ACS Publications. Most Trusted. Most Cited. Most Read
Transition-Metal-Free Direct Arylation: Synthesis of Halogenated 2-Amino-2′-hydroxy-1,1′-biaryls and Mechanism by DFT Calculations
My Activity

Figure 1Loading Img
    Communication

    Transition-Metal-Free Direct Arylation: Synthesis of Halogenated 2-Amino-2′-hydroxy-1,1′-biaryls and Mechanism by DFT Calculations
    Click to copy article linkArticle link copied!

    View Author Information
    Division of Chemistry, Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, United States
    Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
    § Center for Nanostructured Materials, The University of Texas at Arlington, Arlington, Texas 76019, United States
    Other Access OptionsSupporting Information (3)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2013, 135, 19, 7086–7089
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja400897u
    Published March 4, 2013
    Copyright © 2013 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    A transition-metal-free, regioselective direct aryl–aryl bond-forming process for the synthesis of halogenated 2-amino-2′-hydroxy-1,1′-biaryls that are currently either inaccessible or challenging to prepare using conventional methods is disclosed. The addition of ArMgX to an o-halonitrobenzene at low temperature generates a transient N,O-biarylhydroxylamine that rapidly undergoes either [3,3]- or [5,5]-sigmatropic rearrangement in one-pot to form a 2-amino-2′-hydroxy-1,1′-biaryl or 1-amino-1′-hydroxy-4,4′-biaryl, respectively. The periselectivity is controlled by the choice of solvent and temperature. This direct arylation process is also readily scalable (1–10 mmol). DFT calculations suggest that from the N,O-biarylhydroxylamine intermediate there is a low-energy stepwise pathway that involves initial Mg-mediated N–O bond cleavage followed by pathway branching toward either [3,3]- or [5,5]-rearrangement products via C–C bond formation and rearomatization.

    Copyright © 2013 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Experimental and computational details, characterization data, crystallographic data (CIF), and complete ref 18a. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 103 publications.

    1. Aparna Tyagi, Himanshu Gautam, Khyati Tripathi, Chinmoy K. Hazra. Nondirected Ortho C–H Arylation for One-Pot Synthesis of Biaryl Scaffolds via In Situ Generated Mixed Acetal. The Journal of Organic Chemistry 2025, 90 (1) , 124-137. https://doi.org/10.1021/acs.joc.4c01984
    2. Jie Zhang, Kun Wang, Can Zhu. Deracemization of Atropisomeric Biaryls Enabled by Copper Catalysis. JACS Au 2024, 4 (2) , 502-511. https://doi.org/10.1021/jacsau.3c00623
    3. Ning Yu, Jing-Fang Lv, Shi-Mei He, Kui-Cheng He, Wei-Hao Zheng, Yu-Qiang Zhou, Kun Jiang, Xi-Chun Pan, Ye Wei. Modular Assembly of 2-Aminoaniline Derivatives by Merging Hydroxylamine-Passerini and Hetero-Cope Rearrangement. Organic Letters 2024, 26 (7) , 1358-1363. https://doi.org/10.1021/acs.orglett.3c04270
    4. Shan-Shui Meng, Fei Li, Xiaowen Tang, Albert S. C. Chan. P(III)-Promoted Reductive Coupling of Aromatic and Aliphatic Nitro Compounds with Grignard Reagents. Organic Letters 2023, 25 (20) , 3718-3722. https://doi.org/10.1021/acs.orglett.3c01167
    5. Tao Yang, Xiaoqian Li, Shuang Deng, Xiaotian Qi, Hengjiang Cong, Hong-Gang Cheng, Liangwei Shi, Qianghui Zhou, Lin Zhuang. From N–H Nitration to Controllable Aromatic Mononitration and Dinitration─The Discovery of a Versatile and Powerful N-Nitropyrazole Nitrating Reagent. JACS Au 2022, 2 (9) , 2152-2161. https://doi.org/10.1021/jacsau.2c00413
    6. Gaofei Xu, Zongtao Han, Lirong Guo, Haifeng Lu, Hongyin Gao. Transition-Metal-Free Cascade Approach for the Synthesis of Functionalized Biaryls by SNAr of Arylhydroxylamines with Arylsulfonium Salts. The Journal of Organic Chemistry 2022, 87 (15) , 10449-10453. https://doi.org/10.1021/acs.joc.2c00990
    7. Chao Hu, Kaveh Farshadfar, Martin C. Dietl, Alejandro Cervantes-Reyes, Tao Wang, Tapas Adak, Matthias Rudolph, Frank Rominger, Jun Li, Alireza Ariafard, A. Stephen K. Hashmi. Gold-Catalyzed [5,5]-Rearrangement. ACS Catalysis 2021, 11 (11) , 6510-6518. https://doi.org/10.1021/acscatal.1c01108
    8. Raju Adepu, Jadhav Rahul Dhanaji, Polasani Samatha, Prathama S. Mainkar, Srivari Chandrasekhar. Synthesis of 2-Amino-2′-hydroxy-1,1′-biaryls via Cascade Benzannulation and C–N Bond Cleavage Sequence. Organic Letters 2020, 22 (21) , 8224-8228. https://doi.org/10.1021/acs.orglett.0c02749
    9. Hui Peng, Jinhui Ma, Lingfei Duan, Guangwen Zhang, Biaolin Yin. CuH-Catalyzed Synthesis of 3-Hydroxyindolines and 2-Aryl-3H-indol-3-ones from o-Alkynylnitroarenes, Using Nitro as Both the Nitrogen and Oxygen Source. Organic Letters 2019, 21 (16) , 6194-6198. https://doi.org/10.1021/acs.orglett.9b01849
    10. Lirong Guo, Fengting Liu, Liying Wang, Hairui Yuan, Lei Feng, László Kürti, Hongyin Gao. Cascade Approach to Highly Functionalized Biaryls by a Nucleophilic Aromatic Substitution with Arylhydroxylamines. Organic Letters 2019, 21 (8) , 2894-2898. https://doi.org/10.1021/acs.orglett.9b00927
    11. Ning Wang, Lingling Liu, Wentao Xu, Mengye Zhang, Zhibin Huang, Daqing Shi, Yingsheng Zhao. Rhodium(III)-Catalyzed Oxidative Annulation of Ketoximes with Sulfonamide: A Direct Approach to Indazoles. Organic Letters 2019, 21 (2) , 365-368. https://doi.org/10.1021/acs.orglett.8b03488
    12. Ji Young Cho, Geum-bee Roh, and Eun Jin Cho . Visible-Light-Promoted Synthesis of Dibenzofuran Derivatives. The Journal of Organic Chemistry 2018, 83 (2) , 805-811. https://doi.org/10.1021/acs.joc.7b02796
    13. Shuai-Shuai Li, Shiheng Fu, Liang Wang, Lubin Xu, and Jian Xiao . t-BuOK-Mediated Oxidative Dehydrogenative C(sp3)-H Arylation of 2-Alkylazaarenes with Nitroarenes. The Journal of Organic Chemistry 2017, 82 (16) , 8703-8709. https://doi.org/10.1021/acs.joc.7b00732
    14. Ying Zhang, Wenyan Dan, and Xiangdong Fang . Metal Nitrate Mediated Regioselective Nitration of BN-Substituted Arenes. Organometallics 2017, 36 (9) , 1677-1680. https://doi.org/10.1021/acs.organomet.7b00120
    15. Shun Wang, Yong-Qiang Guo, Zhi-Hui Ren, Yao-Yu Wang, and Zheng-Hui Guan . K2CO3-Mediated Cyclization and Rearrangement of γ,δ-Alkynyl Oximes To Form Pyridols. Organic Letters 2017, 19 (7) , 1574-1577. https://doi.org/10.1021/acs.orglett.7b00389
    16. Tomoyuki Yanagi, Shinya Otsuka, Yuko Kasuga, Keisuke Fujimoto, Kei Murakami, Keisuke Nogi, Hideki Yorimitsu, and Atsuhiro Osuka . Metal-Free Approach to Biaryls from Phenols and Aryl Sulfoxides by Temporarily Sulfur-Tethered Regioselective C–H/C–H Coupling. Journal of the American Chemical Society 2016, 138 (44) , 14582-14585. https://doi.org/10.1021/jacs.6b10278
    17. Vandana Rathore, Moh. Sattar, Raushan Kumar, and Sangit Kumar . Synthesis of Unsymmetrical Diaryl Acetamides, Benzofurans, Benzophenones, and Xanthenes by Transition-Metal-Free Oxidative Cross-Coupling of sp3 and sp2 C–H Bonds. The Journal of Organic Chemistry 2016, 81 (19) , 9206-9218. https://doi.org/10.1021/acs.joc.6b01771
    18. Zhoulong Fan, Jiabin Ni, and Ao Zhang . Meta-Selective CAr–H Nitration of Arenes through a Ru3(CO)12-Catalyzed Ortho-Metalation Strategy. Journal of the American Chemical Society 2016, 138 (27) , 8470-8475. https://doi.org/10.1021/jacs.6b03402
    19. Tian-Shu Zhang, Wen-Juan Hao, Nan-Nan Wang, Guigen Li, Dong-Fang Jiang, Shu-Jiang Tu, and Bo Jiang . Catalytic Oxidative Carbene Coupling of α-Diazo Carbonyls for the Synthesis of β-Amino Ketones via C(sp3)–H Functionalization. Organic Letters 2016, 18 (13) , 3078-3081. https://doi.org/10.1021/acs.orglett.6b01189
    20. Jin-Zheng Wang, Jin Zhou, Chang Xu, Hongbin Sun, László Kürti, and Qing-Long Xu . Symmetry in Cascade Chirality-Transfer Processes: A Catalytic Atroposelective Direct Arylation Approach to BINOL Derivatives. Journal of the American Chemical Society 2016, 138 (16) , 5202-5205. https://doi.org/10.1021/jacs.6b01458
    21. Zhilong Chen and Qiu Wang . Synthesis of o-Aminophenols via a Formal Insertion Reaction of Arynes into Hydroxyindolinones. Organic Letters 2015, 17 (24) , 6130-6133. https://doi.org/10.1021/acs.orglett.5b03147
    22. Wei-Min Shi, Xiao-Pan Ma, Cheng-Xue Pan, Gui-Fa Su, and Dong-Liang Mo . Tandem C–O and C–N Bonds Formation Through O-Arylation and [3,3]-Rearrangement by Diaryliodonium Salts: Synthesis of N-Aryl Benzo[1,2,3]triazin-4(1H)-one Derivatives. The Journal of Organic Chemistry 2015, 80 (21) , 11175-11183. https://doi.org/10.1021/acs.joc.5b01947
    23. Arvind Kumar and Bhahwal Ali Shah . Synthesis of Biaryls via Benzylic C–C Bond Cleavage of Styrenes and Benzyl Alcohols. Organic Letters 2015, 17 (21) , 5232-5235. https://doi.org/10.1021/acs.orglett.5b02578
    24. Shailesh Kumar, Vandana Rathore, Ajay Verma, Ch. Durga Prasad, Amit Kumar, Abhimanyu Yadav, Sadhan Jana, Moh. Sattar, Meenakshi, and Sangit Kumar . KOtBu-Mediated Aerobic Transition-Metal-Free Regioselective β-Arylation of Indoles: Synthesis of β-(2-/4-Nitroaryl)-indoles. Organic Letters 2015, 17 (1) , 82-85. https://doi.org/10.1021/ol503274z
    25. Brandon E. Haines and Olaf Wiest . SET-Induced Biaryl Cross-Coupling: An SRN1 Reaction. The Journal of Organic Chemistry 2014, 79 (6) , 2771-2774. https://doi.org/10.1021/jo500222d
    26. Qing-Long Xu, Hongyin Gao, Muhammed Yousufuddin, Daniel H. Ess, and László Kürti . Aerobic, Transition-Metal-Free, Direct, and Regiospecific Mono-α-arylation of Ketones: Synthesis and Mechanism by DFT Calculations. Journal of the American Chemical Society 2013, 135 (38) , 14048-14051. https://doi.org/10.1021/ja4074563
    27. Chiharu Suzuki, Koji Hirano, Tetsuya Satoh, and Masahiro Miura . Ruthenium-Catalyzed Regioselective C–H Alkenylation Directed by a Free Amino Group. Organic Letters 2013, 15 (15) , 3990-3993. https://doi.org/10.1021/ol401779h
    28. Gong-Qiang Li, Hongyin Gao, Craig Keene, Michael Devonas, Daniel H. Ess, and László Kürti . Organocatalytic Aryl–Aryl Bond Formation: An Atroposelective [3,3]-Rearrangement Approach to BINAM Derivatives. Journal of the American Chemical Society 2013, 135 (20) , 7414-7417. https://doi.org/10.1021/ja401709k
    29. Takeshi Hata, Koki Nishi, Daiki Goto, Yuta Tatsumi, Shoma Kobayashi, Masayuki Shigeta, Hirokazu Urabe. Iron‐Catalyzed Reductive Coupling of Nitro Compounds with Grignard and Organozinc Reagents for Synthesis of Functionalized Secondary Amines. Advanced Synthesis & Catalysis 2024, https://doi.org/10.1002/adsc.202401034
    30. Xiaohan Yang, Biqin Wang, Qian Zhang, Aron Szekely, Mengxiang Wu, Yahong Li. Nitration of Derivatives of Imidazo[1,5‐a]pyridine via C−H Functionalization with Fe(NO 3 ) 3  ⋅ 9H 2 O as a Promoter and a Nitro Source. ChemistrySelect 2024, 9 (23) https://doi.org/10.1002/slct.202401114
    31. Shu‐Min Nie, Lu‐Min Cheng, Chun‐Hua Chen, Cui Liang, Cheng‐Xue Pan, Dong‐Liang Mo. BF 3  ⋅ OEt 2 and Visible Light‐Controlled [3,3]‐ or [1,3]‐Rearrangement of Quinazolinone N−O Aryl Moieties. Advanced Synthesis & Catalysis 2024, 366 (9) , 2056-2062. https://doi.org/10.1002/adsc.202301345
    32. Mengjie Hu, Yanping Liu, Yuchen Liang, Taotao Dong, Lichun Kong, Ming Bao, Zhi-Xiang Wang, Bo Peng. Dearomative di- and trifunctionalization of aryl sulfoxides via [5,5]-rearrangement. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-32426-6
    33. Zafar Iqbal, Asha Joshi, Saroj Ranjan De. Ceric Ammonium Nitrate Promoted Highly Chemo‐ and Regioselective o rtho ‐Nitration of Anilines under Mild Conditions. European Journal of Organic Chemistry 2022, 2022 (31) https://doi.org/10.1002/ejoc.202200746
    34. Guangyu Zhang, Simin Sun, Shili Hou, Jiaxi Xu. Diverse and chemoselective sigmatropic shift rearrangements of multisubstituted N , O -diarylhydroxylamines. Organic & Biomolecular Chemistry 2022, 20 (27) , 5470-5480. https://doi.org/10.1039/D2OB00771A
    35. Guangyu Zhang, Jiaxi Xu. A four-step cascade reaction involving O[1,3] sigmatropic shift and Smiles rearrangements as key steps. New Journal of Chemistry 2022, 46 (19) , 9322-9330. https://doi.org/10.1039/D2NJ01393B
    36. Hideki YORIMITSU, Gregory J. P. PERRY. Sulfonium-aided coupling of aromatic rings via sigmatropic rearrangement. Proceedings of the Japan Academy, Series B 2022, 98 (4) , 190-205. https://doi.org/10.2183/pjab.98.012
    37. Sundaram Maurya, Sandip B. Jadhav, Rambabu Chegondi. Metal-free oxidative formal C(sp 2 )–H arylation of cyclopentene-1,3-diones with β-naphthols. Organic & Biomolecular Chemistry 2022, 20 (10) , 2059-2063. https://doi.org/10.1039/D2OB00156J
    38. Nguyen H. Nguyen, Soo Min Oh, Cheol-Min Park, Seunghoon Shin. Ortho -selective C–H arylation of phenols with N -carboxyindoles under Brønsted acid- or Cu( i )-catalysis. Chemical Science 2022, 13 (4) , 1169-1176. https://doi.org/10.1039/D1SC06157G
    39. Tomoyuki Yanagi, Hideki Yorimitsu. Mechanistic Investigation of a Synthetic Route to Biaryls by the Sigmatropic Rearrangement of Arylsulfonium Species. Chemistry – A European Journal 2021, 27 (53) , 13450-13456. https://doi.org/10.1002/chem.202101735
    40. Fengting Liu, Min Wang, Jiatong Qu, Haifeng Lu, Hongyin Gao. Synthesis of non- C 2 symmetrical NOBIN-type biaryls through a cascade N -arylation and [3,3]-sigmatropic rearrangement from O -arylhydroxylamines and diaryliodonium salts. Organic & Biomolecular Chemistry 2021, 19 (33) , 7246-7251. https://doi.org/10.1039/D1OB00636C
    41. Ji-Wei Zhang, Shao-Hua Xiang, Shaoyu Li, Bin Tan. Copper-Catalyzed Synthesis of Axially Chiral Biaryls with Diaryliodonium Salts as Arylation Reagents. Molecules 2021, 26 (11) , 3223. https://doi.org/10.3390/molecules26113223
    42. Tomoyuki Yanagi, Hideki Yorimitsu. Recent Development of Biaryl Synthesis through Sigmatropic Rearrangement. Journal of Synthetic Organic Chemistry, Japan 2021, 79 (5) , 427-438. https://doi.org/10.5059/yukigoseikyokaishi.79.427
    43. Ryudai Michikita, Yoshinosuke Usuki, Tetsuya Satoh. Synthesis of 7‐Phenylindole Derivatives through Rhodium‐Catalyzed Dehydrogenative Coupling of 2‐(Acetylamino)‐1,1’‐biphenyls with Alkynes. Asian Journal of Organic Chemistry 2021, 10 (4) , 868-871. https://doi.org/10.1002/ajoc.202100071
    44. Min Wang, Yue Liu, Liying Wang, Haifeng Lu, Lei Feng, Hongyin Gao. Cascade Chan‐Lam C−O Coupling/[3,3]‐Rearrangement of Arylhydroxylamines with Arylboronic Acids Toward NOBIN Analogues. Advanced Synthesis & Catalysis 2021, 363 (6) , 1733-1738. https://doi.org/10.1002/adsc.202001570
    45. Dong-Dong Liang, Shen-Yi Guo, Shuo Tong, Mei-Xiang Wang. Polyfunctionalized biaryls accessed by a one-pot nucleophilic aromatic substitution and sigmatropic rearrangement reaction cascade under mild conditions. Tetrahedron 2021, 83 , 131966. https://doi.org/10.1016/j.tet.2021.131966
    46. 文静 潘. The Progress of [5,5]-Rearrangement Reaction. Journal of Organic Chemistry Research 2021, 09 (04) , 40-49. https://doi.org/10.12677/JOCR.2021.94006
    47. Guangyu Zhang, Jiaxi Xu. [3,3] Sigmatropic Shifts and Applications of Hydroxylamine Derivatives. Chinese Journal of Organic Chemistry 2021, 41 (8) , 3002. https://doi.org/10.6023/cjoc202103022
    48. Ji‐Wei Zhang, Liang‐Wen Qi, Shaoyu Li, Shao‐Hua Xiang, Bin Tan. Direct Construction of NOBINs via Domino Arylation and Sigmatropic Rearrangement Reactions. Chinese Journal of Chemistry 2020, 38 (12) , 1503-1514. https://doi.org/10.1002/cjoc.202000358
    49. Akira Yoshida, Koichi Okamoto, Tomoyuki Yanagi, Keisuke Nogi, Hideki Yorimitsu. Metal-free synthesis of biaryls from aryl sulfoxides and sulfonanilides via sigmatropic rearrangement. Tetrahedron 2020, 76 (51) , 131232. https://doi.org/10.1016/j.tet.2020.131232
    50. Jiapian Huang, Feng Ding, Pornchai Rojsitthisak, Fu-Sheng He, Jie Wu. Recent advances in nitro-involved radical reactions. Organic Chemistry Frontiers 2020, 7 (18) , 2873-2898. https://doi.org/10.1039/D0QO00563K
    51. Hairui Yuan, Yuanbo Du, Fengting Liu, Lirong Guo, Qianyu Sun, Lei Feng, Hongyin Gao. Tandem approach to NOBIN analogues from arylhydroxylamines and diaryliodonium salts via [3,3]-sigmatropic rearrangement. Chemical Communications 2020, 56 (59) , 8226-8229. https://doi.org/10.1039/D0CC02919J
    52. Kaitlyn Lovato, Urmibhusan Bhakta, Yi Pin Ng, László Kürti. O -Cyclopropyl hydroxylamines: gram-scale synthesis and utility as precursors for N-heterocycles. Organic & Biomolecular Chemistry 2020, 18 (17) , 3281-3287. https://doi.org/10.1039/D0OB00611D
    53. Lirong Guo, Fengting Liu, Liying Wang, Hairui Yuan, Lei Feng, Haifeng Lu, Hongyin Gao. Transition-metal-free aerobic C–O bond formation via C–N bond cleavage. Organic Chemistry Frontiers 2020, 7 (9) , 1077-1081. https://doi.org/10.1039/D0QO00173B
    54. Xingjun Li, Jiang Wang, Xiong Xie, Wenhao Dai, Xu Han, Kaixian Chen, Hong Liu. Ir( iii )-Catalyzed direct C–H functionalization of N -phenylacetamide with α-diazo quinones: a novel strategy for producing 2-hydroxy-2′-amino-1,2′-biaryl scaffolds. Chemical Communications 2020, 56 (23) , 3441-3444. https://doi.org/10.1039/C9CC08297B
    55. Tomoyuki Yanagi, Keisuke Nogi, Hideki Yorimitsu. Construction of Biaryls from Aryl Sulfoxides and Anilines by Means of a Sigmatropic Rearrangement. Chemistry – A European Journal 2020, 26 (4) , 783-787. https://doi.org/10.1002/chem.201903570
    56. Lingling Liu, Ning Wang, Chenyang Dai, Yi Han, Shan Yang, Zhibin Huang, Yingsheng Zhao. Rh(III)‐Catalyzed Direct Amination of Aromatic Ketoximes Enabled by Potassium Acetate. European Journal of Organic Chemistry 2019, 2019 (48) , 7857-7863. https://doi.org/10.1002/ejoc.201901517
    57. Si‐Zhe Song, Qing‐Qing Kang, Ting‐Ting Cao, Ke‐Wei Lei, Yan‐Yun Liu, Qiang Li, Wen‐Ting Wei. Cu(NO 3 ) 2 /Oxone‐Mediated Radical Nitration Cyclization of 1,6‐Enynes. ChemistrySelect 2019, 4 (45) , 13380-13383. https://doi.org/10.1002/slct.201903285
    58. Shenci Lu, Shawn Voon Hwee Ng, Kaitlyn Lovato, Jun-Yang Ong, Si Bei Poh, Xiao Qian Ng, László Kürti, Yu Zhao. Practical access to axially chiral sulfonamides and biaryl amino phenols via organocatalytic atroposelective N-alkylation. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-10940-4
    59. Marian Rauser, Raphael Eckert, Max Gerbershagen, Meike Niggemann. Catalyst‐Free Reductive Coupling of Aromatic and Aliphatic Nitro Compounds with Organohalides. Angewandte Chemie 2019, 131 (20) , 6785-6789. https://doi.org/10.1002/ange.201814197
    60. Marian Rauser, Raphael Eckert, Max Gerbershagen, Meike Niggemann. Catalyst‐Free Reductive Coupling of Aromatic and Aliphatic Nitro Compounds with Organohalides. Angewandte Chemie International Edition 2019, 58 (20) , 6713-6717. https://doi.org/10.1002/anie.201814197
    61. Lei Zhang, Jia‐Ni He, Yuchen Liang, Mengjie Hu, Li Shang, Xin Huang, Lichun Kong, Zhi‐Xiang Wang, Bo Peng. Selective [5,5]‐Sigmatropic Rearrangement by Assembly of Aryl Sulfoxides with Allyl Nitriles. Angewandte Chemie 2019, 131 (16) , 5370-5374. https://doi.org/10.1002/ange.201900434
    62. Lei Zhang, Jia‐Ni He, Yuchen Liang, Mengjie Hu, Li Shang, Xin Huang, Lichun Kong, Zhi‐Xiang Wang, Bo Peng. Selective [5,5]‐Sigmatropic Rearrangement by Assembly of Aryl Sulfoxides with Allyl Nitriles. Angewandte Chemie International Edition 2019, 58 (16) , 5316-5320. https://doi.org/10.1002/anie.201900434
    63. Li-Rui Song, Zhoulong Fan, Ao Zhang. Recent advances in transition metal-catalyzed C(sp 2 )–H nitration. Organic & Biomolecular Chemistry 2019, 17 (6) , 1351-1361. https://doi.org/10.1039/C8OB02750A
    64. Shaista Sultan, Bhahwal Ali Shah. Carbon‐Carbon and Carbon‐Heteroatom Bond Formation Reactions Using Unsaturated Carbon Compounds. The Chemical Record 2019, 19 (2-3) , 644-660. https://doi.org/10.1002/tcr.201800095
    65. Eiji Tayama, Kazuki Hirano. Base-promoted aromatic [3,3] sigmatropic rearrangement of N-acyl-O-arylhydroxylamine derivatives. Tetrahedron 2019, 75 (5) , 665-673. https://doi.org/10.1016/j.tet.2018.12.058
    66. Jichao Xiao, Yuli He, Feng Ye, Shaolin Zhu. Remote sp3 C–H Amination of Alkenes with Nitroarenes. Chem 2018, 4 (7) , 1645-1657. https://doi.org/10.1016/j.chempr.2018.04.008
    67. Mitsuki Hori, Jing‐Dong Guo, Tomoyuki Yanagi, Keisuke Nogi, Takahiro Sasamori, Hideki Yorimitsu. Sigmatropic Rearrangements of Hypervalent‐Iodine‐Tethered Intermediates for the Synthesis of Biaryls. Angewandte Chemie 2018, 130 (17) , 4753-4757. https://doi.org/10.1002/ange.201801132
    68. Mitsuki Hori, Jing‐Dong Guo, Tomoyuki Yanagi, Keisuke Nogi, Takahiro Sasamori, Hideki Yorimitsu. Sigmatropic Rearrangements of Hypervalent‐Iodine‐Tethered Intermediates for the Synthesis of Biaryls. Angewandte Chemie International Edition 2018, 57 (17) , 4663-4667. https://doi.org/10.1002/anie.201801132
    69. Marian Rauser, Christoph Ascheberg, Meike Niggemann. Direct Reductive N ‐Functionalization of Aliphatic Nitro Compounds. Chemistry – A European Journal 2018, 24 (16) , 3970-3974. https://doi.org/10.1002/chem.201705986
    70. . Biaryls. 2018, 83-154. https://doi.org/10.1002/9781118686263.ch4
    71. Richard C. Larock, Shilpa A. Worlikar. Formation of Alcohols and Phenols by Oxidation. 2018, 1-23. https://doi.org/10.1002/9781118662083.cot07-004
    72. Botla Vinayak, Akudari Ashok, Malapaka Chandrasekharam. Copper‐Catalyzed Chelation‐Assisted ortho ‐Nitration of 2‐Aryls Using Pharmacophoric Benzothiazoles and Benzoxazoles as Directing Groups. European Journal of Organic Chemistry 2017, 2017 (47) , 7127-7132. https://doi.org/10.1002/ejoc.201701187
    73. Riyadh Ahmed Atto AL‐Shuaeeb, Camille Dejean, Mouâd Alami, Samir Messaoudi. Controllable Activation of Pd‐G3 Palladacycle Precatalyst in the Presence of Thiosugars: Rapid Access to 1‐Aminobiphenyl Thioglycoside Atropoisomers at Room Temperature. Chemistry – An Asian Journal 2017, 12 (24) , 3114-3118. https://doi.org/10.1002/asia.201701415
    74. Darshan C. Patel, Ross M. Woods, Zachary S. Breitbach, Alain Berthod, Daniel W. Armstrong. Thermal racemization of biaryl atropisomers. Tetrahedron: Asymmetry 2017, 28 (11) , 1557-1561. https://doi.org/10.1016/j.tetasy.2017.09.006
    75. Marian Rauser, Christoph Ascheberg, Meike Niggemann. Electrophilic Amination with Nitroarenes. Angewandte Chemie 2017, 129 (38) , 11728-11732. https://doi.org/10.1002/ange.201705356
    76. Marian Rauser, Christoph Ascheberg, Meike Niggemann. Electrophilic Amination with Nitroarenes. Angewandte Chemie International Edition 2017, 56 (38) , 11570-11574. https://doi.org/10.1002/anie.201705356
    77. Ebrahim Kianmehr, Arezoo Tanbakouchian. Palladium-catalyzed regio- and chemoselective direct desulfitative arylation of anilides with arylsulfonyl chlorides. Tetrahedron 2017, 73 (36) , 5337-5343. https://doi.org/10.1016/j.tet.2017.07.022
    78. Kazutaka Takamatsu, Koji Hirano, Masahiro Miura. Copper‐Mediated Decarboxylative Coupling of Benzamides with ortho ‐Nitrobenzoic Acids by Directed C−H Cleavage. Angewandte Chemie 2017, 129 (19) , 5437-5441. https://doi.org/10.1002/ange.201701918
    79. Kazutaka Takamatsu, Koji Hirano, Masahiro Miura. Copper‐Mediated Decarboxylative Coupling of Benzamides with ortho ‐Nitrobenzoic Acids by Directed C−H Cleavage. Angewandte Chemie International Edition 2017, 56 (19) , 5353-5357. https://doi.org/10.1002/anie.201701918
    80. Moh. Sattar, Vandana Rathore, Ch. Durga Prasad, Sangit Kumar. Transition‐metal‐free Chemoselective Oxidative C−C Coupling of the sp 3 C−H Bond of Oxindoles with Arenes and Addition to Alkene: Synthesis of 3‐Aryl Oxindoles, and Benzofuro‐ and Indoloindoles. Chemistry – An Asian Journal 2017, 12 (7) , 734-743. https://doi.org/10.1002/asia.201601647
    81. Tse‐Lok Ho, Mary Fieser, Louis Fieser, Janice Smith. Grignard reagents. 2017https://doi.org/10.1002/9780471264194.fos05425.pub6
    82. Jianzhong Liu, Kai Wu, Tao Shen, Yujie Liang, Miancheng Zou, Yuchao Zhu, Xinwei Li, Xinyao Li, Ning Jiao. Fe‐Catalyzed Amination of (Hetero)Arenes with a Redox‐Active Aminating Reagent under Mild Conditions. Chemistry – A European Journal 2017, 23 (3) , 563-567. https://doi.org/10.1002/chem.201605476
    83. Wenbin Shang, Shanyong Li, Yuzhen Ding, Zhiqiang Pan, Xiaogang Tong, Chengfeng Xia. Transition-metal-free dehydrogenation coupling of pyridinium through a self-promoted hydride transfer process. Organic Chemistry Frontiers 2017, 4 (9) , 1789-1793. https://doi.org/10.1039/C7QO00389G
    84. Ashot Gevorgyan, Satenik Mkrtchyan, Tatevik Grigoryan, Viktor O. Iaroshenko. Disilanes as oxygen scavengers and surrogates of hydrosilanes suitable for selective reduction of nitroarenes, phosphine oxides and other valuable substrates. Organic Chemistry Frontiers 2017, 4 (12) , 2437-2444. https://doi.org/10.1039/C7QO00566K
    85. Zhi Huang, Jianbo Lv, Yanxing Jia. A Simple and Efficient Synthesis of Secondary Alkylamines from Nitroalkanes. ChemistrySelect 2016, 1 (18) , 5892-5894. https://doi.org/10.1002/slct.201601464
    86. J. M. Coxon. Molecular Rearrangements. 2016, 519-607. https://doi.org/10.1002/9781118707838.ch12
    87. Hongyin Gao, Qing‐Long Xu, Craig Keene, Muhammed Yousufuddin, Daniel H. Ess, László Kürti. Practical Organocatalytic Synthesis of Functionalized Non‐ C 2 ‐Symmetrical Atropisomeric Biaryls. Angewandte Chemie 2016, 128 (2) , 576-581. https://doi.org/10.1002/ange.201508419
    88. Hongyin Gao, Qing‐Long Xu, Craig Keene, Muhammed Yousufuddin, Daniel H. Ess, László Kürti. Practical Organocatalytic Synthesis of Functionalized Non‐ C 2 ‐Symmetrical Atropisomeric Biaryls. Angewandte Chemie International Edition 2016, 55 (2) , 566-571. https://doi.org/10.1002/anie.201508419
    89. Selvaraj Mohana Roopan, Jeyakannu Palaniraja. Synthetic journey towards transition metal-free arylations. Research on Chemical Intermediates 2015, 41 (11) , 8111-8146. https://doi.org/10.1007/s11164-014-1880-6
    90. Laura L. Anderson. [3,3]‐Sigmatropic Rearrangements with Heteroatom–Heteroatom Bonds. 2015, 431-458. https://doi.org/10.1002/9781118939901.ch14
    91. Jinghan Gui, Chung-Mao Pan, Ying Jin, Tian Qin, Julian C. Lo, Bryan J. Lee, Steven H. Spergel, Michael E. Mertzman, William J. Pitts, Thomas E. La Cruz, Michael A. Schmidt, Nitin Darvatkar, Swaminathan R. Natarajan, Phil S. Baran. Practical olefin hydroamination with nitroarenes. Science 2015, 348 (6237) , 886-891. https://doi.org/10.1126/science.aab0245
    92. Vasudevan Dhayalan, Christoph Sämann, Paul Knochel. Synthesis of polyfunctional secondary amines by the addition of functionalized zinc reagents to nitrosoarenes. Chemical Communications 2015, 51 (15) , 3239-3242. https://doi.org/10.1039/C4CC08846H
    93. O. K. Rasheed, I. R. Hardcastle, J. Raftery, P. Quayle. Aryne generation vs. Truce-Smiles and fries rearrangements during the Kobayashi fragmentation reaction: a new bi-aryl synthesis. Organic & Biomolecular Chemistry 2015, 13 (29) , 8048-8052. https://doi.org/10.1039/C5OB01239B
    94. Amit Kumar, Moh. Sattar, Ajay Verma, Ankit Dara, Sangit Kumar. Double functionalization of 2-amino-2′-hydroxy-1,1′-biaryls: synthesis of 4-nitro-dibenzofurans and benzofuro-indoles. RSC Advances 2015, 5 (56) , 44728-44741. https://doi.org/10.1039/C5RA07328F
    95. Ross M. Woods, Darshan C. Patel, Yeeun Lim, Zachary S. Breitbach, Hongyin Gao, Craig Keene, Gongqiang Li, László Kürti, Daniel W. Armstrong. Enantiomeric separation of biaryl atropisomers using cyclofructan based chiral stationary phases. Journal of Chromatography A 2014, 1357 , 172-181. https://doi.org/10.1016/j.chroma.2014.04.080
    96. . Aromatic Nucleophilic Substitutions. 2014, 205-276. https://doi.org/10.1002/9783527687800.ch8
    97. Hongyin Gao, Qing‐Long Xu, Muhammed Yousufuddin, Daniel H. Ess, László Kürti. Rapid Synthesis of Fused N‐Heterocycles by Transition‐Metal‐Free Electrophilic Amination of Arene CH Bonds. Angewandte Chemie 2014, 126 (10) , 2739-2743. https://doi.org/10.1002/ange.201309973
    98. Hongyin Gao, Qing‐Long Xu, Muhammed Yousufuddin, Daniel H. Ess, László Kürti. Rapid Synthesis of Fused N‐Heterocycles by Transition‐Metal‐Free Electrophilic Amination of Arene CH Bonds. Angewandte Chemie International Edition 2014, 53 (10) , 2701-2705. https://doi.org/10.1002/anie.201309973
    99. Amit Kumar, Abhimanyu Yadav, Ajay Verma, Sadhan Jana, Moh. Sattar, Shailesh Kumar, Ch. Durga Prasad, Sangit Kumar. Chemoselective arylation of phenols with bromo-nitroarenes: synthesis of nitro-biaryl-ols and their conversion into benzofurans and carbazoles. Chem. Commun. 2014, 50 (67) , 9481-9484. https://doi.org/10.1039/C4CC03090G
    100. Giuseppe Bartoli, Renato Dalpozzo, Monica Nardi. Applications of Bartoli indole synthesis. Chem. Soc. Rev. 2014, 43 (13) , 4728-4750. https://doi.org/10.1039/C4CS00045E
    Load all citations

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2013, 135, 19, 7086–7089
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja400897u
    Published March 4, 2013
    Copyright © 2013 American Chemical Society

    Article Views

    10k

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.