ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Spatial Waves in Synthetic Biochemical Networks

View Author Information
LIMMS/CNRS-IIS, The University of Tokyo, Komaba 4-6-2, Meguro-ku, Tokyo 153-8505, Japan
Laboratoire de Photonique et de Nanostructures, CNRS, route de Nozay, 91460 Marcoussis, France
Cite this: J. Am. Chem. Soc. 2013, 135, 39, 14586–14592
Publication Date (Web):June 3, 2013
https://doi.org/10.1021/ja403584p
Copyright © 2013 American Chemical Society

    Article Views

    2674

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (5)»

    Abstract

    Abstract Image

    We report the experimental observation of traveling concentration waves and spirals in a chemical reaction network built from the bottom up. The mechanism of the network is an oscillator of the predator–prey type, and this is the first time that predator–prey waves have been observed in the laboratory. The molecular encoding of the nonequilibrium behavior relies on small DNA oligonucleotides that enforce the network connectivity and three purified enzymes that control the reactivity. Wave velocities in the range 80–400 μm min–1 were measured. A reaction–diffusion model in quantitative agreement with the experiments is proposed. Three fundamental parameters are easy to tune in nucleic acid reaction networks: the topology of the network, the rate constants of the individual reactions, and the diffusion coefficients of the individual species. For this reason, we expect such networks to bring unprecedented opportunities for assaying the principles of spatiotemporal order formation in chemistry.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Movies S1, S2, and S3 (corresponding to Figures 2, 3, and 5 in the main text) as well as movie S4 and Figures S1–S3. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 112 publications.

    1. Jean-Christophe Galas, André Estevez-Torres, Marc Van Der Hofstadt. Long-Lasting and Responsive DNA/Enzyme-Based Programs in Serum-Supplemented Extracellular Media. ACS Synthetic Biology 2022, 11 (2) , 968-976. https://doi.org/10.1021/acssynbio.1c00583
    2. Yuliia Vyborna, Jean-Christophe Galas, André Estevez-Torres. DNA-Controlled Spatiotemporal Patterning of a Cytoskeletal Active Gel. Journal of the American Chemical Society 2021, 143 (48) , 20022-20026. https://doi.org/10.1021/jacs.1c06730
    3. Keisuke Nakamura, Wataru Tanaka, Kei Sada, Ryou Kubota, Takuma Aoyama, Kenji Urayama, Itaru Hamachi. Phototriggered Spatially Controlled Out-of-Equilibrium Patterns of Peptide Nanofibers in a Self-Sorting Double Network Hydrogel. Journal of the American Chemical Society 2021, 143 (46) , 19532-19541. https://doi.org/10.1021/jacs.1c09172
    4. Marc Van Der Hofstadt, Jean-Christophe Galas, André Estevez-Torres. Spatiotemporal Patterning of Living Cells with Extracellular DNA Programs. ACS Nano 2021, 15 (1) , 1741-1752. https://doi.org/10.1021/acsnano.0c09422
    5. Pei-Qiang Ma, Qing Huang, Hua-Dong Li, Bin-Cheng Yin, Bang-Ce Ye. Multimachine Communication Network That Mimics the Adaptive Immune Response. Journal of the American Chemical Society 2020, 142 (8) , 3851-3861. https://doi.org/10.1021/jacs.9b11545
    6. Georg Urtel, Marc Van Der Hofstadt, Jean-Christophe Galas, André Estevez-Torres. rEXPAR: An Isothermal Amplification Scheme That Is Robust to Autocatalytic Parasites. Biochemistry 2019, 58 (23) , 2675-2681. https://doi.org/10.1021/acs.biochem.9b00063
    7. Siyuan S. Wang, Andrew D. Ellington. Pattern Generation with Nucleic Acid Chemical Reaction Networks. Chemical Reviews 2019, 119 (10) , 6370-6383. https://doi.org/10.1021/acs.chemrev.8b00625
    8. Tamara Kosikova, Douglas Philp. Two Synthetic Replicators Compete To Process a Dynamic Reagent Pool. Journal of the American Chemical Society 2019, 141 (7) , 3059-3072. https://doi.org/10.1021/jacs.8b12077
    9. Zhixin Zhou, Liang Yue, Shan Wang, Jean-Marie Lehn, Itamar Willner. DNA-Based Multiconstituent Dynamic Networks: Hierarchical Adaptive Control over the Composition and Cooperative Catalytic Functions of the Systems. Journal of the American Chemical Society 2018, 140 (38) , 12077-12089. https://doi.org/10.1021/jacs.8b06546
    10. Wouter Engelen, Sjors P. W. Wijnands, Maarten Merkx. Accelerating DNA-Based Computing on a Supramolecular Polymer. Journal of the American Chemical Society 2018, 140 (30) , 9758-9767. https://doi.org/10.1021/jacs.8b06146
    11. Craig C. Robertson, Harold W. Mackenzie, Tamara Kosikova, Douglas Philp. An Environmentally Responsive Reciprocal Replicating Network. Journal of the American Chemical Society 2018, 140 (22) , 6832-6841. https://doi.org/10.1021/jacs.7b13576
    12. Ilaria Bottero, Jürgen Huck, Tamara Kosikova, and Douglas Philp . A Synthetic Replicator Drives a Propagating Reaction–Diffusion Front. Journal of the American Chemical Society 2016, 138 (21) , 6723-6726. https://doi.org/10.1021/jacs.6b03372
    13. Bruno C. Batista and Oliver Steinbock . Growing Inorganic Membranes in Microfluidic Devices: Chemical Gardens Reduced to Linear Walls. The Journal of Physical Chemistry C 2015, 119 (48) , 27045-27052. https://doi.org/10.1021/acs.jpcc.5b08813
    14. Albert S. Y. Wong, Sjoerd G. J. Postma, Ilia N. Vialshin, Sergey N. Semenov, and Wilhelm T. S. Huck . Influence of Molecular Structure on the Properties of Out-of-Equilibrium Oscillating Enzymatic Reaction Networks. Journal of the American Chemical Society 2015, 137 (38) , 12415-12420. https://doi.org/10.1021/jacs.5b08129
    15. Hendrik W. H. van Roekel, Lenny H. H. Meijer, Saeed Masroor, Zandra C. Félix Garza, André Estévez-Torres, Yannick Rondelez, Antonios Zagaris, Mark A. Peletier, Peter A. J. Hilbers, and Tom F. A. de Greef . Automated Design of Programmable Enzyme-Driven DNA Circuits. ACS Synthetic Biology 2015, 4 (6) , 735-745. https://doi.org/10.1021/sb500300d
    16. A. Zambrano, A. S. Zadorin, Y. Rondelez, A. Estévez-Torres, and J.-C. Galas . Pursuit-and-Evasion Reaction-Diffusion Waves in Microreactors with Tailored Geometry. The Journal of Physical Chemistry B 2015, 119 (17) , 5349-5355. https://doi.org/10.1021/jp509474w
    17. Thomas Heuser, Ann-Kathrin Steppert, Catalina Molano Lopez, Baolei Zhu, and Andreas Walther . Generic Concept to Program the Time Domain of Self-Assemblies with a Self-Regulation Mechanism. Nano Letters 2015, 15 (4) , 2213-2219. https://doi.org/10.1021/nl5039506
    18. Dan Bracha, Eyal Karzbrun, Shirley S. Daube, and Roy H. Bar-Ziv . Emergent Properties of Dense DNA Phases toward Artificial Biosystems on a Surface. Accounts of Chemical Research 2014, 47 (6) , 1912-1921. https://doi.org/10.1021/ar5001428
    19. Vinay Ambekar Ranganath, Indrajit Maity. Artificial Homeostasis Systems Based on Feedback Reaction Networks: Design Principles and Future Promises. Angewandte Chemie 2024, 34 https://doi.org/10.1002/ange.202318134
    20. Vinay Ambekar Ranganath, Indrajit Maity. Artificial Homeostasis Systems Based on Feedback Reaction Networks: Design Principles and Future Promises. Angewandte Chemie International Edition 2024, 34 https://doi.org/10.1002/anie.202318134
    21. Ryou Kubota, Itaru Hamachi. Cell‐Like Synthetic Supramolecular Soft Materials Realized in Multicomponent, Non‐/Out‐of‐Equilibrium Dynamic Systems. Advanced Science 2024, 11 (8) https://doi.org/10.1002/advs.202306830
    22. Hua‐Dong Li, Pei‐Qiang Ma, Jin‐Yu Wang, Bin‐Cheng Yin, Bang‐Ce Ye. A DNA Nanodevice‐Based Platform with Diverse Capabilities. Small 2023, 19 (37) https://doi.org/10.1002/smll.202302301
    23. Anna C. Jäkel, Michael Heymann, Friedrich C. Simmel. Multiscale Biofabrication: Integrating Additive Manufacturing with DNA‐Programmable Self‐Assembly. Advanced Biology 2023, 7 (3) https://doi.org/10.1002/adbi.202200195
    24. Matthew R. Lakin, Carlo Spaccasassi, Andrew Phillips. Computational Design of Nucleic Acid Circuits: Past, Present, and Future. 2023, 311-346. https://doi.org/10.1007/978-981-19-9891-1_18
    25. Guillaume Gines, Anthony J. Genot, Yannick Rondelez. Parallel Computations with DNA-Encoded Chemical Reaction Networks. 2023, 349-369. https://doi.org/10.1007/978-981-19-9891-1_19
    26. Friedrich C. Simmel. DNA Nanotechnology Out of Equilibrium. 2023, 17-29. https://doi.org/10.1007/978-981-19-9891-1_2
    27. Masami Hagiya, Taiga Hongu. Models of Gellular Automata. 2023, 397-410. https://doi.org/10.1007/978-981-19-9891-1_21
    28. J. Ritchie. Turing instability and pattern formation on directed networks. Communications in Nonlinear Science and Numerical Simulation 2023, 116 , 106892. https://doi.org/10.1016/j.cnsns.2022.106892
    29. Adrian Zambrano, Giorgio Fracasso, Mengfei Gao, Martina Ugrinic, Dishi Wang, Dietmar Appelhans, Andrew deMello, T-Y. Dora Tang. Programmable synthetic cell networks regulated by tuneable reaction rates. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-31471-5
    30. S. Okumura, G. Gines, N. Lobato-Dauzier, A. Baccouche, R. Deteix, T. Fujii, Y. Rondelez, A. J. Genot. Nonlinear decision-making with enzymatic neural networks. Nature 2022, 610 (7932) , 496-501. https://doi.org/10.1038/s41586-022-05218-7
    31. Jing Gong, Nozomi Tsumura, Yusuke Sato, Masahiro Takinoue. Computational DNA Droplets Recognizing miRNA Sequence Inputs Based on Liquid–Liquid Phase Separation. Advanced Functional Materials 2022, 32 (37) https://doi.org/10.1002/adfm.202202322
    32. Jean-Yves Runser, Miryam Criado-Gonzalez, Fatima Fneich, Morgane Rabineau, Bernard Senger, Pierre Weiss, Loïc Jierry, Pierre Schaaf. Non-monotonous enzyme-assisted self-assembly profiles resulting from reaction-diffusion processes in host gels. Journal of Colloid and Interface Science 2022, 620 , 234-241. https://doi.org/10.1016/j.jcis.2022.03.150
    33. Adrien Fauste-Gay, Nicolas Lobato-Dauzier, Alexandre Baccouche, Yannick Rondelez, Soo Hyeon Kim, Teruo Fujii, Nathanael Aubert-Kato, Anthony J. Genot. Toggling Between Two Limit Cycles in a Molecular Ecosystem. New Generation Computing 2022, 40 (2) , 703-721. https://doi.org/10.1007/s00354-022-00178-y
    34. Xi Chen, Yankai Xu, Chao Zhou, Kai Lou, Yixin Peng, H. P. Zhang, Wei Wang. Unraveling the physiochemical nature of colloidal motion waves among silver colloids. Science Advances 2022, 8 (21) https://doi.org/10.1126/sciadv.abn9130
    35. Arpita Paikar, Alexander I. Novichkov, Anton I. Hanopolskyi, Viktoryia A. Smaliak, Xiaomeng Sui, Nir Kampf, Ekaterina V. Skorb, Sergey N. Semenov. Spatiotemporal Regulation of Hydrogel Actuators by Autocatalytic Reaction Networks. Advanced Materials 2022, 34 (13) https://doi.org/10.1002/adma.202106816
    36. Shiho Inagaki, Nathanael Aubert-Kato. Controlling the Synchronization of Molecular Oscillators through Indirect Coupling. Micromachines 2022, 13 (2) , 245. https://doi.org/10.3390/mi13020245
    37. Takashi Nakakuki. Design Theory of Molecular Robots. 2022, 13-58. https://doi.org/10.1007/978-981-19-3987-7_2
    38. Clara del Junco, André Estevez-Torres, Ananyo Maitra. Front speed and pattern selection of a propagating chemical front in an active fluid. Physical Review E 2022, 105 (1) https://doi.org/10.1103/PhysRevE.105.014602
    39. Joshua Ritchie. Turing Instability and Pattern Formation on Directed Networks. SSRN Electronic Journal 2022, 237 https://doi.org/10.2139/ssrn.4147447
    40. Anis Senoussi, Jean-Christophe Galas, André Estevez-Torres. Programmed mechano-chemical coupling in reaction-diffusion active matter. Science Advances 2021, 7 (51) https://doi.org/10.1126/sciadv.abi9865
    41. Lorenzo Olivi, Mareike Berger, Ramon N. P. Creyghton, Nicola De Franceschi, Cees Dekker, Bela M. Mulder, Nico J. Claassens, Pieter Rein ten Wolde, John van der Oost. Towards a synthetic cell cycle. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-24772-8
    42. H. Dehne, A. Reitenbach, A. R. Bausch. Reversible and spatiotemporal control of colloidal structure formation. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-27016-x
    43. Lanlan Chen, Wanzhen Chen, Guo Liu, Jingying Li, Chunhua Lu, Juan Li, Weihong Tan, Huanghao Yang. Nucleic acid-based molecular computation heads towards cellular applications. Chemical Society Reviews 2021, 50 (22) , 12551-12575. https://doi.org/10.1039/D0CS01508C
    44. Keita Abe, Satoshi Murata, Ibuki Kawamata. Cascaded pattern formation in hydrogel medium using the polymerisation approach. Soft Matter 2021, 17 (25) , 6160-6167. https://doi.org/10.1039/D1SM00296A
    45. Anis Senoussi, Yuliia Vyborna, Hélène Berthoumieux, Jean‐Christophe Galas, André Estevez‐Torres. Learning from Embryo Development to Engineer Self‐organizing Materials. 2021, 21-60. https://doi.org/10.1002/9783527821990.ch2
    46. Annette F. Taylor. From Clocks to Synchrony: The Design of Bioinspired Self‐Regulation in Chemical Systems. 2021, 61-90. https://doi.org/10.1002/9783527821990.ch3
    47. Marc Van Der Hofstadt, Guillaume Gines, Jean‐Christophe Galas, André Estevez‐Torres. Programming Spatiotemporal Patterns with DNA‐Based Circuits. 2021, 185-212. https://doi.org/10.1002/9783527825424.ch10
    48. Robert A. Van Gorder. A theory of pattern formation for reaction–diffusion systems on temporal networks. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 2021, 477 (2247) https://doi.org/10.1098/rspa.2020.0753
    49. Aleksandr A. Pogodaev, Tijs T. Lap, Wilhelm T. S. Huck. The Dynamics of an Oscillating Enzymatic Reaction Network is Crucially Determined by Side Reactions. ChemSystemsChem 2021, 3 (1) https://doi.org/10.1002/syst.202000033
    50. Mohammad Amin Boojari. Investigating the Evolution and Development of Biological Systems from the Perspective of Thermo-Kinetics and Systems Theory. Origins of Life and Evolution of Biospheres 2020, 50 (3-4) , 121-143. https://doi.org/10.1007/s11084-020-09601-0
    51. Hedi Sellami, Leo Cazenille, Teruo Fujii, Masami Hagiya, Nathanael Aubert-Kato, Anthony J. Genot. Accelerating the Finite-Element Method for Reaction-Diffusion Simulations on GPUs with CUDA. Micromachines 2020, 11 (9) , 881. https://doi.org/10.3390/mi11090881
    52. Nathanael Aubert-Kato, Leo Cazenille. Designing Dynamical Molecular Systems with the PEN Toolbox. New Generation Computing 2020, 38 (2) , 341-366. https://doi.org/10.1007/s00354-020-00089-w
    53. Keita Abe, Satoshi Murata. Programming Methods for DNA-Based Reaction–Diffusion Systems. New Generation Computing 2020, 38 (2) , 379-393. https://doi.org/10.1007/s00354-020-00094-z
    54. Sifang Chen, Georg Seelig. Programmable patterns in a DNA-based reaction–diffusion system. Soft Matter 2020, 16 (14) , 3555-3563. https://doi.org/10.1039/C9SM02413A
    55. Oliver R. Maguire, Albert S. Y. Wong, Jan Harm Westerdiep, Wilhelm T. S. Huck. Early warning signals in chemical reaction networks. Chemical Communications 2020, 56 (26) , 3725-3728. https://doi.org/10.1039/D0CC01010C
    56. Oliver R. Maguire, Albert S. Y. Wong, Mathieu G. Baltussen, Peer van Duppen, Aleksandr A. Pogodaev, Wilhelm T. S. Huck. Dynamic Environments as a Tool to Preserve Desired Output in a Chemical Reaction Network. Chemistry – A European Journal 2020, 26 (7) , 1676-1682. https://doi.org/10.1002/chem.201904725
    57. Francesco Avanzini, Gianmaria Falasco, Massimiliano Esposito. Thermodynamics of chemical waves. The Journal of Chemical Physics 2019, 151 (23) https://doi.org/10.1063/1.5126528
    58. Yunbin Zhao, Yuan Liu, Xuedong Zheng, Bin Wang, Hui Lv, Shihua Zhou, Qiang Zhang, Xiaopeng Wei. Half adder and half subtractor logic gates based on nicking enzymes. Molecular Systems Design & Engineering 2019, 4 (6) , 1103-1113. https://doi.org/10.1039/C9ME00090A
    59. Leo Cazenille, Nicolas Bredeche, Nathanael Aubert-Kato. Exploring Self-Assembling Behaviors in a Swarm of Bio-micro-robots using Surrogate-Assisted MAP-Elites. 2019, 238-246. https://doi.org/10.1109/SSCI44817.2019.9003047
    60. Georg Urtel, André Estevez-Torres, Jean-Christophe Galas. DNA-based long-lived reaction–diffusion patterning in a host hydrogel. Soft Matter 2019, 15 (45) , 9343-9351. https://doi.org/10.1039/C9SM01786K
    61. Tamás Bánsági, Annette Taylor. Modelling Bacteria-Inspired Dynamics with Networks of Interacting Chemicals. Life 2019, 9 (3) , 63. https://doi.org/10.3390/life9030063
    62. Bianca T. Kitagaki, Maria R. Pinto, Adriana C. Queiroz, Márcia C. Breitkreitz, Federico Rossi, Raphael Nagao. Multivariate statistical analysis of chemical and electrochemical oscillators for an accurate frequency selection. Physical Chemistry Chemical Physics 2019, 21 (30) , 16423-16434. https://doi.org/10.1039/C9CP01998G
    63. Liang Yue, Shan Wang, Itamar Willner. Triggered reversible substitution of adaptive constitutional dynamic networks dictates programmed catalytic functions. Science Advances 2019, 5 (5) https://doi.org/10.1126/sciadv.aav5564
    64. Takuto Hosoya, Ibuki Kawamata, Shin-ichiro M. Nomura, Satoshi Murata. Pattern Formation on Discrete Gel Matrix Based on DNA Computing. New Generation Computing 2019, 37 (1) , 97-111. https://doi.org/10.1007/s00354-018-0047-1
    65. Neil Dalchau, Gregory Szép, Rosa Hernansaiz-Ballesteros, Chris P. Barnes, Luca Cardelli, Andrew Phillips, Attila Csikász-Nagy. Computing with biological switches and clocks. Natural Computing 2018, 17 (4) , 761-779. https://doi.org/10.1007/s11047-018-9686-x
    66. Ievgen Kurylo, Guillaume Gines, Yannick Rondelez, Yannick Coffinier, Alexis Vlandas. Spatiotemporal control of DNA-based chemical reaction network via electrochemical activation in microfluidics. Scientific Reports 2018, 8 (1) https://doi.org/10.1038/s41598-018-24659-7
    67. Simon Kretschmer, Leon Harrington, Petra Schwille. Reverse and forward engineering of protein pattern formation. Philosophical Transactions of the Royal Society B: Biological Sciences 2018, 373 (1747) , 20170104. https://doi.org/10.1098/rstb.2017.0104
    68. Thanapop Rodjanapanyakul, Fumi Takabatake, Keita Abe, Ibuki Kawamata, Shinichiro M. Nomura, Satoshi Murata. Diffusion modulation of DNA by toehold exchange. Physical Review E 2018, 97 (5) https://doi.org/10.1103/PhysRevE.97.052617
    69. Marianne Bauer, Erwin Frey. Multiple scales in metapopulations of public goods producers. Physical Review E 2018, 97 (4) https://doi.org/10.1103/PhysRevE.97.042307
    70. Jocelyn Y. Kishi, Thomas E. Schaus, Nikhil Gopalkrishnan, Feng Xuan, Peng Yin. Programmable autonomous synthesis of single-stranded DNA. Nature Chemistry 2018, 10 (2) , 155-164. https://doi.org/10.1038/nchem.2872
    71. Burcu Özay, Cara M. Robertus, Jackson L. Negri, Stephanie E. McCalla. First characterization of a biphasic, switch-like DNA amplification. The Analyst 2018, 143 (8) , 1820-1828. https://doi.org/10.1039/C8AN00130H
    72. Lenny H. H. Meijer, Alex Joesaar, Erik Steur, Wouter Engelen, Rutger A. van Santen, Maarten Merkx, Tom F. A. de Greef. Hierarchical control of enzymatic actuators using DNA-based switchable memories. Nature Communications 2017, 8 (1) https://doi.org/10.1038/s41467-017-01127-w
    73. Friedrich C. Simmel, Rebecca Schulman. Self-organizing materials built with DNA. MRS Bulletin 2017, 42 (12) , 913-919. https://doi.org/10.1557/mrs.2017.271
    74. Anton S. Zadorin, Yannick Rondelez, Guillaume Gines, Vadim Dilhas, Georg Urtel, Adrian Zambrano, Jean-Christophe Galas, André Estevez-Torres. Synthesis and materialization of a reaction–diffusion French flag pattern. Nature Chemistry 2017, 9 (10) , 990-996. https://doi.org/10.1038/nchem.2770
    75. Fumi Takabatake, Ibuki Kawamata, Ken Sugawara, Satoshi Murata. Discretization of Chemical Reactions in a Periodic Cellular Space. New Generation Computing 2017, 35 (3) , 213-223. https://doi.org/10.1007/s00354-017-0009-z
    76. Nathanael Aubert-Kato, Charles Fosseprez, Guillaume Gines, Ibuki Kawamata, Huy Dinh, Leo Cazenille, Andre Estevez-Tores, Masami Hagiya, Yannick Rondelez, Nicolas Bredeche. Evolutionary optimization of self-assembly in a swarm of bio-micro-robots. 2017, 59-66. https://doi.org/10.1145/3071178.3071289
    77. Thomas Heuser, Rémi Merindol, Sebastian Loescher, Aileen Klaus, Andreas Walther. Photonic Devices Out of Equilibrium: Transient Memory, Signal Propagation, and Sensing. Advanced Materials 2017, 29 (17) https://doi.org/10.1002/adma.201606842
    78. G. Gines, A. S. Zadorin, J.-C. Galas, T. Fujii, A. Estevez-Torres, Y. Rondelez. Microscopic agents programmed by DNA circuits. Nature Nanotechnology 2017, 12 (4) , 351-359. https://doi.org/10.1038/nnano.2016.299
    79. Sjoerd G. J. Postma, Ilia N. Vialshin, Casper Y. Gerritsen, Min Bao, Wilhelm T. S. Huck. Preprogramming Complex Hydrogel Responses using Enzymatic Reaction Networks. Angewandte Chemie 2017, 129 (7) , 1820-1824. https://doi.org/10.1002/ange.201610875
    80. Sjoerd G. J. Postma, Ilia N. Vialshin, Casper Y. Gerritsen, Min Bao, Wilhelm T. S. Huck. Preprogramming Complex Hydrogel Responses using Enzymatic Reaction Networks. Angewandte Chemie International Edition 2017, 56 (7) , 1794-1798. https://doi.org/10.1002/anie.201610875
    81. Georg C. Urtel, Thomas Rind, Dieter Braun. Reversible Switching of Cooperating Replicators. Physical Review Letters 2017, 118 (7) https://doi.org/10.1103/PhysRevLett.118.078102
    82. Rémi Merindol, Andreas Walther. Materials learning from life: concepts for active, adaptive and autonomous molecular systems. Chemical Society Reviews 2017, 46 (18) , 5588-5619. https://doi.org/10.1039/C6CS00738D
    83. Gonen Ashkenasy, Thomas M. Hermans, Sijbren Otto, Annette F. Taylor. Systems chemistry. Chemical Society Reviews 2017, 46 (9) , 2543-2554. https://doi.org/10.1039/C7CS00117G
    84. Tamara Kosikova, Douglas Philp. Exploring the emergence of complexity using synthetic replicators. Chemical Society Reviews 2017, 46 (23) , 7274-7305. https://doi.org/10.1039/C7CS00123A
    85. John Zenk, Dominic Scalise, Kaiyuan Wang, Phillip Dorsey, Joshua Fern, Ariana Cruz, Rebecca Schulman. Stable DNA-based reaction–diffusion patterns. RSC Advances 2017, 7 (29) , 18032-18040. https://doi.org/10.1039/C7RA00824D
    86. Kevin Montagne, Guillaume Gines, Teruo Fujii, Yannick Rondelez. Boosting functionality of synthetic DNA circuits with tailored deactivation. Nature Communications 2016, 7 (1) https://doi.org/10.1038/ncomms13474
    87. Ibuki Kawamata, Takuto Hosoya, Fumi Takabatake, Ken Sugawara, Shin-Ichiro Nomura, Teijiro Isokawa, Ferdinand Peper, Masami Hagiya, Satoshi Murata. Pattern Formation and Computation by Autonomous Chemical Reaction Diffusion Model Inspired by Cellular Automata. 2016, 215-221. https://doi.org/10.1109/CANDAR.2016.0046
    88. Quang Huy Dinh, Nathanael Aubert, Nasimul Noman, Hitoshi Iba, Yannic Rondelez. Evolving GRN‐Inspired in VITRO oscillatory systems. 2016, 269-297. https://doi.org/10.1002/9781119079453.ch11
    89. Elizabeth Jee, Tamás Bánsági, Annette F. Taylor, John A. Pojman. Temporal Control of Gelation and Polymerization Fronts Driven by an Autocatalytic Enzyme Reaction. Angewandte Chemie 2016, 128 (6) , 2167-2171. https://doi.org/10.1002/ange.201510604
    90. Elizabeth Jee, Tamás Bánsági, Annette F. Taylor, John A. Pojman. Temporal Control of Gelation and Polymerization Fronts Driven by an Autocatalytic Enzyme Reaction. Angewandte Chemie International Edition 2016, 55 (6) , 2127-2131. https://doi.org/10.1002/anie.201510604
    91. C. Jung, P. B. Allen, A. D. Ellington. A stochastic DNA walker that traverses a microparticle surface. Nature Nanotechnology 2016, 11 (2) , 157-163. https://doi.org/10.1038/nnano.2015.246
    92. Ibuki Kawamata, Satoru Yoshizawa, Fumi Takabatake, Ken Sugawara, Satoshi Murata. Discrete DNA Reaction-Diffusion Model for Implementing Simple Cellular Automaton. 2016, 168-181. https://doi.org/10.1007/978-3-319-41312-9_14
    93. G. Perret, P. Ginet, M.C. Tarhan, A. Baccouche, T. Lacornerie, M. Kumemura, L. Jalabert, F. Cleri, E.F. Lartigau, B.J. Kim, S.L. Karsten, H. Fujita, Y. Rondelez, T. Fujii, D. Collard. Nano systems and devices for applications in biology and nanotechnology. Solid-State Electronics 2016, 115 , 66-73. https://doi.org/10.1016/j.sse.2015.08.019
    94. Boon Chin Heng, Dominique Aubel, Martin Fussenegger. Prosthetic gene networks as an alternative to standard pharmacotherapies for metabolic disorders. Current Opinion in Biotechnology 2015, 35 , 37-45. https://doi.org/10.1016/j.copbio.2015.01.010
    95. André Estevez-Torres. The expressionist movement. Nature Physics 2015, 11 (12) , 992-993. https://doi.org/10.1038/nphys3496
    96. Da Han, Cuichen Wu, Mingxu You, Tao Zhang, Shuo Wan, Tao Chen, Liping Qiu, Zheng Zheng, Hao Liang, Weihong Tan. A cascade reaction network mimicking the basic functional steps of adaptive immune response. Nature Chemistry 2015, 7 (10) , 835-841. https://doi.org/10.1038/nchem.2325
    97. Huy Q. Dinh, Nathanael Aubert, Nasimul Noman, Teruo Fujii, Yannick Rondelez, Hitoshi Iba. An Effective Method for Evolving Reaction Networks in Synthetic Biochemical Systems. IEEE Transactions on Evolutionary Computation 2015, 19 (3) , 374-386. https://doi.org/10.1109/TEVC.2014.2326863
    98. Hua Ke, Zhihui Zhang, Oliver Steinbock. Scroll waves pinned to moving heterogeneities. Physical Review E 2015, 91 (3) https://doi.org/10.1103/PhysRevE.91.032930
    99. Anton S. Zadorin, Yannick Rondelez, Jean-Christophe Galas, André Estevez-Torres. Synthesis of Programmable Reaction-Diffusion Fronts Using DNA Catalyzers. Physical Review Letters 2015, 114 (6) https://doi.org/10.1103/PhysRevLett.114.068301
    100. Annette F. Taylor, Mark R. Tinsley, Kenneth Showalter. Insights into collective cell behaviour from populations of coupled chemical oscillators. Physical Chemistry Chemical Physics 2015, 17 (31) , 20047-20055. https://doi.org/10.1039/C5CP01964H
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect