Article

Expanding the Scope of Replicable Unnatural DNA: Stepwise Optimization of a Predominantly Hydrophobic Base Pair

Department of Chemistry and Center for Protein and Nucleic Acid Research, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
J. Am. Chem. Soc., 2013, 135 (14), pp 5408–5419
DOI: 10.1021/ja312148q
Publication Date (Web): April 2, 2013
Copyright © 2013 American Chemical Society

Abstract

Abstract Image

As part of an ongoing effort to expand the genetic alphabet for in vitro and eventually in vivo applications, we have synthesized a wide variety of predominantly hydrophobic unnatural base pairs exemplified by d5SICS-dMMO2 and d5SICS-dNaM. When incorporated into DNA, the latter is replicated and transcribed with greater efficiency and fidelity than the former; however, previous optimization efforts identified the para and methoxy-distal meta positions of dMMO2 as particularly promising for further optimization. Here, we report the stepwise optimization of dMMO2 via the synthesis and evaluation of 18 novel para-derivatized analogs of dMMO2, followed by further derivatization and evaluation of the most promising analogs with meta substituents. Subject to size constraints, we find that para substituents can optimize replication via both steric and electronic effects and that meta methoxy groups are unfavorable, while fluoro substituents can be beneficial or deleterious depending on the para substituent. In addition, we find that improvements in the efficiency of unnatural triphosphate insertion translate most directly into higher fidelity replication. Importantly, we identify multiple, unique base pair derivatives that when incorporated into DNA are well replicated. The most promising, d5SICS-dFEMO, is replicated under some conditions with greater efficiency and fidelity than d5SICS-dNaM. These results clearly demonstrate the generality of hydrophobic forces for the control of base pairing within DNA, provide a wealth of new SAR data, and importantly identify multiple new candidates for eventual in vivo evaluation.

Synthetic methods and compound characterization, pre-steady-state kinetic assay and data, PCR assay and sequencing data, calculation of PCR fidelity, and analysis of correlation between incorporation efficiency and PCR fidelity. This material is available free of charge via the Internet at http://pubs.acs.org.

Citation data is made available by participants in Crossref's Cited-by Linking service. For a more comprehensive list of citations to this article, users are encouraged to perform a search inSciFinder.

Explore by:

Metrics

Article Views: 1,999 Times
Received 12 December 2012
Published online 2 April 2013
Published in print 10 April 2013
Learn more about these metrics Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.
+
Altmetric Logo Icon More Article Metrics

This website uses cookies to improve your user experience. By continuing to use the site, you are accepting our use of cookies. Read the ACS privacy policy.

CONTINUE