ACS Publications. Most Trusted. Most Cited. Most Read
Low-Temperature, Bottom-Up Synthesis of Graphene via a Radical-Coupling Reaction
My Activity

Figure 1Loading Img
    Article

    Low-Temperature, Bottom-Up Synthesis of Graphene via a Radical-Coupling Reaction
    Click to copy article linkArticle link copied!

    View Author Information
    Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
    ‡ § Department of Chemistry and §Department of Physics, National University of Singapore, 3 Science Drive 3, 117543, Singapore
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2013, 135, 24, 9050–9054
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja4031825
    Published May 23, 2013
    Copyright © 2013 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    In this article, we demonstrated a method to synthesize graphene films at low temperature via a mild radical-coupling reaction. During the deposition process, with the effectively breaking of the C–Br bonds of hexabromobenzene (HBB) precursors, the generated HBB radicals couple efficiently to form graphene films at the low temperature of 220–250 °C. In situ low-temperature scanning tunneling microscopy was used to provide atomic scale investigation of the graphene growth mechanism using HBB as precursor. The chemical structure evolution during the graphene growth process was further corroborated by in situ X-ray photoelectron spectroscopy measurements. The charge carrier mobility of the graphene film grown at low temperature is at 1000–4200 cm2 V–1 s–1, as evaluated in a field-effect transistor device configuration on SiO2 substrates, indicating the high quality of the films.

    Copyright © 2013 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Description of the material included. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 64 publications.

    1. Faming Kang, Wenze Gao, Liangliang Cai, Cuiyu Li, Chunxue Yuan, Wei Xu. Selective On-Surface Reactions of the Alkenyl gem-Dibromide Group Directed by Substrate Lattices. The Journal of Physical Chemistry C 2021, 125 (43) , 23840-23847. https://doi.org/10.1021/acs.jpcc.1c08003
    2. Yifei Yang, Limei Wang, Zhenyu Zhang, Ping Cui. Prediction of a Kinetic Pathway for Fabricating the Narrowest Zigzag Graphene Nanoribbons on Cu(111). The Journal of Physical Chemistry C 2021, 125 (40) , 21933-21942. https://doi.org/10.1021/acs.jpcc.1c05660
    3. Jakub Lisiecki, Paweł Szabelski. Surface-Confined Metal–Organic Precursors Comprising Naphthalene-Like Derivatives with Differently Distributed Halogen Substituents: A Monte Carlo Model. The Journal of Physical Chemistry C 2020, 124 (37) , 20280-20293. https://doi.org/10.1021/acs.jpcc.0c06726
    4. Rodrigo Cezar de Campos Ferreira, Alejandro Pérez Paz, Duncan John Mowbray, Jean-Yves Roulet, Richard Landers, Abner de Siervo. Supramolecular Ordering and Reactions of a Chlorophenyl Porphyrin on Ag(111). The Journal of Physical Chemistry C 2020, 124 (26) , 14220-14228. https://doi.org/10.1021/acs.jpcc.0c02953
    5. Hailong Zhu, Tianchao Niu, Ang Li. Conformational Transitions of Phase-Separated Binary Molecules Assisted by Surface Dehalogenation. Langmuir 2019, 35 (9) , 3507-3512. https://doi.org/10.1021/acs.langmuir.8b04220
    6. Huan Liu, Xingfa Gao, Yuliang Zhao. Boron and Nitrogen Co-Doping of Graphynes without Inducing Empty or Doubly Filled States in π-Conjugated Systems. The Journal of Physical Chemistry C 2019, 123 (1) , 625-630. https://doi.org/10.1021/acs.jpcc.8b10684
    7. Adam J. Clancy, Mustafa K. Bayazit, Stephen A. Hodge, Neal T. Skipper, Christopher A. Howard, Milo S. P. Shaffer. Charged Carbon Nanomaterials: Redox Chemistries of Fullerenes, Carbon Nanotubes, and Graphenes. Chemical Reviews 2018, 118 (16) , 7363-7408. https://doi.org/10.1021/acs.chemrev.8b00128
    8. Züleyha Kudaş, Emre Gür, Duygu Ekinci. Synthesis of Graphene-like Films by Electrochemical Reduction of Polyhalogenated Aromatic Compounds and their Electrochemical Capacitor Applications. Langmuir 2018, 34 (27) , 7958-7970. https://doi.org/10.1021/acs.langmuir.8b01177
    9. Tianchao Niu, Jinge Wu, Faling Ling, Shuo Jin, Guanghong Lu, and Miao Zhou . Halogen-Adatom Mediated Phase Transition of Two-Dimensional Molecular Self-Assembly on a Metal Surface. Langmuir 2018, 34 (1) , 553-560. https://doi.org/10.1021/acs.langmuir.7b03796
    10. Ping Cui, Jin-Ho Choi, Changgan Zeng, Zhenyu Li, Jinlong Yang, and Zhenyu Zhang . A Kinetic Pathway toward High-Density Ordered N Doping of Epitaxial Graphene on Cu(111) Using C5NCl5 Precursors. Journal of the American Chemical Society 2017, 139 (21) , 7196-7202. https://doi.org/10.1021/jacs.6b12506
    11. Xin Qi, Hao-Bin Zhang, Jiantie Xu, Xinyu Wu, Dongzhi Yang, Jin Qu, and Zhong-Zhen Yu . Highly Efficient High-Pressure Homogenization Approach for Scalable Production of High-Quality Graphene Sheets and Sandwich-Structured α-Fe2O3/Graphene Hybrids for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2017, 9 (12) , 11025-11034. https://doi.org/10.1021/acsami.7b00808
    12. Han Huang, Zhiyu Tan, Yanwei He, Jian Liu, Jiatao Sun, Kang Zhao, Zhenhong Zhou, Guo Tian, Swee Liang Wong, and Andrew Thye Shen Wee . Competition between Hexagonal and Tetragonal Hexabromobenzene Packing on Au(111). ACS Nano 2016, 10 (3) , 3198-3205. https://doi.org/10.1021/acsnano.5b04970
    13. Robert M. Jacobberger, Rushad Machhi, Jennifer Wroblewski, Ben Taylor, Anne Lynn Gillian-Daniel, and Michael S. Arnold . Simple Graphene Synthesis via Chemical Vapor Deposition. Journal of Chemical Education 2015, 92 (11) , 1903-1907. https://doi.org/10.1021/acs.jchemed.5b00126
    14. Huile Jin, Huihui Huang, Yuhua He, Xin Feng, Shun Wang, Liming Dai, and Jichang Wang . Graphene Quantum Dots Supported by Graphene Nanoribbons with Ultrahigh Electrocatalytic Performance for Oxygen Reduction. Journal of the American Chemical Society 2015, 137 (24) , 7588-7591. https://doi.org/10.1021/jacs.5b03799
    15. Robert M. Jacobberger, Pierre L. Levesque, Feng Xu, Meng-Yin Wu, Saman Choubak, Patrick Desjardins, Richard Martel, and Michael S. Arnold . Tailoring the Growth Rate and Surface Facet for Synthesis of High-Quality Continuous Graphene Films from CH4 at 750 °C via Chemical Vapor Deposition. The Journal of Physical Chemistry C 2015, 119 (21) , 11516-11523. https://doi.org/10.1021/jp5116355
    16. Jia Zhang, Junjie Li, Zhenlong Wang, Xiaona Wang, Wei Feng, Wei Zheng, Wenwu Cao, and PingAn Hu . Low-Temperature Growth of Large-Area Heteroatom-Doped Graphene Film. Chemistry of Materials 2014, 26 (7) , 2460-2466. https://doi.org/10.1021/cm500086j
    17. Danna Wang, Siqi Ding, Xinyue Wang, Liangsheng Qiu, Hanyao Qin, Yi-Qing Ni, Baoguo Han. Low-cost flash graphene from carbon black to reinforce cementitious composites for carbon footprint reduction. Chemical Engineering Journal 2024, 12 , 156926. https://doi.org/10.1016/j.cej.2024.156926
    18. Wenjin Gao, Guoxiang Zhi, Miao Zhou, Tianchao Niu. Growth of Single Crystalline 2D Materials beyond Graphene on Non‐metallic Substrates. Small 2024, 20 (35) https://doi.org/10.1002/smll.202311317
    19. Zeshu Wang, Jialun Jin, Xiangshun Geng, Zhenze Wang, Guanhua Dun, Jingbo Du, Ken Qin, Jiali Peng, Yuhao Wang, Yichu He, Dan Xie, He Tian, Yi Yang, Tian-Ling Ren. Direct Growth of van der Waals Graphene/MAPbI₃ Heterojunction for Wide Spectral Photodetection. IEEE Electron Device Letters 2024, 45 (6) , 996-999. https://doi.org/10.1109/LED.2024.3390184
    20. Yinshuang Pang, Qingxue Lai, Ningning Chen, Nailu Shen, Hong Chen, Wanying Zhang, Zhi Liu, Luanjie Nie, Jing Zheng. Ultrafine design of carbon whisker array @ hollow carbon sphere anode for superior K-storage. Applied Surface Science 2024, 649 , 159113. https://doi.org/10.1016/j.apsusc.2023.159113
    21. Arisa Sato, Kazuma Gotoh, Satoshi Sato, Yasuhiro Yamada. Toward strategical bottom-up synthesis of carbon materials with exceptionally high pyrrolic-nitrogen content: Development of screening techniques. Carbon 2024, 222 , 118904. https://doi.org/10.1016/j.carbon.2024.118904
    22. Meysam Esmaeilpour, Patrick Bügel, Karin Fink, Felix Studt, Wolfgang Wenzel, Mariana Kozlowska. Multiscale Model of CVD Growth of Graphene on Cu(111) Surface. International Journal of Molecular Sciences 2023, 24 (10) , 8563. https://doi.org/10.3390/ijms24108563
    23. Pratiksha S Mandlik, Abhijit S Landge, Mansi A Ingole, Shivaji V Bhosale. Synthesis of highly superhydrophilic C u 2 O film using dip coating method. Materials Today: Proceedings 2023, 135 https://doi.org/10.1016/j.matpr.2023.04.687
    24. Satyapriya Nath, Adithyan Puthukkudi, Jeebanjyoti Mohapatra, Suresh Bommakanti, Naisa Chandrasekhar, Bishnu P. Biswal. Carbon–Carbon Linked Organic Frameworks: An Explicit Summary and Analysis. Macromolecular Rapid Communications 2023, 44 (8) https://doi.org/10.1002/marc.202200950
    25. Chao Fan, Xiaojing Liang. Metal salts assisted thermoplastic polymer NIPAM in-situ carbonization on porous silica microspheres surface. Journal of Porous Materials 2023, 30 (2) , 541-546. https://doi.org/10.1007/s10934-022-01363-6
    26. Mohamed Bahri, Shushay Hagos Gebre, Mohamed Amin Elaguech, Fekadu Tsegaye Dajan, Marshet Getaye Sendeku, Chaker Tlili, Deqiang Wang. Recent advances in chemical vapour deposition techniques for graphene-based nanoarchitectures: From synthesis to contemporary applications. Coordination Chemistry Reviews 2023, 475 , 214910. https://doi.org/10.1016/j.ccr.2022.214910
    27. Pengfei Huang, Rongtao Zhu, Xinxi Zhang, Wenjun Zhang. Effect of free radicals and electric field on preparation of coal pitch-derived graphene using flash Joule heating. Chemical Engineering Journal 2022, 450 , 137999. https://doi.org/10.1016/j.cej.2022.137999
    28. Benedikt P. Klein, Matthew A. Stoodley, Matthew Edmondson, Luke A. Rochford, Marc Walker, Lars Sattler, Sebastian M. Weber, Gerhard Hilt, Leon B. S. Williams, Tien-Lin Lee, Alex Saywell, Reinhard J. Maurer, David A. Duncan. Using polycyclic aromatic hydrocarbons for graphene growth on Cu(111) under ultra-high vacuum. Applied Physics Letters 2022, 121 (19) https://doi.org/10.1063/5.0122914
    29. Wenqian Yao, He Yang, Qingsong Zhang, Longxian Shi, Jianzhe Sun, Yunlong Guo, Lang Jiang, Bin Wu, Yunqi Liu. Vapor-solid interfacial reaction and polymerization for wafer-scale uniform and ultrathin two-dimensional organic films. Science China Materials 2022, 65 (6) , 1577-1585. https://doi.org/10.1007/s40843-021-1918-x
    30. Xinyi Chen, Yuanyuan Zheng, Xue Han, Yuanyuan Jing, Minzhi Du, Chunhong Lu, Kun Zhang. Low‐dimensional Thermoelectric Materials. 2022, 209-238. https://doi.org/10.1002/9781119550723.ch7
    31. Yiwei Duan, Jun Qian, Jianhang Guo, Sai Jiang, Chengdong Yang, Hengyuan Wang, Qijing Wang, Yi Shi, Yun Li. Patterning 2D Organic Crystalline Semiconductors via Thermally Induced Self‐Assembly. Advanced Electronic Materials 2020, 6 (9) https://doi.org/10.1002/aelm.202000438
    32. Devika Mudusu, Koteeswara Reddy Nandanapalli, Sungwon Lee, Yoon-Bong Hahn. Recent advances in graphene monolayers growth and their biological applications: A review. Advances in Colloid and Interface Science 2020, 283 , 102225. https://doi.org/10.1016/j.cis.2020.102225
    33. Nur Bazilah Thalib, Siti Noor Hidayah Mustapha, Chong Kwok Feng, Rohani Mustapha. Tailoring graphene reinforced thermoset and biothermoset composites. Reviews in Chemical Engineering 2020, 36 (5) , 623-652. https://doi.org/10.1515/revce-2017-0091
    34. Yuting Zou, Tingting Zou, Chen Zhao, Bin Wang, Jun Xing, Zhi Yu, Jinluo Cheng, Wei Xin, Jianjun Yang, Weili Yu, Huanli Dong, Chunlei Guo. A Highly Sensitive Single Crystal Perovskite–Graphene Hybrid Vertical Photodetector. Small 2020, 16 (25) https://doi.org/10.1002/smll.202000733
    35. Jing Zhang, Wen‐Jie Jiang, Shuai Niu, Hantang Zhang, Jie Liu, Haiyang Li, Gui‐Fang Huang, Lang Jiang, Wei‐Qing Huang, Jin‐Song Hu, Wenping Hu. Organic Small Molecule Activates Transition Metal Foam for Efficient Oxygen Evolution Reaction. Advanced Materials 2020, 32 (11) https://doi.org/10.1002/adma.201906015
    36. Chenguang Li, Yongshuai Wang, Huanli Dong, Xiaotao Zhang, Wenping Hu. Two-dimensional conjugated polymers synthesized via on-surface chemistry. Science China Materials 2020, 63 (2) , 172-176. https://doi.org/10.1007/s40843-019-9503-6
    37. Yu Ding, Mengqi Zeng, Lei Fu. Low-temperature synthesis of sp2 carbon nanomaterials. Science Bulletin 2019, 64 (24) , 1817-1829. https://doi.org/10.1016/j.scib.2019.10.009
    38. Majharul Haque Khan, Mina Moradi, Mostapha Dakhchoune, Mojtaba Rezaei, Shiqi Huang, Jing Zhao, Kumar Varoon Agrawal. Hydrogen sieving from intrinsic defects of benzene-derived single-layer graphene. Carbon 2019, 153 , 458-466. https://doi.org/10.1016/j.carbon.2019.07.045
    39. Jie Yang, PingAn Hu, Gui Yu. Design of carbon sources: starting point for chemical vapor deposition of graphene. 2D Materials 2019, 6 (4) , 042003. https://doi.org/10.1088/2053-1583/ab31bd
    40. Xiao-Ye Wang, Xuelin Yao, Klaus Müllen. Polycyclic aromatic hydrocarbons in the graphene era. Science China Chemistry 2019, 62 (9) , 1099-1144. https://doi.org/10.1007/s11426-019-9491-2
    41. Jinyu Liu, Zhengsheng Qin, Haikuo Gao, Huanli Dong, Jia Zhu, Wenping Hu. Vertical Organic Field‐Effect Transistors. Advanced Functional Materials 2019, 29 (17) https://doi.org/10.1002/adfm.201808453
    42. Tianchao Niu, Jialin Zhang, Wei Chen. Surface Engineering of Two‐Dimensional Materials. ChemNanoMat 2019, 5 (1) , 6-23. https://doi.org/10.1002/cnma.201800181
    43. Yin Jia, Xiangchao Chen, Guoxin Zhang, Lin Wang, Cejun Hu, Xiaoming Sun. Topotactic conversion of calcium carbide to highly crystalline few-layer graphene in water. Journal of Materials Chemistry A 2018, 6 (46) , 23638-23643. https://doi.org/10.1039/C8TA08632J
    44. Jinyu Liu, Ke Zhou, Jie Liu, Jia Zhu, Yonggang Zhen, Huanli Dong, Wenping Hu. Organic‐Single‐Crystal Vertical Field‐Effect Transistors and Phototransistors. Advanced Materials 2018, 30 (44) https://doi.org/10.1002/adma.201803655
    45. Datong Wu, Wensheng Tan, Yin Yu, Baozhu Yang, Hongda Li, Yong Kong. A facile avenue to prepare chiral graphene sheets as electrode modification for electrochemical enantiorecognition. Analytica Chimica Acta 2018, 1033 , 58-64. https://doi.org/10.1016/j.aca.2018.06.029
    46. Bum Jun Kim, Tuqeer Nasir, Jae-Young Choi. Direct Growth of Graphene at Low Temperature for Future Device Applications. Journal of the Korean Ceramic Society 2018, 55 (3) , 203-223. https://doi.org/10.4191/kcers.2018.55.3.12
    47. Fangxu Yang, Shanshan Cheng, Xiaotao Zhang, Xiaochen Ren, Rongjin Li, Huanli Dong, Wenping Hu. 2D Organic Materials for Optoelectronic Applications. Advanced Materials 2018, 30 (2) https://doi.org/10.1002/adma.201702415
    48. Tianchao Niu, Jialin Zhang, Wei Chen. Atomic mechanism for the growth of wafer-scale single-crystal graphene: theoretical perspective and scanning tunneling microscopy investigations. 2D Materials 2017, 4 (4) , 042002. https://doi.org/10.1088/2053-1583/aa868f
    49. Xiong Zhou, Fabian Bebensee, Qian Shen, Regine Bebensee, Fang Cheng, Yang He, Hui Su, Wei Chen, Guo Qin Xu, Flemming Besenbacher, Trolle R. Linderoth, Kai Wu. On-surface synthesis approach to preparing one-dimensional organometallic and poly-p-phenylene chains. Materials Chemistry Frontiers 2017, 1 (1) , 119-127. https://doi.org/10.1039/C6QM00142D
    50. M. Lackinger. Surface-assisted Ullmann coupling. Chemical Communications 2017, 53 (56) , 7872-7885. https://doi.org/10.1039/C7CC03402D
    51. Guenther Ruhl, Sebastian Wittmann, Matthias Koenig, Daniel Neumaier. The integration of graphene into microelectronic devices. Beilstein Journal of Nanotechnology 2017, 8 , 1056-1064. https://doi.org/10.3762/bjnano.8.107
    52. Hantang Zhang, Huanli Dong, Yang Li, Wei Jiang, Yonggang Zhen, Lang Jiang, Zhaohui Wang, Wei Chen, Angela Wittmann, Wenping Hu. Novel Air Stable Organic Radical Semiconductor of Dimers of Dithienothiophene, Single Crystals, and Field‐Effect Transistors. Advanced Materials 2016, 28 (34) , 7466-7471. https://doi.org/10.1002/adma.201601502
    53. Andrzej Huczko. Otrzymywanie grafenu .. 2016https://doi.org/10.31338/uw.9788323523147.pp.41-134
    54. Bo Lin, Lan Liu, Wenzhen Chen, Huiming Luo, Xinli Yang. Synthesis and characterization of graphene sheets grafted with linear triblock copolymers based on methacrylate ester. Journal of Thermal Analysis and Calorimetry 2015, 122 (3) , 1503-1514. https://doi.org/10.1007/s10973-015-4968-3
    55. Lina Wen, Zhonghai Song, Jia Ma, Wei Meng, Xue Qin. Low-temperature synthesis of few-layer graphene. Materials Letters 2015, 160 , 255-258. https://doi.org/10.1016/j.matlet.2015.07.145
    56. Yubao Xiong, Min Lai, Jun Li, Haibo Yong, Hongzhi Qian, Chaoqi Xu, Kun Zhong, Shaorong Xiao. Facile synthesis of ultra-smooth and transparent TiO2 thin films with superhydrophilicity. Surface and Coatings Technology 2015, 265 , 78-82. https://doi.org/10.1016/j.surfcoat.2015.01.060
    57. Xiao-Ye Wang, Fang-Dong Zhuang, Xin-Chang Wang, Xiao-Yu Cao, Jie-Yu Wang, Jian Pei. Synthesis, structure and properties of C 3 -symmetric heterosuperbenzene with three BN units. Chemical Communications 2015, 51 (21) , 4368-4371. https://doi.org/10.1039/C4CC10105G
    58. Yue Qi, Xiebo Zhou, Mengxi Liu, Qiucheng Li, Donglin Ma, Yanfeng Zhang, Zhongfan Liu. Controllable synthesis of graphene using novel aromatic 1,3,5-triethynylbenzene molecules on Rh(111). RSC Advances 2015, 5 (93) , 76620-76625. https://doi.org/10.1039/C5RA12848J
    59. Wei Wang, Hailiang Cao, Xufeng Zhou, Zhaoping Liu. Synthesis of Graphene. 2014, 21-64. https://doi.org/10.1201/b17757-3
    60. Tianchao Niu, Jia Lin Zhang, Wei Chen. Low-Dimensional Supramolecular Assemblies on Surfaces. 2014, 98-118. https://doi.org/10.1039/9781782626947-00098
    61. M. J. Jaison, K. Vikram, Tharangattu N. Narayanan, Vijayamohanan K. Pillai. Electric field induced transformation of carbon nanotube to graphene nanoribbons using Nafion as a solid polymer electrolyte. Applied Physics Letters 2014, 104 (15) https://doi.org/10.1063/1.4871867
    62. Cheng-Chi Kuo, Chun-Hu Chen. Graphene thickness-controlled photocatalysis and surface enhanced Raman scattering. Nanoscale 2014, 6 (21) , 12805-12813. https://doi.org/10.1039/C4NR03877K
    63. Yinuo Wu, Pui Ying Choy, Fuk Yee Kwong. Direct intermolecular C–H arylation of unactivated arenes with aryl bromides catalysed by 2-pyridyl carbinol. Org. Biomol. Chem. 2014, 12 (35) , 6820-6823. https://doi.org/10.1039/C4OB01211A
    64. Xiaojun He, Hebao Zhang, Hao Zhang, Xiaojing Li, Nan Xiao, Jieshan Qiu. Direct synthesis of 3D hollow porous graphene balls from coal tar pitch for high performance supercapacitors. J. Mater. Chem. A 2014, 2 (46) , 19633-19640. https://doi.org/10.1039/C4TA03323J

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2013, 135, 24, 9050–9054
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja4031825
    Published May 23, 2013
    Copyright © 2013 American Chemical Society

    Article Views

    6222

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.