3dt51562a

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect