Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Structural Transitions in Nanoparticle Assemblies Governed by Competing Nanoscale Forces

View Author Information
Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
§ Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, United States
The Institute of Biomaterials and Biomedical Engineering, University of Toronto, 4 Taddle Creek Road, Toronto, Ontario M5S 3G9, Canada
Cite this: J. Am. Chem. Soc. 2013, 135, 28, 10262–10265
Publication Date (Web):June 27, 2013
https://doi.org/10.1021/ja404341r
Copyright © 2013 American Chemical Society

    Article Views

    4072

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Assembly of nanoscale materials from nanoparticle (NP) building blocks relies on our understanding of multiple nanoscale forces acting between NPs. These forces may compete with each other and yield distinct stimuli-responsive self-assembled nanostructures. Here, we report structural transitions between linear chains and globular assemblies of charged, polymer-stabilized gold NPs, which are governed by the competition of repulsive electrostatic forces and attractive poor solvency/hydrophobic forces. We propose a simple quantitative model and show that these transitions can be controlled by the quality of solvent, addition of a salt, and variation of the molecular weight of the polymer ligands.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Synthesis of gold NPs, description of self-assembly experiments, tests of the reversibility of the structural transitions, the description of interfacial tension measurements and calculations of the change of total energy of the system. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 101 publications.

    1. Carlos L. Bassani, Greg van Anders, Uri Banin, Dmitry Baranov, Qian Chen, Marjolein Dijkstra, Michael S. Dimitriyev, Efi Efrati, Jordi Faraudo, Oleg Gang, Nicola Gaston, Ramin Golestanian, G. Ivan Guerrero-Garcia, Michael Gruenwald, Amir Haji-Akbari, Maria Ibáñez, Matthias Karg, Tobias Kraus, Byeongdu Lee, Reid C. Van Lehn, Robert J. Macfarlane, Bortolo M. Mognetti, Arash Nikoubashman, Saeed Osat, Oleg V. Prezhdo, Grant M. Rotskoff, Leonor Saiz, An-Chang Shi, Sara Skrabalak, Ivan I. Smalyukh, Mario Tagliazucchi, Dmitri V. Talapin, Alexei V. Tkachenko, Sergei Tretiak, David Vaknin, Asaph Widmer-Cooper, Gerard C. L. Wong, Xingchen Ye, Shan Zhou, Eran Rabani, Michael Engel, Alex Travesset. Nanocrystal Assemblies: Current Advances and Open Problems. ACS Nano 2024, 18 (23) , 14791-14840. https://doi.org/10.1021/acsnano.3c10201
    2. Shayan Vazirieh Lenjani, Cheng-Wu Li, Sezer Seçkin, Tobias A. F. König, Holger Merlitz, Jens-Uwe Sommer, Christian Rossner. Kinetically Controlled Site-Specific Self-assembly of Hairy Colloids. Langmuir 2024, 40 (5) , 2487-2499. https://doi.org/10.1021/acs.langmuir.3c02207
    3. Sumit Roy, Radha Krishna Kashyap, Pramod P. Pillai. Thermoplasmonics Enable the Coupling of Light into the Solvent-Mediated Self-Assembly of Gold Nanoparticles. The Journal of Physical Chemistry C 2023, 127 (21) , 10355-10365. https://doi.org/10.1021/acs.jpcc.3c01316
    4. Zhicheng Jin, Justin Yeung, Jiajing Zhou, Maurice Retout, Wonjun Yim, Pavla Fajtová, Bryan Gosselin, Ivan Jabin, Gilles Bruylants, Hedi Mattoussi, Anthony J. O’Donoghue, Jesse V. Jokerst. Empirical Optimization of Peptide Sequence and Nanoparticle Colloidal Stability: The Impact of Surface Ligands and Implications for Colorimetric Sensing. ACS Applied Materials & Interfaces 2023, 15 (16) , 20483-20494. https://doi.org/10.1021/acsami.3c00862
    5. Hyeong Jin Kim, Wenjie Wang, Wei Bu, Surya K. Mallapragada, David Vaknin. Lamellar and Hexagonal Assemblies of PEG-Grafted Silver Nanoparticles: Implications for Plasmonics and Photonics. ACS Applied Nano Materials 2022, 5 (12) , 17556-17564. https://doi.org/10.1021/acsanm.2c03042
    6. Lijuan Gao, Duo Xu, Haixiao Wan, Xuanyu Zhang, Xiaobin Dai, Li-Tang Yan. Understanding Interfacial Nanoparticle Organization through Simulation and Theory: A Review. Langmuir 2022, 38 (37) , 11137-11148. https://doi.org/10.1021/acs.langmuir.2c01192
    7. Shayan Vazirieh Lenjani, Martin Mayer, Ruosong Wang, Yue Dong, Andreas Fery, Jens-Uwe Sommer, Christian Rossner. Importance of Electrostatic Forces in Supracolloidal Self-Assembly of Polymer-Functionalized Gold Nanorods. The Journal of Physical Chemistry C 2022, 126 (32) , 14017-14025. https://doi.org/10.1021/acs.jpcc.2c04930
    8. Ning-Ning Zhang, Xiaoxue Shen, Kun Liu, Zhihong Nie, Eugenia Kumacheva. Polymer-Tethered Nanoparticles: From Surface Engineering to Directional Self-Assembly. Accounts of Chemical Research 2022, 55 (11) , 1503-1513. https://doi.org/10.1021/acs.accounts.2c00066
    9. Xuan Yue, Jinlan Li, Nan Yan, Wei Jiang. Hierarchical Colloidosomes and Superlattices via Confined Assembly of Polymer-Tethered Inorganic Nanoparticles. The Journal of Physical Chemistry C 2022, 126 (5) , 2756-2762. https://doi.org/10.1021/acs.jpcc.1c08769
    10. Hyeong Jin Kim, Wenjie Wang, Honghu Zhang, Guillaume Freychet, Benjamin M. Ocko, Alex Travesset, Surya K. Mallapragada, David Vaknin. Effect of Polymer Chain Length on the Superlattice Assembly of Functionalized Gold Nanoparticles. Langmuir 2021, 37 (33) , 10143-10149. https://doi.org/10.1021/acs.langmuir.1c01547
    11. Hanyi Duan, Qiang Luo, Zichao Wei, Yao Lin, Jie He. Symmetry-Broken Patches on Gold Nanoparticles through Deficient Ligand Exchange. ACS Macro Letters 2021, 10 (7) , 786-790. https://doi.org/10.1021/acsmacrolett.1c00252
    12. Arin Bhakat, Ayan Pal, Raveesh Siddaramaiah, Arun Chattopadhyay. Complexation-Based Super Crystalline Assembly of Zinc Oxide Quantum Dots for Sensitive Carbon Dioxide Gas Sensing. The Journal of Physical Chemistry C 2021, 125 (22) , 12316-12323. https://doi.org/10.1021/acs.jpcc.1c02104
    13. Hyeong Jin Kim, Wenjie Wang, Surya Mallapragada, Alex Travesset, David Vaknin. Nanoparticle Superlattices with Negative Thermal Expansion (NTE) Coefficients. The Journal of Physical Chemistry C 2021, 125 (18) , 10090-10095. https://doi.org/10.1021/acs.jpcc.1c01354
    14. Priyanka Dey, Kristofer J. Thurecht, Peter M. Fredericks, Idriss Blakey. Stepwise Like Supramolecular Polymerization of Plasmonic Nanoparticle Building Blocks through Complementary Interactions. Macromolecules 2020, 53 (17) , 7469-7478. https://doi.org/10.1021/acs.macromol.0c01149
    15. Sourav Chakraborty, Chandan Kumar Tiwari, Yizhan Wang, Gal Gan-Or, Eyal Gadot, Ira A. Weinstock. Ligand-Regulated Uptake of Dipolar-Aromatic Guests by Hydrophobically Assembled Suprasphere Hosts. Journal of the American Chemical Society 2019, 141 (36) , 14078-14082. https://doi.org/10.1021/jacs.9b07284
    16. Stefan Merkens, Mohammad Vakili, Ana Sánchez-Iglesias, Lucio Litti, Yunyun Gao, Paul V. Gwozdz, Lewis Sharpnack, Robert H. Blick, Luis M. Liz-Marzán, Marek Grzelczak, Martin Trebbin. Time-Resolved Analysis of the Structural Dynamics of Assembling Gold Nanoparticles. ACS Nano 2019, 13 (6) , 6596-6604. https://doi.org/10.1021/acsnano.9b00575
    17. Huachen Tao, Elizabeth Galati, Eugenia Kumacheva. Temperature-Responsive Self-Assembly of Nanoparticles Grafted with UCST Polymer Ligands. Macromolecules 2018, 51 (15) , 6021-6027. https://doi.org/10.1021/acs.macromol.8b01058
    18. Kyungtae Kim, Sukwoo Jang, Jonghyuk Jeon, Donghwi Kang, Byeong-Hyeok Sohn. Fluorescent Supracolloidal Chains of Patchy Micelles of Diblock Copolymers Functionalized with Fluorophores. Langmuir 2018, 34 (15) , 4634-4639. https://doi.org/10.1021/acs.langmuir.8b00375
    19. Florian Schulz, Steffen Tober, and Holger Lange . Size-Dependent Phase Transfer Functionalization of Gold Nanoparticles To Promote Well-Ordered Self-Assembly. Langmuir 2017, 33 (50) , 14437-14444. https://doi.org/10.1021/acs.langmuir.7b03600
    20. Amir Khabibullin, Moien Alizadehgiashi, Nancy Khuu, Elisabeth Prince, Moritz Tebbe, and Eugenia Kumacheva . Injectable Shear-Thinning Fluorescent Hydrogel Formed by Cellulose Nanocrystals and Graphene Quantum Dots. Langmuir 2017, 33 (43) , 12344-12350. https://doi.org/10.1021/acs.langmuir.7b02906
    21. Bas G. P. van Ravensteijn, Neus Vilanova, Isja de Feijter, Willem K. Kegel, and Ilja K. Voets . Temperature-Induced, Selective Assembly of Supramolecular Colloids in Water. ACS Omega 2017, 2 (4) , 1720-1730. https://doi.org/10.1021/acsomega.7b00111
    22. Chenglin Wang, Shiying Ma, Yi Hu, and Rong Wang . Hierarchical Colloidal Polymeric Structure from Surfactant-Like Amphiphiles in Selective Solvents. Langmuir 2017, 33 (14) , 3427-3433. https://doi.org/10.1021/acs.langmuir.6b04509
    23. Jianxiang Shen, Xue Li, Xiaojun Shen, and Jun Liu . Insight into the Dispersion Mechanism of Polymer-Grafted Nanorods in Polymer Nanocomposites: A Molecular Dynamics Simulation Study. Macromolecules 2017, 50 (2) , 687-699. https://doi.org/10.1021/acs.macromol.6b02284
    24. Michael A. Boles, Michael Engel, and Dmitri V. Talapin . Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials. Chemical Reviews 2016, 116 (18) , 11220-11289. https://doi.org/10.1021/acs.chemrev.6b00196
    25. Ju-Won Jeon, Petr A. Ledin, Jeffrey A. Geldmeier, James F. Ponder, Jr., Mahmoud A. Mahmoud, Mostafa El-Sayed, John R. Reynolds, and Vladimir V. Tsukruk . Electrically Controlled Plasmonic Behavior of Gold Nanocube@Polyaniline Nanostructures: Transparent Plasmonic Aggregates. Chemistry of Materials 2016, 28 (8) , 2868-2881. https://doi.org/10.1021/acs.chemmater.6b00882
    26. Xianfeng Zhang, Longfei Lv, Li Ji, Guannan Guo, Limin Liu, Dandan Han, Biwei Wang, Yaqi Tu, Jianhua Hu, Dong Yang, and Angang Dong . Self-Assembly of One-Dimensional Nanocrystal Superlattice Chains Mediated by Molecular Clusters. Journal of the American Chemical Society 2016, 138 (10) , 3290-3293. https://doi.org/10.1021/jacs.6b00055
    27. Mingli Yue, Yanchun Li, Ying Hou, Wenxin Cao, Jiaqi Zhu, Jiecai Han, Zhongyuan Lu, and Ming Yang . Hydrogen Bonding Stabilized Self-Assembly of Inorganic Nanoparticles: Mechanism and Collective Properties. ACS Nano 2015, 9 (6) , 5807-5817. https://doi.org/10.1021/acsnano.5b00344
    28. Li Shi, Eric Buhler, François Boué, and Florent Carn . Shape-Tailored Colloidal Molecules Obtained by Self-Assembly of Model Gold Nanoparticles with Flexible Polyelectrolyte. Langmuir 2015, 31 (21) , 5731-5737. https://doi.org/10.1021/acs.langmuir.5b00854
    29. Dániel Zámbó, György Z. Radnóczi, and András Deák . Preparation of Compact Nanoparticle Clusters from Polyethylene Glycol-Coated Gold Nanoparticles by Fine-Tuning Colloidal Interactions. Langmuir 2015, 31 (9) , 2662-2668. https://doi.org/10.1021/la504600j
    30. J. E. Galván-Moya, K. Nelissen, and F. M. Peeters . Structural Ordering of Self-Assembled Clusters with Competing Interactions: Transition from Faceted to Spherical Clusters. Langmuir 2015, 31 (3) , 917-924. https://doi.org/10.1021/la504249e
    31. Alexandr V. Vinogradov, A. A. Levshanov, M. A. Kashirin, A. V. Agafonov, and Vladimir V. Vinogradov . Magneto-Optical Modulation on Colloid Cu–Ni Nanocomposite. The Journal of Physical Chemistry C 2015, 119 (3) , 1500-1505. https://doi.org/10.1021/jp511736f
    32. Zhengyang Liu, Ruohai Guo, Guoxi Xu, Zihan Huang, and Li-Tang Yan . Entropy-Mediated Mechanical Response of the Interfacial Nanoparticle Patterning. Nano Letters 2014, 14 (12) , 6910-6916. https://doi.org/10.1021/nl5029396
    33. Anna Klinkova, Héloïse Thérien-Aubin, Aftab Ahmed, Dmytro Nykypanchuk, Rachelle M. Choueiri, Brandon Gagnon, Anastasiya Muntyanu, Oleg Gang, Gilbert C. Walker, and Eugenia Kumacheva . Structural and Optical Properties of Self-Assembled Chains of Plasmonic Nanocubes. Nano Letters 2014, 14 (11) , 6314-6321. https://doi.org/10.1021/nl502746h
    34. Gabriella Lestari, Milad Abolhasani, Darla Bennett, Preston Chase, Axel Günther, and Eugenia Kumacheva . Switchable Water: Microfluidic Investigation of Liquid–Liquid Phase Separation Mediated by Carbon Dioxide. Journal of the American Chemical Society 2014, 136 (34) , 11972-11979. https://doi.org/10.1021/ja504184q
    35. James Townsend, Ruslan Burtovyy, Yuriy Galabura, and Igor Luzinov . Flexible Chains of Ferromagnetic Nanoparticles. ACS Nano 2014, 8 (7) , 6970-6978. https://doi.org/10.1021/nn501787v
    36. Marek Grzelczak and Luis M. Liz-Marzán . Exploiting Hydrophobic Interactions at the Nanoscale. The Journal of Physical Chemistry Letters 2014, 5 (14) , 2455-2463. https://doi.org/10.1021/jz500984w
    37. Lawrence J. Hill and Jeffrey Pyun . Colloidal Polymers via Dipolar Assembly of Magnetic Nanoparticle Monomers. ACS Applied Materials & Interfaces 2014, 6 (9) , 6022-6032. https://doi.org/10.1021/am405786u
    38. Lawrence J. Hill, Nathaniel E. Richey, Younghun Sung, Philip T. Dirlam, Jared J. Griebel, Eli Lavoie-Higgins, In-Bo Shim, Nicola Pinna, Marc-Georg Willinger, Walter Vogel, Jason J. Benkoski, Kookheon Char, and Jeffrey Pyun . Colloidal Polymers from Dipolar Assembly of Cobalt-Tipped CdSe@CdS Nanorods. ACS Nano 2014, 8 (4) , 3272-3284. https://doi.org/10.1021/nn406104d
    39. Jesus E. Galván-Moya, Thomas Altantzis, Kwinten Nelissen, Francois M. Peeters, Marek Grzelczak, Luis M. Liz-Marzán, Sara Bals, and Gustaaf Van Tendeloo . Self-Organization of Highly Symmetric Nanoassemblies: A Matter of Competition. ACS Nano 2014, 8 (4) , 3869-3875. https://doi.org/10.1021/nn500715d
    40. Longhai Guo, Yongjing Jiang, Siyu Chen, Teng Qiu, and Xiaoyu Li . Self-Assembly of Poly(methacrylic acid)-b-poly(butyl acrylate) Amphiphilic Block Copolymers in Methanol via RAFT Polymerization and during Film Formation for Wrinkly Surface Pattern. Macromolecules 2014, 47 (1) , 165-174. https://doi.org/10.1021/ma402167d
    41. Hanyi Duan, Debasmita Muhuri, Jie He. Polymers on plasmonic metal nanoparticles: from symmetric coating to asymmetric surface patterning. Polymer 2024, 298 , 127115. https://doi.org/10.1016/j.polymer.2024.127115
    42. Petr Král, Henry Chan, Lela Vuković, Sanoj Raj, Soumyo Sen, Yanxiao Han, Michal Sawczyk. Simulation methods for self-assembling nanoparticles. Progress in Materials Science 2024, 142 , 101225. https://doi.org/10.1016/j.pmatsci.2023.101225
    43. Anna Klinkova, Héloïse Thérien-Aubin. Self-assembly. 2024, 217-254. https://doi.org/10.1016/B978-0-443-21447-9.00006-0
    44. Huibin He, Xiaoxue Shen, Zhihong Nie. Engineering interactions between nanoparticles using polymers. Progress in Polymer Science 2023, 143 , 101710. https://doi.org/10.1016/j.progpolymsci.2023.101710
    45. Yun-Chen Chien, You-Teng Hsu, Chen-Wei Chiang, Pei Yuin Keng, Tzu-Wei Wang. Investigating the electrostatic complexation of BCNO nanoparticles with a stimuli-responsive double hydrophilic graft copolymer. Giant 2023, 14 , 100162. https://doi.org/10.1016/j.giant.2023.100162
    46. Riya Choudhary, Kulwinder Kaur Sarao, Samir K. Mondal, Sachin K. Srivastava. Optical Fiber Axicon Enabled Plasmofluidic Trapping: Sensing With Enhanced Figure of Merit. IEEE Photonics Technology Letters 2023, 35 (9) , 469-472. https://doi.org/10.1109/LPT.2023.3256408
    47. Hanyi Duan, Yao Lin, Jie He. Metal nanoparticles grafted with polymeric ligands: Self-assembly guided by polymers in solution. 2023, 390-406. https://doi.org/10.1016/B978-0-12-822425-0.00004-X
    48. Chuanhui Huang, Tie Wang. Nanoparticle-assembled interface for tailoring dynamics of chemical reactions. 2023, 14-27. https://doi.org/10.1016/B978-0-12-822425-0.00007-5
    49. Pan Gu, Jiangping Xu, Jintao Zhu. Self‐assembly of polymer‐grafted inorganic nanoparticles into three‐dimensional superlattices. Giant 2022, 12 , 100123. https://doi.org/10.1016/j.giant.2022.100123
    50. Fugui Xu, Ke Li, Shanlong Li, Chen Li, Chunyang Yu, Yuling Wang, Wenfeng Jiang, Shaoliang Lin, Yiyong Mai, Yongfeng Zhou. Self‐Assembly of Peapod‐like Micrometer Tubes from a Planet‐Satellite‐type Supramolecular Megamer. Angewandte Chemie 2022, 134 (46) https://doi.org/10.1002/ange.202213178
    51. Fugui Xu, Ke Li, Shanlong Li, Chen Li, Chunyang Yu, Yuling Wang, Wenfeng Jiang, Shaoliang Lin, Yiyong Mai, Yongfeng Zhou. Self‐Assembly of Peapod‐like Micrometer Tubes from a Planet‐Satellite‐type Supramolecular Megamer. Angewandte Chemie International Edition 2022, 61 (46) https://doi.org/10.1002/anie.202213178
    52. Daniel P. Szekrényes, Cyrille Hamon, Doru Constantin, András Deák. Formation of kinetically trapped small clusters of PEGylated gold nanoparticles revealed by the combination of small-angle X-ray scattering and visible light spectroscopy. Soft Matter 2022, 18 (43) , 8295-8301. https://doi.org/10.1039/D2SM01257J
    53. Xue Li, Chen Chen, Qian Niu, Nian-Wu Li, Le Yu, Bao Wang. Self-assembly of nanoparticles at solid–liquid interface for electrochemical capacitors. Rare Metals 2022, 41 (11) , 3591-3611. https://doi.org/10.1007/s12598-022-02061-7
    54. Denis Gentili, Guido Ori. Reversible assembly of nanoparticles: theory, strategies and computational simulations. Nanoscale 2022, 14 (39) , 14385-14432. https://doi.org/10.1039/D2NR02640F
    55. Zichao Wei, Chung-Hao Liu, Hanyi Duan, Qiang Luo, Margaret Huang, Srinivas Thanneeru, Mu-Ping Nieh, Jie He. Self-assembly of gold nanoparticles grafted with amphiphilic supramolecular block copolymers. Giant 2022, 10 , 100102. https://doi.org/10.1016/j.giant.2022.100102
    56. Hanyi Duan, Tessa Malesky, Janet Wang, Chung-Hao Liu, Haiyan Tan, Mu-Ping Nieh, Yao Lin, Jie He. Patchy metal nanoparticles with polymers: controllable growth and two-way self-assembly. Nanoscale 2022, 14 (19) , 7364-7371. https://doi.org/10.1039/D2NR01221A
    57. Feng Li, Skandan Chandrasekar, Aftab Ahmed, Anna Klinkova. Interparticle gap geometry effects on chiroptical properties of plasmonic nanoparticle assemblies. Nanotechnology 2022, 33 (12) , 125203. https://doi.org/10.1088/1361-6528/ac3f12
    58. Kamil Sokołowski, Junyang Huang, Tamás Földes, Jade A. McCune, David D. Xu, Bart de Nijs, Rohit Chikkaraddy, Sean M. Collins, Edina Rosta, Jeremy J. Baumberg, Oren A. Scherman. Nanoparticle surfactants for kinetically arrested photoactive assemblies to track light-induced electron transfer. Nature Nanotechnology 2021, 16 (10) , 1121-1129. https://doi.org/10.1038/s41565-021-00949-6
    59. Christian Rossner, Tobias A. F. König, Andreas Fery. Plasmonic Properties of Colloidal Assemblies. Advanced Optical Materials 2021, 9 (8) https://doi.org/10.1002/adom.202001869
    60. Hanyi Duan, Yiqun Yang, Yan Zhang, Chenglin Yi, Zhihong Nie, Jie He. What is next in polymer-grafted plasmonic nanoparticles?. Giant 2020, 4 , 100033. https://doi.org/10.1016/j.giant.2020.100033
    61. Hu Zhu, Elisabeth Prince, Pournima Narayanan, Kun Liu, Zhihong Nie, Eugenia Kumacheva. Colloidal stability of nanoparticles stabilized with mixed ligands in solvents with varying polarity. Chemical Communications 2020, 56 (58) , 8131-8134. https://doi.org/10.1039/D0CC02592E
    62. Chenglin Yi, Yiqun Yang, Ben Liu, Jie He, Zhihong Nie. Polymer-guided assembly of inorganic nanoparticles. Chemical Society Reviews 2020, 49 (2) , 465-508. https://doi.org/10.1039/C9CS00725C
    63. Zhiqi Huang, Sihang Liu, Yuejiao Zhang, Jingliang Yang, Jianfeng Li, Zhihong Nie, Jinlong Gong. Regioselective metal deposition on polymer-Au nanoparticle hybrid chains. Science China Materials 2019, 62 (9) , 1363-1367. https://doi.org/10.1007/s40843-019-9420-8
    64. Christian Rossner, Ekaterina B. Zhulina, Eugenia Kumacheva. Staged Surface Patterning and Self‐Assembly of Nanoparticles Functionalized with End‐Grafted Block Copolymer Ligands. Angewandte Chemie 2019, 131 (27) , 9370-9375. https://doi.org/10.1002/ange.201904430
    65. Christian Rossner, Ekaterina B. Zhulina, Eugenia Kumacheva. Staged Surface Patterning and Self‐Assembly of Nanoparticles Functionalized with End‐Grafted Block Copolymer Ligands. Angewandte Chemie International Edition 2019, 58 (27) , 9269-9274. https://doi.org/10.1002/anie.201904430
    66. Marek Grzelczak, Luis M. Liz-Marzán, Rafal Klajn. Stimuli-responsive self-assembly of nanoparticles. Chemical Society Reviews 2019, 48 (5) , 1342-1361. https://doi.org/10.1039/C8CS00787J
    67. Dapeng Liu, Xiaosong Wang. Hierarchical Self‐Assembly Induced by Dilution‐Enhanced Hydrophobic Hydration. Chemistry – A European Journal 2018, 24 (26) , 6737-6741. https://doi.org/10.1002/chem.201801213
    68. Ana Sánchez‐Iglesias, Nathalie Claes, Diego M. Solís, Jose M. Taboada, Sara Bals, Luis M. Liz‐Marzán, Marek Grzelczak. Reversible Clustering of Gold Nanoparticles under Confinement. Angewandte Chemie 2018, 130 (12) , 3237-3240. https://doi.org/10.1002/ange.201800736
    69. Ana Sánchez‐Iglesias, Nathalie Claes, Diego M. Solís, Jose M. Taboada, Sara Bals, Luis M. Liz‐Marzán, Marek Grzelczak. Reversible Clustering of Gold Nanoparticles under Confinement. Angewandte Chemie International Edition 2018, 57 (12) , 3183-3186. https://doi.org/10.1002/anie.201800736
    70. Rachelle M. Choueiri, Anna Klinkova, Samuel Pearce, Ian Manners, Eugenia Kumacheva. Self‐Assembly and Surface Patterning of Polyferrocenylsilane‐Functionalized Gold Nanoparticles. Macromolecular Rapid Communications 2018, 39 (3) https://doi.org/10.1002/marc.201700554
    71. Taraknath Mandal, Ronald G. Larson. Prediction of striped cylindrical micelles (SCMs) formed by dodecyl-β- d -maltoside (DDM) surfactants. Soft Matter 2018, 14 (14) , 2694-2700. https://doi.org/10.1039/C8SM00274F
    72. Yizhan Wang, Offer Zeiri, Manoj Raula, Benjamin Le Ouay, Francesco Stellacci, Ira A. Weinstock. Host–guest chemistry with water-soluble gold nanoparticle supraspheres. Nature Nanotechnology 2017, 12 (2) , 170-176. https://doi.org/10.1038/nnano.2016.233
    73. Yaru Zhou, Xiaodong Ma, Liangshun Zhang, Jiaping Lin. Directed assembly of functionalized nanoparticles with amphiphilic diblock copolymers. Physical Chemistry Chemical Physics 2017, 19 (28) , 18757-18766. https://doi.org/10.1039/C7CP03294C
    74. Zhiqi Huang, Yijing Liu, Qian Zhang, Xiaoxia Chang, Ang Li, Lin Deng, Chenglin Yi, Yang Yang, Niveen M. Khashab, Jinlong Gong, Zhihong Nie. Collapsed polymer-directed synthesis of multicomponent coaxial-like nanostructures. Nature Communications 2016, 7 (1) https://doi.org/10.1038/ncomms12147
    75. Sungmoon Choi, Soonyoung Park, Seon-Ah Yang, Yujin Jeong, Junhua Yu. Selective self-assembly of adenine-silver nanoparticles forms rings resembling the size of cells. Scientific Reports 2016, 5 (1) https://doi.org/10.1038/srep17805
    76. Karel Procházka, Karel Šindelka, Xiu Wang, Zuzana Limpouchová, Martin Lísal. Self-assembly and co-assembly of block polyelectrolytes in aqueous solutions. Dissipative particle dynamics with explicit electrostatics. Molecular Physics 2016, 114 (21) , 3077-3092. https://doi.org/10.1080/00268976.2016.1225130
    77. Rachelle M. Choueiri, Elizabeth Galati, Héloïse Thérien-Aubin, Anna Klinkova, Egor M. Larin, Ana Querejeta-Fernández, Lili Han, Huolin L. Xin, Oleg Gang, Ekaterina B. Zhulina, Michael Rubinstein, Eugenia Kumacheva. Surface patterning of nanoparticles with polymer patches. Nature 2016, 538 (7623) , 79-83. https://doi.org/10.1038/nature19089
    78. Jacek K. Stolarczyk, Andras Deak, Dermot F. Brougham. Nanoparticle Clusters: Assembly and Control Over Internal Order, Current Capabilities, and Future Potential. Advanced Materials 2016, 28 (27) , 5400-5424. https://doi.org/10.1002/adma.201505350
    79. Wei Ma, Liguang Xu, Libing Wang, Hua Kuang, Chuanlai Xu. Orientational nanoparticle assemblies and biosensors. Biosensors and Bioelectronics 2016, 79 , 220-236. https://doi.org/10.1016/j.bios.2015.12.021
    80. Seungyong Chae, Sanghwa Lee, Kyungtae Kim, Suk Woo Jang, Byeong-Hyeok Sohn. Fluorescent supracolloidal polymer chains with quantum dots. Chemical Communications 2016, 52 (38) , 6475-6478. https://doi.org/10.1039/C6CC01218C
    81. Sanghwa Lee, Sukwoo Jang, Kyungtae Kim, Jonghyuk Jeon, Sung-Soo Kim, Byeong-Hyeok Sohn. Branched and crosslinked supracolloidal chains with diblock copolymer micelles having three well-defined patches. Chemical Communications 2016, 52 (60) , 9430-9433. https://doi.org/10.1039/C6CC04994J
    82. Karel Šindelka, Zuzana Limpouchová, Martin Lísal, Karel Procházka. The electrostatic co-assembly in non-stoichiometric aqueous mixtures of copolymers composed of one neutral water-soluble and one polyelectrolyte (either positively or negatively charged) block: a dissipative particle dynamics study. Physical Chemistry Chemical Physics 2016, 18 (24) , 16137-16151. https://doi.org/10.1039/C6CP01047D
    83. Rachelle M. Choueiri, Elizabeth Galati, Anna Klinkova, Héloïse Thérien-Aubin, Eugenia Kumacheva. Linear assembly of patchy and non-patchy nanoparticles. Faraday Discussions 2016, 191 , 189-204. https://doi.org/10.1039/C6FD00057F
    84. Xingchen Ye, Chenhui Zhu, Peter Ercius, Shilpa N. Raja, Bo He, Matthew R. Jones, Matthew R. Hauwiller, Yi Liu, Ting Xu, A. Paul Alivisatos. Structural diversity in binary superlattices self-assembled from polymer-grafted nanocrystals. Nature Communications 2015, 6 (1) https://doi.org/10.1038/ncomms10052
    85. Yijing Liu, Jie He, Kuikun Yang, Chenglin Yi, Yi Liu, Liming Nie, Niveen M. Khashab, Xiaoyuan Chen, Zhihong Nie. Folding Up of Gold Nanoparticle Strings into Plasmonic Vesicles for Enhanced Photoacoustic Imaging. Angewandte Chemie 2015, 127 (52) , 16035-16038. https://doi.org/10.1002/ange.201508616
    86. Yijing Liu, Jie He, Kuikun Yang, Chenglin Yi, Yi Liu, Liming Nie, Niveen M. Khashab, Xiaoyuan Chen, Zhihong Nie. Folding Up of Gold Nanoparticle Strings into Plasmonic Vesicles for Enhanced Photoacoustic Imaging. Angewandte Chemie International Edition 2015, 54 (52) , 15809-15812. https://doi.org/10.1002/anie.201508616
    87. Petra M. Erne, Laura S. van Bezouwen, Peter Štacko, Derk Jan van Dijken, Jiawen Chen, Marc C. A. Stuart, Egbert J. Boekema, Ben L. Feringa. Loading of Vesicles into Soft Amphiphilic Nanotubes using Osmosis. Angewandte Chemie 2015, 127 (50) , 15337-15342. https://doi.org/10.1002/ange.201506493
    88. Petra M. Erne, Laura S. van Bezouwen, Peter Štacko, Derk Jan van Dijken, Jiawen Chen, Marc C. A. Stuart, Egbert J. Boekema, Ben L. Feringa. Loading of Vesicles into Soft Amphiphilic Nanotubes using Osmosis. Angewandte Chemie International Edition 2015, 54 (50) , 15122-15127. https://doi.org/10.1002/anie.201506493
    89. Yi Liu, Yijing Liu, Jun‐Jie Yin, Zhihong Nie. Self‐Assembly of Amphiphilic Block Copolymer‐Tethered Nanoparticles: a New Approach to Nanoscale Design of Functional Materials. Macromolecular Rapid Communications 2015, 36 (8) , 711-725. https://doi.org/10.1002/marc.201400661
    90. Jeong-Hee Kim, Won Jong Kwon, Byeong-Hyeok Sohn. Supracolloidal polymer chains of diblock copolymer micelles. Chemical Communications 2015, 51 (16) , 3324-3327. https://doi.org/10.1039/C4CC09518A
    91. Weikun Li, Istvan Kanyo, Chung-Hao Kuo, Srinivas Thanneeru, Jie He. pH-programmable self-assembly of plasmonic nanoparticles: hydrophobic interaction versus electrostatic repulsion. Nanoscale 2015, 7 (3) , 956-964. https://doi.org/10.1039/C4NR05743K
    92. Jiale Huang, Liqin Lin, Daohua Sun, Huimei Chen, Dapeng Yang, Qingbiao Li. Bio-inspired synthesis of metal nanomaterials and applications. Chemical Society Reviews 2015, 44 (17) , 6330-6374. https://doi.org/10.1039/C5CS00133A
    93. Hagar Tigger-Zaborov, Galia Maayan. Aggregation of inorganic nanoparticles mediated by biomimetic oligomers. Organic & Biomolecular Chemistry 2015, 13 (34) , 8978-8992. https://doi.org/10.1039/C5OB01093D
    94. Chunxiao Xi, Paula Facal Marina, Haibing Xia, Dayang Wang. Directed self-assembly of gold nanoparticles into plasmonic chains. Soft Matter 2015, 11 (23) , 4562-4571. https://doi.org/10.1039/C5SM00900F
    95. Lawrence J. Hill, Nicola Pinna, Kookheon Char, Jeffrey Pyun. Colloidal polymers from inorganic nanoparticle monomers. Progress in Polymer Science 2015, 40 , 85-120. https://doi.org/10.1016/j.progpolymsci.2014.08.003
    96. Materials Office. Correction: Hood, M.A., et al. Synthetic Strategies in the Preparation of Polymer/Inorganic Hybrid Nanoparticles. Materials 2014, 7, 4057–4087. Materials 2014, 7 (11) , 7583-7614. https://doi.org/10.3390/ma7117583
    97. Wei Wu, Weigang Wang, Shuai Li, Jiantao Wang, Qiujing Zhang, Xiuhua Li, Xianglin Luo, Jianshu Li. Physiological pH-triggered morphological transition of amphiphilic block copolymer self-assembly. Journal of Polymer Research 2014, 21 (7) https://doi.org/10.1007/s10965-014-0494-4
    98. Matthew Hood, Margherita Mari, Rafael Muñoz-Espí. Synthetic Strategies in the Preparation of Polymer/Inorganic Hybrid Nanoparticles. Materials 2014, 7 (5) , 4057-4087. https://doi.org/10.3390/ma7054057
    99. J. E. Galván-Moya, D. Lucena, W. P. Ferreira, F. M. Peeters. Magnetic particles confined in a modulated channel: Structural transitions tunable by tilting a magnetic field. Physical Review E 2014, 89 (3) https://doi.org/10.1103/PhysRevE.89.032309
    100. Monojit Bag, Timothy S. Gehan, Lawrence A. Renna, Dana D. Algaier, Paul M. Lahti, D. Venkataraman. Fabrication conditions for efficient organic photovoltaic cells from aqueous dispersions of nanoparticles. RSC Adv. 2014, 4 (85) , 45325-45331. https://doi.org/10.1039/C4RA07463G
    Load all citations