Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Diced Electrophoresis Gel Assay for Screening Enzymes with Specified Activities

View Author Information
Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
Cite this: J. Am. Chem. Soc. 2013, 135, 16, 6002–6005
Publication Date (Web):April 12, 2013
https://doi.org/10.1021/ja401792d
Copyright © 2013 American Chemical Society

    Article Views

    3653

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    We have established the diced electrophoresis gel (DEG) assay as a proteome-wide screening tool to identify enzymes with activities of interest using turnover-based fluorescent substrates. The method utilizes the combination of native polyacrylamide gel electrophoresis (PAGE) with a multiwell-plate-based fluorometric assay to find protein spots with the specified activity. By developing fluorescent substrates that mimic the structure of neutrophil chemoattractants, we could identify enzymes involved in metabolic inactivation of the chemoattractants.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Experimental methods and additional data. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 32 publications.

    1. Kyohhei Fujita, Yasuteru Urano. Activity-Based Fluorescence Diagnostics for Cancer. Chemical Reviews 2024, 124 (7) , 4021-4078. https://doi.org/10.1021/acs.chemrev.3c00612
    2. Kyohhei Fujita, Mako Kamiya, Takafusa Yoshioka, Akira Ogasawara, Rumi Hino, Ryosuke Kojima, Hiroaki Ueo, Yasuteru Urano. Rapid and Accurate Visualization of Breast Tumors with a Fluorescent Probe Targeting α-Mannosidase 2C1. ACS Central Science 2020, 6 (12) , 2217-2227. https://doi.org/10.1021/acscentsci.0c01189
    3. Bibudha Parasar, Pamela V. Chang. Finding the Sweet Spot for Breast Cancer Detection. ACS Central Science 2020, 6 (12) , 2123-2125. https://doi.org/10.1021/acscentsci.0c01439
    4. Yuki Ichihashi, Toru Komatsu, Etsu Kyo, Hiroyuki Matsuzaki, Keisuke Hata, Toshiaki Watanabe, Tasuku Ueno, Kenjiro Hanaoka, Yasuteru Urano. Separation-Based Enzymomics Assay for the Discovery of Altered Peptide-Metabolizing Enzymatic Activities in Biosamples. Analytical Chemistry 2019, 91 (18) , 11497-11501. https://doi.org/10.1021/acs.analchem.9b03016
    5. Braden Bassett, Brent Waibel, Alex White, Heather Hansen, Dominique Stephens, Andrew Koelper, Erik M. Larsen, Charles Kim, Adam Glanzer, Luke D. Lavis, Geoffrey C. Hoops, R. Jeremy Johnson. Measuring the Global Substrate Specificity of Mycobacterial Serine Hydrolases Using a Library of Fluorogenic Ester Substrates. ACS Infectious Diseases 2018, 4 (6) , 904-911. https://doi.org/10.1021/acsinfecdis.7b00263
    6. Qi Zhang, Jingyu Zhang, Evripidis Gavathiotis. ICBS 2017 in Shanghai—Illuminating Life with Chemical Innovation. ACS Chemical Biology 2018, 13 (5) , 1111-1122. https://doi.org/10.1021/acschembio.8b00220
    7. Jun Onagi, Toru Komatsu, Yuki Ichihashi, Yugo Kuriki, Mako Kamiya, Takuya Terai, Tasuku Ueno, Kenjiro Hanaoka, Hiroyuki Matsuzaki, Keisuke Hata, Toshiaki Watanabe, Tetsuo Nagano, and Yasuteru Urano . Discovery of Cell-Type-Specific and Disease-Related Enzymatic Activity Changes via Global Evaluation of Peptide Metabolism. Journal of the American Chemical Society 2017, 139 (9) , 3465-3472. https://doi.org/10.1021/jacs.6b11376
    8. Kentaro Yoshioka, Toru Komatsu, Akihiro Nakada, Jun Onagi, Yugo Kuriki, Mitsuyasu Kawaguchi, Takuya Terai, Tasuku Ueno, Kenjiro Hanaoka, Tetsuo Nagano, and Yasuteru Urano . Identification of Tissue-Restricted Bioreaction Suitable for in Vivo Targeting by Fluorescent Substrate Library-Based Enzyme Discovery. Journal of the American Chemical Society 2015, 137 (38) , 12187-12190. https://doi.org/10.1021/jacs.5b05884
    9. Guangle Niu, Weimin Liu, Jiasheng Wu, Bingjiang Zhou, Jianhong Chen, Hongyan Zhang, Jiechao Ge, Ying Wang, Haitao Xu, and Pengfei Wang . Aminobenzofuran-Fused Rhodamine Dyes with Deep-Red to Near-Infrared Emission for Biological Applications. The Journal of Organic Chemistry 2015, 80 (6) , 3170-3175. https://doi.org/10.1021/acs.joc.5b00077
    10. Shota Tanaka. Intraoperative diagnosis of brain tumors using fluorescent probes. Okayama Igakkai Zasshi (Journal of Okayama Medical Association) 2024, 136 (1) , 7-11. https://doi.org/10.4044/joma.136.7
    11. Takenori Shimizu, Shota Tanaka, Yosuke Kitagawa, Yusuke Sakaguchi, Mako Kamiya, Shunsaku Takayanagi, Hirokazu Takami, Yasuteru Urano, Nobuhito Saito. Advancement of fluorescent aminopeptidase probes for rapid cancer detection–current uses and neurosurgical applications. Frontiers in Surgery 2024, 11 https://doi.org/10.3389/fsurg.2024.1298709
    12. Shingo Sakamoto, Hideto Hiraide, Mayano Minoda, Nozomi Iwakura, Misa Suzuki, Jun Ando, Chiharu Takahashi, Ikuko Takahashi, Kazue Murai, Yu Kagami, Tadahaya Mizuno, Tohru Koike, Satoshi Nara, Chigusa Morizane, Susumu Hijioka, Ayumi Kashiro, Kazufumi Honda, Rikiya Watanabe, Yasuteru Urano, Toru Komatsu. Identification of activity-based biomarkers for early-stage pancreatic tumors in blood using single-molecule enzyme activity screening. Cell Reports Methods 2024, 4 (1) , 100688. https://doi.org/10.1016/j.crmeth.2023.100688
    13. Ryugen Takahashi, Takeaki Ishizawa, Yoshinori Inagaki, Mariko Tanaka, Akira Ogasawara, Yugo Kuriki, Kyohhei Fujita, Mako Kamiya, Tetsuo Ushiku, Yasuteru Urano, Kiyoshi Hasegawa. Real-Time Fluorescence Imaging to Identify Cholangiocarcinoma in the Extrahepatic Biliary Tree Using an Enzyme-Activatable Probe. Liver Cancer 2023, 12 (6) , 590-602. https://doi.org/10.1159/000530645
    14. Shun Kawashima, Daisuke Yoshida, Takafusa Yoshioka, Akira Ogasawara, Kyohhei Fujita, Masahiro Yanagiya, Masaaki Nagano, Chihiro Konoeda, Haruaki Hino, Kentaro Kitano, Masaaki Sato, Rumi Hino, Ryosuke Kojima, Toru Komatsu, Mako Kamiya, Yasuteru Urano, Jun Nakajima. Rapid imaging of lung cancer using a red fluorescent probe to detect dipeptidyl peptidase 4 and puromycin-sensitive aminopeptidase activities. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-12665-9
    15. Toru Komatsu. Screening disease-related alterations of enzymatic activities in living systems using enzymomics approach. Electrophoresis Letters 2022, 66 (2) , 87-90. https://doi.org/10.2198/electroph.66.87
    16. Ryugen Takahashi, Takeaki Ishizawa, Masumitsu Sato, Yoshinori Inagaki, Mariko Takanka, Yugo Kuriki, Mako Kamiya, Tetsuo Ushiku, Yasuteru Urano, Kiyoshi Hasegawa. Fluorescence Imaging Using Enzyme-Activatable Probes for Real-Time Identification of Pancreatic Cancer. Frontiers in Oncology 2021, 11 https://doi.org/10.3389/fonc.2021.714527
    17. Yosuke Kitagawa, Shota Tanaka, Mako Kamiya, Yugo Kuriki, Kyoko Yamamoto, Takenori Shimizu, Takahide Nejo, Taijun Hana, Reiko Matsuura, Tsukasa Koike, Erika Yamazawa, Yoshihiro Kushihara, Satoshi Takahashi, Masashi Nomura, Hirokazu Takami, Shunsaku Takayanagi, Akitake Mukasa, Yasuteru Urano, Nobuhito Saito. A Novel Topical Fluorescent Probe for Detection of Glioblastoma. Clinical Cancer Research 2021, 27 (14) , 3936-3947. https://doi.org/10.1158/1078-0432.CCR-20-4518
    18. Kyohhei Fujita, Mako Kamiya, Yasuteru Urano. Rapid and Sensitive Detection of Cancer Cells with Activatable Fluorescent Probes for Enzyme Activity. 2021, 193-206. https://doi.org/10.1007/978-1-0716-1258-3_17
    19. Toru Komatsu. Development of diced electrophoresis gel assay for screening disease-related enzymatic activities. Electrophoresis Letters 2021, 65 (2) , 29-33. https://doi.org/10.2198/electroph.65.29
    20. Rei Noguchi, Yooksil Sin, Tadashi Kondo. Gel electrophoresis for phosphorylated proteins: a brief introduction. Journal of Electrophoresis 2020, 64 (1) , 13-17. https://doi.org/10.2198/jelectroph.64.13
    21. Toru Komatsu, Yasuteru Urano. Chemical toolbox for ‘live’ biochemistry to understand enzymatic functions in living systems. The Journal of Biochemistry 2019, 182 https://doi.org/10.1093/jb/mvz074
    22. Toru Komatsu, Masahiro Shimoda, Yukiko Kawamura, Yasuteru Urano, Tetsuo Nagano. Development and validation of an improved diced electrophoresis gel assay cutter-plate system for enzymomics studies. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2019, 1867 (1) , 82-87. https://doi.org/10.1016/j.bbapap.2018.06.004
    23. Yong-In Kim, Je-Yoel Cho. Gel-based proteomics in disease research: Is it still valuable?. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2019, 1867 (1) , 9-16. https://doi.org/10.1016/j.bbapap.2018.08.001
    24. Alex White, Andrew Koelper, Arielle Russell, Erik M. Larsen, Charles Kim, Luke D. Lavis, Geoffrey C. Hoops, R. Jeremy Johnson. Fluorogenic structure activity library pinpoints molecular variations in substrate specificity of structurally homologous esterases. Journal of Biological Chemistry 2018, 293 (36) , 13851-13862. https://doi.org/10.1074/jbc.RA118.003972
    25. Yoko Ino, Hiroyuki Kagawa, Tomoko Akiyama, Yusuke Nakai, Sakura Ito, Masahiro Shimoda, Makiko Kawamura, Hisashi Hirano, Yayoi Kimura. Protein fractionation for proteomics using the SAINOME-plate. Journal of Electrophoresis 2018, 62 (1) , 11-15. https://doi.org/10.2198/jelectroph.62.11
    26. Shingo Sakamoto, Toru Komatsu, Tasuku Ueno, Kenjiro Hanaoka, Yasuteru Urano. Fluorescence detection of serum albumin with a turnover-based sensor utilizing Kemp elimination reaction. Bioorganic & Medicinal Chemistry Letters 2017, 27 (15) , 3464-3467. https://doi.org/10.1016/j.bmcl.2017.05.076
    27. Toru Komatsu. Potential of Enzymomics Methodologies to Characterize Disease-Related Protein Functions. CHEMICAL & PHARMACEUTICAL BULLETIN 2017, 65 (7) , 605-610. https://doi.org/10.1248/cpb.c17-00144
    28. Kentaro Yoshioka, Toru Komatsu, Kenjiro Hanaoka, Tasuku Ueno, Takuya Terai, Tetsuo Nagano, Yasuteru Urano. Discovery of a pyruvylated peptide-metabolizing enzyme using a fluorescent substrate-based protein discovery technique. Chemical Communications 2016, 52 (23) , 4377-4380. https://doi.org/10.1039/C6CC00829A
    29. Toru Komatsu, Kentaro Yoshioka, Kenjiro Hanaoka, Takuya Terai, Tasuku Ueno, Tetsuo Nagano, Yasuteru Urano. Identification of Lung Inflammation-Related Elevation of Acylamino Acid Releasing Enzyme (APEH) Activity Using an Enzymomics Approach. CHEMICAL & PHARMACEUTICAL BULLETIN 2016, 64 (11) , 1533-1538. https://doi.org/10.1248/cpb.c16-00540
    30. Toru Komatsu, Yasuteru Urano. Evaluation of Enzymatic Activities in Living Systems with Small-molecular Fluorescent Substrate Probes. Analytical Sciences 2015, 31 (4) , 257-265. https://doi.org/10.2116/analsci.31.257
    31. Katie R. Tallman, Kimberly E. Beatty. Far‐Red Fluorogenic Probes for Esterase and Lipase Detection. ChemBioChem 2015, 16 (1) , 70-75. https://doi.org/10.1002/cbic.201402548
    32. Toru Komatsu. Diced electrophoresis gel assay for screening enzymes with specified activities. Electrophoresis Letters 2015, 59 (2) , 115-117. https://doi.org/10.2198/electroph.59.115