ACS Publications. Most Trusted. Most Cited. Most Read
Engineering the Optical Response of the Titanium-MIL-125 Metal–Organic Framework through Ligand Functionalization
My Activity

Figure 1Loading Img
  • Open Access
Communication

Engineering the Optical Response of the Titanium-MIL-125 Metal–Organic Framework through Ligand Functionalization
Click to copy article linkArticle link copied!

View Author Information
Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
Laboratoire de Chimie des Processus Biologiques, Collège de France, CNRS FRE 3488, 11 Place Marcelin Berthelot, 75005 Paris, France
§ UPMC Univ Paris 06, UMR 7574, Chimie de la Matière Condensée de Paris, Collège de France, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France
Open PDFSupporting Information (1)

Journal of the American Chemical Society

Cite this: J. Am. Chem. Soc. 2013, 135, 30, 10942–10945
Click to copy citationCitation copied!
https://doi.org/10.1021/ja405350u
Published July 10, 2013

Copyright © 2013 American Chemical Society. This publication is licensed under these Terms of Use.

Abstract

Click to copy section linkSection link copied!

Herein we discuss band gap modification of MIL-125, a TiO2/1,4-benzenedicarboxylate (bdc) metal–organic framework (MOF). Through a combination of synthesis and computation, we elucidated the electronic structure of MIL-125 with aminated linkers. The band gap decrease observed when the monoaminated bdc-NH2 linker was used arises from donation of the N 2p electrons to the aromatic linking unit, resulting in a red-shifted band above the valence-band edge of MIL-125. We further explored in silico MIL-125 with the diaminated linker bdc-(NH2)2 and other functional groups (−OH, −CH3, −Cl) as alternative substitutions to control the optical response. The bdc-(NH2)2 linking unit was predicted to lower the band gap of MIL-125 to 1.28 eV, and this was confirmed through the targeted synthesis of the bdc-(NH2)2-based MIL-125. This study illustrates the possibility of tuning the optical response of MOFs through rational functionalization of the linking unit, and the strength of combined synthetic/computational approaches for targeting functionalized hybrid materials.

Copyright © 2013 American Chemical Society

Note Added after ASAP Publication

Reference 26 was replaced on July 16, 2013.

Metal–organic frameworks (MOFs) are a class of structures composed of organic and inorganic building blocks. These highly ordered and porous networks are of interest for their applications in gas storage, catalysis, and photoelectrics. (1-10) In particular, MOFs have the ability to behave as semiconductors when exposed to light, (11, 12) making them unique platforms for light harvesting and photoinduced catalysis. (13) A subfield of research has thus emerged with the aim of tuning the optical response of MOFs by modifying the inorganic unit or the organic linker (length, chemical functionalization) through synthetic (14, 15) or computational screening. (16-22) In this context, the highly porous titanium-based MOF MIL-125 (MIL = Materials of Institut Lavoisier) (Figure 1) is an interesting candidate. (23) This material, which contains cyclic octamers of TiO2 octahedra, is photochromic, which is related to the reduction of Ti(IV) to Ti(III) under UV irradiation. (24)

Figure 1

Figure 1. (left) [001] and (right) [010] orientations of MIL-125. Ti, O, C, and H are depicted in blue, red, black, and beige, respectively.

When synthesized with the 1,4-benzenedicarboxylate (bdc) linker, MIL-125 has an optical band gap in the UV region (ca. 3.6 eV/345 nm; see Figure 3a) and is an active photocatalyst for the oxidation of alcohols to aldehydes. (23) MIL-125-NH2 made with the monoaminated bdc-NH2 linker (25) was reported to be a photocatalyst with visible-light-induced activity for CO2 reduction (26) and H2 production. (27) The bdc-NH2 linker was shown to be responsible for the extra absorption band in the visible region, indicative of a band gap reduction (to ca. 2.6 eV/475 nm). (25-28) García and co-workers further confirmed the ability of MIL-125-NH2 to undergo photoinduced charge separation. (29) A similar band gap reduction and red shift were reported for Zr-UiO-66 upon synthesis with bdc-NH2, emphasizing the electronic role of the −NH2 group in determining the optical response in MOFs. (30) Coincidently, aminated linkers are becoming particularly popular in porous MOF synthesis, as polar −NH2 groups are expected to enhance CO2 capture, yield selective gas adsorption, (31-35) and enable postsynthetic modifications. (36-38)

These recent findings make it necessary to develop strategies to control the band gap of MIL-125. Here we performed a combined experimental and computational study to elucidate the band structure of MIL-125 and the impact of functional groups on the bdc linker, exploring the observed red shift in MIL-125-NH2. We then computationally predicted the beneficial impact of using the diaminated bdc-(NH2)2 linker, which was confirmed by a targeted synthesis. We finally explored in silico other potential bdc linkers (Figure 2) as candidates for optical control in MIL-125.

Figure 2

Figure 2. Neutral linking molecules explored in this study: (left) monosubstituted linkers bdc-R; (right) diaminated linker bdc-(NH2)2.

Amines are ring-activating substituents; as an initial study, we investigated the change in the band gap in response to increasing the concentration of monoaminated bdc-NH2. MIL-125 (Figure 3a) and three aminated MIL-125 analogues (Figure 3b–d) were synthesized under solvothermal conditions by varying the ratio of bdc and bdc-NH2 linkers (i.e., 10%, 50%, and 100% bdc-NH2, equating to ∼1, 6, and 12 bdc-NH2 linkers per unit cell). Figure 3 presents scanning electron microscopy (SEM) images of these four samples and their accompanying UV spectra and powder colors. It is apparent that the absorption onset (ca. 475 nm) is similar for all of the monoaminated samples. The samples also demonstrated similar band gaps of ∼2.6 eV [Table S2 in the Supporting Information (SI)], but the molar extinction coefficient notably increased in proportion with the bdc-NH2 content. This feature was reflected in the physical crystal appearance: the yellow color increased in intensity. This characteristic absorption pattern suggests that a single −NH2 motif is responsible for the reduced band gap of the monoaminated series of MIL-125 analogues.

Figure 3

Figure 3. SEM images of (a) MIL-125, (b) 10%-MIL-125-NH2, (c) 50%-MIL-125-NH2, (d) 100%-MIL-125-NH2, and (e) 10%-MIL-125-(NH2)2/90%-MIL-125-NH2, with their respective UV spectra and powder colors. All of the monoaminated systems show the same absorption onset.

Electronic structure calculations on the same series of monoaminated MIL-125-NH2 solids were performed using density functional theory (DFT) as described in the SI. Figure 4a,b depicts the valence band (VB) and conduction band (CB) orbitals, respectively, for standard MIL-125. The upper VB is composed of bdc aromatic 2p orbitals. Introducing a single bdc-NH2 linker per unit cell (i.e., to give 10%-MIL-125-NH2) breaks the original I4/mmm symmetry and splits the VB into a high-energy occupied state (depicted in blue in Figure 4c). The other aromatic bands are also split within 0.3 eV of each other and contribute to the VB-1,2...12. Because of the strong electron-donating characteristics of aromatic amines, the modified VB is 1.2 eV above that of MIL-125 (depicted with the blue arrow in Figure 4c), resulting in the lower band gap. This localized electronic modification results in a flat band in k space, which emphasizes the absence of long-range chemical interactions.

Figure 4

Figure 4. (a, b) Frontier electron density of unsubstituted MIL-125: (a) the valence band is composed of the bdc C 2p orbitals (shown on the right), making these favorable for linker-based band gap modifications; (b) the conduction band is composed of O 2p orbitals and Ti 3d orbitals (shown on the right), suggesting that modifications of the aromatic bdc units are unlikely to affect the CB. Isovalue = 0.001 e·Å–3. (c) PBEsol band structures for synthetic MIL-125 (black), 10%-MIL-125-NH2 (blue), 10%-MIL-125-(NH2)2/90%-MIL-125-NH2 (orange) and the theoretical 10%-MIL-125-(NH2)2 (green). The orange bands, which have been truncated to improve the clarity of the band structures, maintain flat characteristics. The enlarged section emphasizes the VB-1...12 of the 11 nondegenerate monoamine bands. The energies are adjusted such that the highest occupied non-amine band is at 0 eV. The changes in the occupied VBs are depicted by the arrows. PBEsol is a qualitative approach; band structures could not be computed at the HSE06 level of theory because of the system size. (d) HSE06-calculated VB and CB energies of MIL-125-NH2 models containing increasing numbers of bdc-NH2 linkers [i.e. 0 (MIL-125) to 12 (100%-MIL-125-NH2)] per unit cell. The degree of amination does not affect the band gap.

Further calculations were carried out by systematically increasing the amine content from 1 to 12 bdc-NH2 linkers per unit cell (Figure 4d). It is apparent that the VB is modified upon amination of the linker while the lower CB is unchanged. Thus, a single −NH2 group electronically saturates MIL-125. The band structure of 10%-MIL-125-NH2 (blue in Figure 4c) depicts a localized noninteracting state, which was observed for all of the monoaminated systems independent of the bdc-NH2 content.

The amine functional motif plays a crucial role in the band structure of MIL-125. We therefore considered the plausible extension of further increasing the electron density of the aromatic motifs through polyamination of the bdc linker. Selecting diaminated bdc-(NH2)2 (Figure 2 right) as a potentially interesting linker, we constructed a 10%-MIL-125-(NH2)2 model as a mixture of 10% bdc-(NH2)2 and 90% bdc and computed its band structure (shown in green in Figure 4c). This model may be compared to its monoaminated analogue (shown in blue in Figure 4c). Our calculations predicted that 10%-MIL-125-(NH2)2 would exhibit a larger red shift due to the increase in aromatic electronic density, with a resultant band gap of 1.28 eV. This presents a further band gap decrease of 1.1 eV relative to the 10%-monoaminated analogue.

We subsequently targeted the synthesis of a diaminated MIL-125 derivative, which was successfully achieved with a mixture of 10% bdc-(NH2)2 and 90% bdc-NH2 (Figure 3e). This compound differs from the 10%-MIL-125-(NH2)2 model described in the previous paragraph by the presence of bdc-NH2 instead of bdc. We did not isolate the 10%-MIL-125-(NH2)2, but our compound should act electronically in a similar fashion, since the amine motifs are indeed noninteracting and produce highly localized electronic bands. Optical measurements (Figure 3e) revealed a further band gap decrease of 1.1 eV for this solid relative to the monoaminated samples to give an optical band gap of 1.3 eV, shifting the absorption onset to the red/IR region. This is in striking agreement with the above computational prediction. To approximate the blended solid, we further computed the electronic structure of a mixed 10%-MIL-125-(NH2)2/90%-MIL-125-NH2 model (shown in Figure 4c in orange). In both the experimental spectrum and the band structure calculations we observed the presence of the monoamine motifs. The multiple orange bands in the 1–1.5 eV region are the result of the inequivalent monoamines. Our computational approach predicted a band gap of 1.55 eV (orange in Figure 5). The difference between the experimental (1.3 eV) and computed (1.55 eV) band gaps is attributed to the challenge of describing this partially disordered system computationally, including using lattice constants fixed at the equilibrium values of the parent MIL-125 structure.

Figure 5

Figure 5. HSE06-predicted band gaps of MIL-125 (black) and its analogues containing functionalized bdc linkers. Substitutions of ca. 10% (i.e., one functionalized linker per unit cell) were made, unless otherwise stated. Control of the band gap was achieved by varying the substituent.

Finally, we extended the computational exploration to three potential MIL-125 analogues. Amines are one of the stronger electron-donating substituents; weaker electron-donating substituents should reduce the band gap to a lesser extent. (39, 40) The introduction of 10% bdc-R (R = −OH, −CH3, −Cl; Figure 2 left) per unit cell resulted in flexible band gap control between 3.5 and 2.4 eV (Figure 5). The weakest electron-donating group, −CH3, moderately decreases the band gap to 3.5 eV. Aromatic halides are more chemically complex and may be either weakly electron-donating or -withdrawing. In MIL-125, −Cl acts as a weak electron donor with a predicted band gap similar to that for the −CH3 group. The −OH group is more electron-donating than −CH3 and −Cl, which is reflected by the predicted band gap of 2.8 eV for the 10%-MIL-125-OH model. The −Br and −CF3 substituents were also computed. Our results suggest that −Br motifs produce band gap control similar to −Cl, but the crystal could not be stabilized above eight substitutions per unit cell. The −CF3 group is strongly electron-withdrawing, potentially lowering a CB+n band into the band gap. It was found that the inclusion of −CF3 resulted in destabilization of the Ti–O bond, and a single substitution produced an unstable crystal. Thus, −NH2, −OH, −CH3, and −Cl are the most promising and favorable substitutions.

In conclusion, we have elucidated the specific role of the −NH2 group of the monoaminated bdc-NH2 linker in lowering the optical band gap of the titanium-containing MIL-125-NH2 (ca. 2.6 eV). We confirmed that electronic modifications of the aromatic motifs are localized and directly control the optical properties through modification of the valence band. DFT calculations showed that the optical response of MIL-125 may be tailored toward absorption in the visible region through rational selection of substituents of the aromatic bdc linker. The diaminated bdc-(NH2)2 linker was expected to demonstrate the most significant red shift. This prediction was confirmed by the synthesis of 10%-MIL-125-(NH2)2/90%-MIL-125-NH2 (1.3 eV/950 nm). From the experimental perspective, we have described the synthesis of a MIL-125 derivative with mixed aminated linkers. This methodology can be further extended to the large range of aromatic linkers used in MOF synthesis, which should enable accurate and predictable band gap control in tailored frameworks. For example, the Zn–bdc-based IRMOF-1 (14, 41) has an electronic structure comparable to that of MIL-125 (3.57 eV), (39) thus posing potential for similar control of its band gap through the modifications proposed here.

Supporting Information

Click to copy section linkSection link copied!

Synthetic procedures; PXRD, N2 sorption, and optical band gap data; and computational details. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

Click to copy section linkSection link copied!

  • Corresponding Authors
    • Laurence Rozes - UPMC Univ Paris 06, UMR 7574, Chimie de la Matière Condensée de Paris, Collège de France, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France
    • Caroline Mellot-Draznieks - Laboratoire de Chimie des Processus Biologiques, Collège de France, CNRS FRE 3488, 11 Place Marcelin Berthelot, 75005 Paris, France
    • Aron Walsh - Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
  • Authors
    • Christopher H. Hendon - Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
    • Davide Tiana - Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
    • Marc Fontecave - Laboratoire de Chimie des Processus Biologiques, Collège de France, CNRS FRE 3488, 11 Place Marcelin Berthelot, 75005 Paris, France
    • Clément Sanchez - UPMC Univ Paris 06, UMR 7574, Chimie de la Matière Condensée de Paris, Collège de France, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France
    • Loïc D’arras - UPMC Univ Paris 06, UMR 7574, Chimie de la Matière Condensée de Paris, Collège de France, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France
    • Capucine Sassoye - UPMC Univ Paris 06, UMR 7574, Chimie de la Matière Condensée de Paris, Collège de France, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France
  • Notes
    The authors declare no competing financial interest.

Acknowledgment

Click to copy section linkSection link copied!

A.W. was supported a Royal Society University Research Fellowship, while C.H.H. and D.T. were funded under an ERC Starting Grant. The work benefited from the University of Bath’s High Performance Computing Facility and access to the HECToR supercomputer through membership of the U.K.’s HPC Materials Chemistry Consortium, which is funded by the EPSRC (Grant EP/F067496).

References

Click to copy section linkSection link copied!

This article references 41 other publications.

  1. 1
    Park, J.; Wang, Z. U.; Sun, L.-B.; Chen, Y.-P.; Zhou, H.-C. J. Am. Chem. Soc. 2012, 134, 20110
  2. 2
    Roberts, J. M.; Fini, B. M.; Sarjeant, A. A.; Farha, O. K.; Hupp, J. T.; Scheidt, K. A. J. Am. Chem. Soc. 2012, 134, 3334
  3. 3
    Martin, R. L.; Haranczyk, M. Chem. Sci. 2013, 4, 1781
  4. 4

    Thematic issue on MOFs:

    Chem. Rev. 2012, 112, 673 1268.
  5. 5
    Li, J.-R.; Kuppler, R. J.; Zhou, H.-C. Chem. Soc. Rev. 2009, 38, 1477
  6. 6
    Allendorf, M. D.; Schwartzberg, A.; Stavila, V.; Talin, A. A. Chem.—Eur. J. 2011, 17, 11372
  7. 7
    Farrusseng, D.; Aguado, S.; Pinel, C. Angew. Chem., Int. Ed. 2009, 48, 7502
  8. 8
    Ma, L.; Abney, C.; Lin, W. Chem. Soc. Rev. 2009, 38, 1248
  9. 9
    Corma, A.; García, H.; Llabrés i Xamena, F. X. Chem. Rev. 2010, 110, 4606
  10. 10
    Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O’Keeffe, M.; Yaghi, O. M. Science 2008, 319, 939
  11. 11
    Alvaro, M.; Carbonell, E.; Ferrer, B.; Llabrés i Xamena, F. X.; García, H. Chem.—Eur. J. 2007, 13, 5106
  12. 12
    Silva, C. G.; Corma, A.; García, H. J. Mater. Chem. 2010, 20, 3141
  13. 13
    Wang, J.-L.; Wang, C.; Lin, W. ACS Catal. 2012, 2, 2630
  14. 14
    Gascon, J.; Hernández-Alonso, M. D.; Almeida, A. R.; van Klink, G. P. M.; Kapteijn, F.; Mul, G. ChemSusChem 2008, 1, 981
  15. 15
    Lin, C.-K.; Zhao, D.; Gao, W.-Y.; Yang, Z.; Ye, J.; Xu, T.; Ge, Q.; Ma, S.; Liu, D.-J. Inorg. Chem. 2012, 51, 9039
  16. 16
    Fuentes-Cabrera, M.; Nicholson, D. M.; Sumpter, B. G.; Widom, M. J. Chem. Phys. 2005, 123124713
  17. 17
    Choi, J. H.; Choi, Y. J.; Lee, J. W.; Shin, W. H.; Kang, J. K. Phys. Chem. Chem. Phys. 2009, 11, 628
  18. 18
    Kuc, A.; Enyashin, A.; Seifert, G. J. Phys. Chem. B 2007, 111, 8179
  19. 19
    Yang, L.-M.; Ravindran, P.; Vajeeston, P.; Tilset, M. RSC Adv. 2012, 2, 1618
  20. 20
    Yang, L.-M.; Ravindran, P.; Vajeeston, P.; Tilset, M. J. Mater. Chem. 2012, 22, 16324
  21. 21
    Choi, J. H.; Jeon, H. J.; Choi, K. M.; Kang, J. K. J. Mater. Chem. 2012, 22, 10144
  22. 22
    Hendon, C. H.; Tiana, D.; Vaid, T. P.; Walsh, A. J. Mater. Chem. C 2013, 1, 95
  23. 23
    Dan-Hardi, M.; Serre, C.; Frot, T.; Rozes, L.; Maurin, G.; Sanchez, C.; Férey, G. J. Am. Chem. Soc. 2009, 131, 10857
  24. 24
    Walsh, A.; Catlow, C. R. A. ChemPhysChem 2010, 11, 2341
  25. 25
    Zlotea, C.; Phanon, D.; Mazaj, M.; Heurtaux, D.; Guillerm, V.; Serre, C.; Horcajada, P.; Devic, T.; Magnier, E.; Cuevas, F.; Férey, G.; Llewellyn, P. L.; Latroche, M. Dalton Trans. 2011, 40, 4879
  26. 26
    Fu, Y.; Sun, D.; Chen, Y.; Huang, R.; Ding, Z.; Fu, X.; Li, Z. Angew. Chem. Int. Ed. 2012, 51, 3364 3367
  27. 27
    Horiuchi, Y.; Toyao, T.; Saito, M.; Mochizuki, K.; Iwata, M.; Higashimura, H.; Anpo, M.; Matsuoka, M. J. Phys. Chem. C 2012, 116, 20848
  28. 28
    Kim, S.-N.; Kim, J.; Kim, H.-Y.; Cho, H.-Y.; Ahn, W.-S. Catal. Today 2013, 204, 85
  29. 29
    de Miguel, M.; Ragon, F.; Devic, T.; Serre, C.; Horcajada, P.; García, H. ChemPhysChem 2012, 13, 3651
  30. 30
    Long, J.; Wang, S.; Ding, Z.; Wang, S.; Zhou, Y.; Huang, L.; Wang, X. Chem. Commun. 2012, 48, 11656
  31. 31
    Devic, T.; Horcajada, P.; Serre, C.; Salles, F.; Maurin, G.; Moulin, B.; Heurtaux, D.; Clet, G.; Vimont, A.; Grenéche, J.-M.; Le Ouay, B.; Moreau, F.; Magnier, E.; Filinchuk, Y.; Marrot, J.; Lavalley, J.-C.; Daturi, M.; Férey, G. J. Am. Chem. Soc. 2010, 132, 1127
  32. 32
    Torrisi, A.; Mellot-Draznieks, C.; Bell, R. G. J. Chem. Phys. 2010, 132044705
  33. 33
    Torrisi, A.; Bell, R. G.; Mellot-Draznieks, C. Cryst. Growth Des. 2010, 10, 2839
  34. 34
    Couck, S.; Denayer, J. F. M.; Baron, G. V.; Rémy, T.; Gascon, J.; Kapteijn, F. J. Am. Chem. Soc. 2009, 131, 6326
  35. 35
    Wang, X.; Li, H.; Hou, X.-J. J. Phys. Chem. C 2012, 116, 19814
  36. 36
    Jiang, D.; Keenan, L. L.; Burrows, A. D.; Edler, K. J. Chem. Commun. 2012, 48, 12053
  37. 37
    Politzer, P.; Abrahmsen, L.; Sjoberg, P. J. Am. Chem. Soc. 1984, 106, 855
  38. 38
    Cohen, S. M. Chem. Rev. 2012, 112, 970
  39. 39
    Hendon, C. H.; Tiana, D.; Walsh, A. Phys. Chem. Chem. Phys. 2012, 14, 13120
  40. 40
    Bunnett, J. F.; Morath, R. J.; Okamoto, T. J. Am. Chem. Soc. 1955, 77, 5055
  41. 41
    Tranchemontagne, D. J.; Hunt, J. R.; Yaghi, O. M. Tetrahedron 2008, 64, 8553

Cited By

Click to copy section linkSection link copied!
Citation Statements
Explore this article's citation statements on scite.ai

This article is cited by 756 publications.

  1. Deejan Debnath, Barnali Saha, Madhusudan Das, Himadri Acharya, Sujit Kumar Ghosh. Measuring the Efficiency of Photoinduced Electron Transfer at the Perovskite@Metal–Organic Framework Buried Interfaces. ACS Applied Optical Materials 2025, 3 (4) , 926-941. https://doi.org/10.1021/acsaom.5c00037
  2. Zhaozhen Zhang, Xiying Zhang, Bin Zhang, Xiaomeng Hu, Jie Wu, Hongwei Hou. Highly Efficient Yolk–Shell Photocatalyst Constructed by Integration of Ni2P and Cu2O Nanoparticles to Defective Metal–Organic Frameworks for Visible-Light-Driven Amine Oxidation. ACS Applied Materials & Interfaces 2025, 17 (13) , 19722-19733. https://doi.org/10.1021/acsami.5c00582
  3. Yoon Jung, Chan Woo Lee, Byoung-Hoon Lee, Yunjae Yu, Jaeho Moon, Hyeon Seok Lee, Wonjae Ko, Jinsol Bok, Kangjae Lee, Jaewoo Lee, Megalamane S. Bootharaju, Jaeyune Ryu, Minho Kim, Taeghwan Hyeon. Cooperative Brønsted Acid-Single Atom Photocatalysis in Metal–Organic Framework. Journal of the American Chemical Society 2025, 147 (2) , 1740-1748. https://doi.org/10.1021/jacs.4c13057
  4. Arif I. Inamdar, Hemanth Kumar Bangolla, Kuan-Fu Ho, Batjargal Sainbileg, Erdembayalag Batsaikhan, Ruei-San Chen, Michitoshi Hayashi, Ming-Hsi Chiang, Kuang-Lieh Lu. Band Gap Engineering, Dark Conductivity, and Photoconductive Properties of Semiconductive Self-Assembled Rhenium Nanotube by Structural Topology Modification. ACS Applied Electronic Materials 2025, 7 (1) , 533-541. https://doi.org/10.1021/acsaelm.4c02012
  5. Xuan Li, Tingxia Zhou, Siwei Liao, Wen Shi, Jian-Ying Shi. Regulating the Electronic Band Structure of the Ti-Based Metal–Organic Framework toward Boosting Light-Driven Hydrogen Evolution. ACS Applied Materials & Interfaces 2024, 16 (49) , 67771-67777. https://doi.org/10.1021/acsami.4c15290
  6. Hui-Feng Wang, Hong Yuan, Si-Zhan Feng, Bao-Xia Dong, Di-Chang Zhong. Incorporation of a Binuclear Cobalt Complex into MOFs for Photocatalytic CO2 Reduction with H2O as an Electron Donor. Inorganic Chemistry 2024, 63 (46) , 22033-22039. https://doi.org/10.1021/acs.inorgchem.4c03423
  7. Eloy P. Gómez-Oliveira, Javier Castells-Gil, Clara Chinchilla-Garzón, Andrés Uscategui-Linares, Josep Albero, Neyvis Almora-Barrios, Sergio Tatay, Natalia M. Padial, Carlos Martí-Gastaldo. Integrating Compositional and Structural Diversity in Heterometallic Titanium Frameworks by Metal Exchange Methods. Journal of the American Chemical Society 2024, 146 (45) , 31021-31033. https://doi.org/10.1021/jacs.4c10444
  8. Maksim Zakharzhevskii, George Healing, Nikita Kolobov, Issatay Nadinov, Daria Poloneeva, Abdul-Hamid Emwas, Alla Dikhtiarenko, Omar F. Mohammed, Luis Garzón-Tovar, Jorge Gascon. Influence of NH2 Substitution and Position on the Photocatalytic Activity of Ti-Based Metal–Organic Frameworks. Artificial Photosynthesis 2024, Article ASAP.
  9. Xiaoming Wen, Jingke Fu, Xiangkai Zhang, Xiaoyan Meng, Yue Tian, Jing Li, Ganjun Yu, Yongqiang Hao, Yingchun Zhu. Achieving Immune Activation by Suppressing the IDO1 Checkpoint with Sono-Targeted Biobromination for Antitumor Combination Immunotherapy. Journal of the American Chemical Society 2024, 146 (35) , 24580-24590. https://doi.org/10.1021/jacs.4c07993
  10. Honghui Kim, Neung-Kyung Yu, Nianhan Tian, Andrew J. Medford. Assessing Exchange-Correlation Functionals for Heterogeneous Catalysis of Nitrogen Species. The Journal of Physical Chemistry C 2024, 128 (27) , 11159-11175. https://doi.org/10.1021/acs.jpcc.4c01497
  11. Susanne Reischauer, Courtney S. Smoljan, Jabor Rabeah, Haomiao Xie, Filip Formalik, Zhihengyu Chen, Simon M. Vornholt, Fanrui Sha, Karena W. Chapman, Randall Q. Snurr, Justin M. Notestein, Omar K. Farha. A Titanium-Based Metal–Organic Framework For Tandem Metallaphotocatalysis. ACS Applied Materials & Interfaces 2024, 16 (26) , 33371-33378. https://doi.org/10.1021/acsami.4c03651
  12. Geunchan Park, Monique C. Demuth, Christopher H. Hendon, Sarah S. Park. Acid-Dependent Charge Transport in a Solution-Processed 2D Conductive Metal-Organic Framework. Journal of the American Chemical Society 2024, 146 (16) , 11493-11499. https://doi.org/10.1021/jacs.4c02326
  13. Lanyue Qi, Yujun Zhou, Junwen Qi, Yue Yang, Zhigao Zhu, Chengming Xiao, Xin Yan, Jiansheng Li. Enhanced Generation and Effective Utilization of Cr(V) for Simultaneous Removal of Coexisting Pollutants via MOF@COF Photocatalysts. ACS ES&T Engineering 2024, 4 (4) , 870-881. https://doi.org/10.1021/acsestengg.3c00491
  14. Yu-Ling Hong, Shuai-Wu Zuo, Hao-Yu Du, Zhi-Qiang Shi, Hailiang Hu, Gang Li. Four Lanthanide(III) Metal–Organic Frameworks Fabricated by Bithiophene Dicarboxylate for High Inherent Proton Conduction. ACS Applied Materials & Interfaces 2024, 16 (11) , 13745-13755. https://doi.org/10.1021/acsami.3c18999
  15. Holger-Dietrich Saßnick, Fabiana Machado Ferreira De Araujo, Joshua Edzards, Caterina Cocchi. Impact of Ligand Substitution and Metal Node Exchange in the Electronic Properties of Scandium Terephthalate Frameworks. Inorganic Chemistry 2024, 63 (4) , 2098-2108. https://doi.org/10.1021/acs.inorgchem.3c03945
  16. En-Ze Deng, Yan-Zhong Fan, Hai-Ping Wang, Yuying Li, Chao Peng, Jiewei Liu. Engineering a Z-Scheme Heterostructure on ZnIn2S4@NH2-MIL-125 Composites for Boosting the Photocatalytic Performance. Inorganic Chemistry 2024, 63 (2) , 1449-1461. https://doi.org/10.1021/acs.inorgchem.3c03968
  17. Jun-Qing Ye, Yan-Zi Dai, Shu-Ying Xu, Pin-Xi Wang, Zhong-Hua Sun, Jun-Feng Qian, Qian Liang, Ming-Yang He, Qun Chen. Synergistic Enhancement of Photocatalytic H2 Evolution over NH2-MIL-125 Modified with Dual Cocatalyst. Inorganic Chemistry 2023, 62 (51) , 21396-21408. https://doi.org/10.1021/acs.inorgchem.3c03502
  18. Dandan Liu, Xin Liu, Zhifen Guo, Qiang Li, Jian Yang, Hongzhu Xing, Dashu Chen. Aluminum-Porphyrin Metal–Organic Frameworks for Visible-Light Photocatalytic and Sonophotocatalytic Cr(VI) Reduction. Inorganic Chemistry 2023, 62 (48) , 19812-19820. https://doi.org/10.1021/acs.inorgchem.3c03563
  19. Vitalii Kavun, Evgeny Uslamin, Bart van der Linden, Stefano Canossa, Andrey Goryachev, Emma E. Bos, Jara Garcia Santaclara, Grigory Smolentsev, Eveliina Repo, Monique A. van der Veen. Promoting Photocatalytic Activity of NH2-MIL-125(Ti) for H2 Evolution Reaction through Creation of TiIII- and CoI-Based Proton Reduction Sites. ACS Applied Materials & Interfaces 2023, 15 (47) , 54590-54601. https://doi.org/10.1021/acsami.3c15490
  20. Rajib Moi, Moumita Chandra, Kartik Maity, Debabrata Pradhan, Kumar Biradha. Band Gap Modulation in Fluorescein-Based Isostructural Coordination Polymers for Enhanced Photocatalytic Hydrogen Evolution under Visible Light. Crystal Growth & Design 2023, 23 (11) , 8407-8414. https://doi.org/10.1021/acs.cgd.3c01065
  21. Xin Zheng, Rosmi Reji, Matthew C. Drummer, Haiying He, Jens Niklas, Nicholas P. Weingartz, Igor L. Bolotin, Lin X. Chen, Oleg G. Poluektov, Peter Zapol, Ksenija D. Glusac. Facile Optical Gap Tuning in Nanographene Metal–Organic Frameworks. ACS Applied Optical Materials 2023, 1 (10) , 1643-1650. https://doi.org/10.1021/acsaom.3c00220
  22. Natalia M. Padial, Clara Chinchilla-Garzón, Neyvis Almora-Barrios, Javier Castells-Gil, Javier González-Platas, Sergio Tatay, Carlos Martí-Gastaldo. Isoreticular Expansion and Linker-Enabled Control of Interpenetration in Titanium–Organic Frameworks. Journal of the American Chemical Society 2023, 145 (39) , 21397-21407. https://doi.org/10.1021/jacs.3c06590
  23. Zoe M. Soilis, Tae Hoon Choi, Joe Brennan, Renee R. Frontiera, J. Karl Johnson, Nathaniel L. Rosi. Ligand Chromophore Modification Approach for Predictive Incremental Tuning of Metal–Organic Framework Color. Chemistry of Materials 2023, 35 (18) , 7741-7749. https://doi.org/10.1021/acs.chemmater.3c01603
  24. Jerome Canivet, Florian M. Wisser. Metal–Organic Framework Catalysts for Solar Fuels: Light-Driven Conversion of Carbon Dioxide into Formic Acid. ACS Applied Energy Materials 2023, 6 (18) , 9027-9043. https://doi.org/10.1021/acsaem.2c03731
  25. Cheol Hyoun Ahn, Won Seok Yang, Jeong Jae Kim, Hyung Koun Cho. Nitrogen-Doped Amorphous Carbon/Dual-Phasic TiO2 Nanocomposite Electrodes Derived from Ti-Based Metal–Organic Frameworks Designed with a Mixed Linker Combination for High-Rate Lithium Storage. ACS Sustainable Chemistry & Engineering 2023, 11 (38) , 14046-14055. https://doi.org/10.1021/acssuschemeng.3c03350
  26. Pedro H. M. Andrade, Hania Ahouari, Christophe Volkringer, Thierry Loiseau, Hervé Vezin, Matthieu Hureau, Alain Moissette. Electron-Donor Functional Groups, Band Gap Tailoring, and Efficient Charge Separation: Three Keys To Improve the Gaseous Iodine Uptake in MOF Materials. ACS Applied Materials & Interfaces 2023, 15 (25) , 31032-31048. https://doi.org/10.1021/acsami.3c04955
  27. Yamei Li, Shujun Wang, Yan Zhao, Yueyuan Li, Ping Wang, Hongqiang Xie, Peiqing Zhao, Yueyun Li, Qing Liu, Qin Wei. Design of a Double-Photoelectrode Sensing System with a Metal–Organic Framework-Based Antenna-like Strategy for Highly Sensitive Detection of PD-L1. Analytical Chemistry 2023, 95 (22) , 8720-8727. https://doi.org/10.1021/acs.analchem.3c01516
  28. Nikita Kolobov, Abdelali Zaki, Katarzyna Świrk, Partha Maity, Luis Garzon-Tovar, Giasemi K. Angeli, Alla Dikhtiarenko, G. Delahay, Pantelis N. Trikalitis, Abdul-Hamid Emwas, Amandine Cadiau, Omar F. Mohammed, Christopher H. Hendon, Karim Adil, Jorge Gascon. Understanding Photocatalytic Activity Dependence on Node Topology in Ti-Based Metal–Organic Frameworks. ACS Materials Letters 2023, 5 (5) , 1481-1487. https://doi.org/10.1021/acsmaterialslett.2c01115
  29. Jacob T. Bryant, Matthew W. Logan, Zhihengyu Chen, Marcus Djokic, Daniel R. Cairnie, Demetrius A. Vazquez-Molina, A. Nijamudheen, Kyle R. Langlois, Michael J. Markley, Gisselle Pombar, Ashley A. Holland, Jonathan D. Caranto, James K. Harper, Amanda J. Morris, Jose L. Mendoza-Cortes, Titel Jurca, Karena W. Chapman, Fernando J. Uribe-Romo. Synergistic Steric and Electronic Effects on the Photoredox Catalysis by a Multivariate Library of Titania Metal–Organic Frameworks. Journal of the American Chemical Society 2023, 145 (8) , 4589-4600. https://doi.org/10.1021/jacs.2c12147
  30. Honglin Ma, Hongwei Jin, Yanli Li, Bilian Ni, Yi Li, Shuping Huang, Wei Lin, Yongfan Zhang. Tuning of Second-Harmonic Generation in Zn-Based Metal–Organic Frameworks by Controlling the Structural Interpenetrations: A First-Principles Investigation. The Journal of Physical Chemistry C 2023, 127 (4) , 2058-2068. https://doi.org/10.1021/acs.jpcc.2c07986
  31. Sergio Navalón, Amarajothi Dhakshinamoorthy, Mercedes Álvaro, Belén Ferrer, Hermenegildo García. Metal–Organic Frameworks as Photocatalysts for Solar-Driven Overall Water Splitting. Chemical Reviews 2023, 123 (1) , 445-490. https://doi.org/10.1021/acs.chemrev.2c00460
  32. Xin Xin, Zhanfeng Zhao, Yao Chen, Jiangdan Tan, Yonghui Shi, Hanjie Ren, Dong Yang, Zhongyi Jiang. Dual-Ligand Ti-MOFs with Push–Pull Effect for Photocatalytic H2 Production. ACS Applied Materials & Interfaces 2023, 15 (1) , 1053-1062. https://doi.org/10.1021/acsami.2c17829
  33. Vadia Foziya Yusuf, Naved I. Malek, Suresh Kumar Kailasa. Review on Metal–Organic Framework Classification, Synthetic Approaches, and Influencing Factors: Applications in Energy, Drug Delivery, and Wastewater Treatment. ACS Omega 2022, 7 (49) , 44507-44531. https://doi.org/10.1021/acsomega.2c05310
  34. Chun-Lei Yang, Guang-Hui Yu, Ai-Xuan Yu, Dong-Ying Du, Zhongmin Su. Lanthanide(III)-Modified MIL-125(Ti-Ln) (Ln = Eu or Tb) for the Detection of Cu(II) and Fe(III) Ions. Crystal Growth & Design 2022, 22 (12) , 6960-6966. https://doi.org/10.1021/acs.cgd.2c00635
  35. Saddam Sk, Indranil Mondal, Arup Mahata, B. Moses Abraham, Chandrani Nayak, Dibyendu Bhattacharyya, Shambhu Nath Jha, Rajib Ghosh, Ujjwal Pal. Function of Defects in NH2-MIL-125@PANI@Co3O4 Photocatalyst for Efficient Hydrogen Evolution. ACS Applied Energy Materials 2022, 5 (10) , 12324-12335. https://doi.org/10.1021/acsaem.2c01899
  36. Nan-Chieh Chiu, Makenzie T. Nord, Longteng Tang, Logan S. Lancaster, Jacob S. Hirschi, Samuel K. Wolff, Elan Maiti Hutchinson, Konstantinos A. Goulas, William F. Stickle, Tim J. Zuehlsdorff, Chong Fang, Kyriakos C. Stylianou. Designing Dual-Functional Metal–Organic Frameworks for Photocatalysis. Chemistry of Materials 2022, 34 (19) , 8798-8807. https://doi.org/10.1021/acs.chemmater.2c02089
  37. Yinghao Wen, Ángel Rentería-Gómez, Gregory S. Day, Mallory F. Smith, Tian-Hao Yan, Ray Osman K. Ozdemir, Osvaldo Gutierrez, Virender K. Sharma, Xingmao Ma, Hong-Cai Zhou. Integrated Photocatalytic Reduction and Oxidation of Perfluorooctanoic Acid by Metal–Organic Frameworks: Key Insights into the Degradation Mechanisms. Journal of the American Chemical Society 2022, 144 (26) , 11840-11850. https://doi.org/10.1021/jacs.2c04341
  38. Mingyang Li, Zhiguo Liu, Shiqun Wu, Jinlong Zhang. Advances for CO2 Photocatalytic Reduction in Porous Ti-Based Photocatalysts. ACS ES&T Engineering 2022, 2 (6) , 942-956. https://doi.org/10.1021/acsestengg.1c00447
  39. Dietger Van den Eynden, Rohan Pokratath, Jonathan De Roo. Nonaqueous Chemistry of Group 4 Oxo Clusters and Colloidal Metal Oxide Nanocrystals. Chemical Reviews 2022, 122 (11) , 10538-10572. https://doi.org/10.1021/acs.chemrev.1c01008
  40. Nisthaben Patel, Pooja Shukla, Prem Lama, Sourav Das, Tapan K. Pal. Engineering of Metal–Organic Frameworks as Ratiometric Sensors. Crystal Growth & Design 2022, 22 (5) , 3518-3564. https://doi.org/10.1021/acs.cgd.1c01268
  41. Arif I. Inamdar, Batjargal Sainbileg, Chi-Jia Lin, Muhammad Usman, Saqib Kamal, Kuan-Ru Chiou, Abhishek Pathak, Tzuoo-Tsair Luo, Khasim Saheb Bayikadi, Raman Sankar, Jenq-Wei Chen, Tien-Wen Tseng, Ruei-San Chen, Michitoshi Hayashi, Ming-Hsi Chiang, Kuang-Lieh Lu. Regimented Charge Transport Phenomena in Semiconductive Self-Assembled Rhenium Nanotubes. ACS Applied Materials & Interfaces 2022, 14 (10) , 12423-12433. https://doi.org/10.1021/acsami.2c00665
  42. Kevin Fabrizio, Khoa N. Le, Anastasia B. Andreeva, Christopher H. Hendon, Carl K. Brozek. Determining Optical Band Gaps of MOFs. ACS Materials Letters 2022, 4 (3) , 457-463. https://doi.org/10.1021/acsmaterialslett.1c00836
  43. Zhifen Guo, Xin Liu, Yan Che, Dashu Chen, Hongzhu Xing. One-Pot Dual Catalysis of a Photoactive Coordination Polymer and Palladium Acetate for the Highly Efficient Cross-Coupling Reaction via Interfacial Electron Transfer. Inorganic Chemistry 2022, 61 (5) , 2695-2705. https://doi.org/10.1021/acs.inorgchem.1c03961
  44. Brian Pattengale, Sarah Ostresh, Charles A. Schmuttenmaer, Jens Neu. Interrogating Light-initiated Dynamics in Metal–Organic Frameworks with Time-resolved Spectroscopy. Chemical Reviews 2022, 122 (1) , 132-166. https://doi.org/10.1021/acs.chemrev.1c00528
  45. Guangsong Yuan, Lichuan Tan, Peng Wang, Yongchao Wang, Cuijuan Wang, Hongjian Yan, Yao-Yu Wang. MOF-COF Composite Photocatalysts: Design, Synthesis, and Mechanism. Crystal Growth & Design 2022, 22 (1) , 893-908. https://doi.org/10.1021/acs.cgd.1c01071
  46. Yiran Wang, Michael E. Ziebel, Lei Sun, J. Tyler Gish, Tyler J. Pearson, Xue-Zeng Lu, Agnes E. Thorarinsdottir, Mark C. Hersam, Jeffrey R. Long, Danna E. Freedman, James M. Rondinelli, Danilo Puggioni, T. David Harris. Strong Magnetocrystalline Anisotropy Arising from Metal–Ligand Covalency in a Metal–Organic Candidate for 2D Magnetic Order. Chemistry of Materials 2021, 33 (22) , 8712-8721. https://doi.org/10.1021/acs.chemmater.1c02670
  47. Yang Liu, Chensi Tang, Min Cheng, Ming Chen, Sha Chen, Lei Lei, Yashi Chen, Huan Yi, Yukui Fu, Ling Li. Polyoxometalate@Metal–Organic Framework Composites as Effective Photocatalysts. ACS Catalysis 2021, 11 (21) , 13374-13396. https://doi.org/10.1021/acscatal.1c03866
  48. Shabnam Khan Farhat Vakil Mohd Zeeshan M. Shahid . Postsynthetic Modification (PSM) in Metal−Organic Frameworks (MOFs): Icing on the Cake. , 83-115. https://doi.org/10.1021/bk-2021-1393.ch004
  49. Lei Zou Ha L. Nguyen . Metal−Organic Frameworks for Photoreduction of CO2. , 173-202. https://doi.org/10.1021/bk-2021-1393.ch008
  50. Kajal Saini Shivbabu Yadav Monika Jain Arvind Gupta Smita S. Kumar . Recent Advances and Challenges in Selective Environmental Applications of Metal−Organic Frameworks. , 223-245. https://doi.org/10.1021/bk-2021-1394.ch009
  51. Anurag Prakash Sunda Sonia Yadav . Advances in Environmental Applications of Metal–Organic Frameworks. , 25-52. https://doi.org/10.1021/bk-2021-1395.ch002
  52. Xianxian Kong, Qianqian Pan, Shuang Song, Zhiqiao He, Tao Zeng, Yan Yu. Dual Metal UiO-Type Metal–Organic Frameworks for Solar-Driven Photocatalytic Hydrogen Evolution. The Journal of Physical Chemistry C 2021, 125 (37) , 20320-20330. https://doi.org/10.1021/acs.jpcc.1c05866
  53. Lingzhen Zeng, Yonghua Cao, Zhe Li, Yiheng Dai, Yongke Wang, Bing An, Jingzheng Zhang, Han Li, Yang Zhou, Wenbin Lin, Cheng Wang. Multiple Cuprous Centers Supported on a Titanium-Based Metal–Organic Framework Catalyze CO2 Hydrogenation to Ethylene. ACS Catalysis 2021, 11 (18) , 11696-11705. https://doi.org/10.1021/acscatal.1c01939
  54. Kuan Wang, Bing Xue, Jun-Lei Wang, Zhen-Hong He, Song-Song Li, Dan Wang, Wei-Tao Wang, Yang Yang, Zhao-Tie Liu. Construction of Indium Oxide/N-Doped Titanium Dioxide Hybrid Photocatalysts for Efficient and Selective Oxidation of Cyclohexane to Cyclohexanone. The Journal of Physical Chemistry C 2021, 125 (36) , 19791-19801. https://doi.org/10.1021/acs.jpcc.1c05730
  55. Shanshan Zhou, Junli Guo, Zhenqing Dai, Changyong Liu, Junjian Zhao, Zhida Gao, Yan-Yan Song. Engineering Homochiral MOFs in TiO2 Nanotubes as Enantioselective Photoelectrochemical Electrode for Chiral Recognition. Analytical Chemistry 2021, 93 (35) , 12067-12074. https://doi.org/10.1021/acs.analchem.1c02326
  56. Kevin Fabrizio, Konstantinos A. Lazarou, Lillian I. Payne, Liam P. Twight, Stephen Golledge, Christopher H. Hendon, Carl K. Brozek. Tunable Band Gaps in MUV-10(M): A Family of Photoredox-Active MOFs with Earth-Abundant Open Metal Sites. Journal of the American Chemical Society 2021, 143 (32) , 12609-12621. https://doi.org/10.1021/jacs.1c04808
  57. Shenjie Wu, Daming Ren, Kang Zhou, Hai-Lun Xia, Xiao-Yuan Liu, Xiaotai Wang, Jing Li. Linker Engineering toward Full-Color Emission of UiO-68 Type Metal–Organic Frameworks. Journal of the American Chemical Society 2021, 143 (28) , 10547-10552. https://doi.org/10.1021/jacs.1c04810
  58. Qiu Fu, Yanhua Liu, Jilong Mo, Yanxu Lu, Chenchen Cai, Zhenxia Zhao, Shuangfei Wang, Shuangxi Nie. Improved Capture and Removal Efficiency of Gaseous Acetaldehyde by a Self-Powered Photocatalytic System with an External Electric Field. ACS Nano 2021, 15 (6) , 10577-10586. https://doi.org/10.1021/acsnano.1c03230
  59. Rushie Mae Cedeno, Ruel Cedeno, Maebienne Anjelica Gapol, Tharit Lerdwiriyanupap, Sarawoot Impeng, Adrian Flood, Sareeya Bureekaew. Bandgap Modulation in Zr-Based Metal–Organic Frameworks by Mixed-Linker Approach. Inorganic Chemistry 2021, 60 (12) , 8908-8916. https://doi.org/10.1021/acs.inorgchem.1c00792
  60. Siyuan Chen, Xiulan Xu, Hongyi Gao, Jingjing Wang, Ang Li, Xiaowei Zhang. Fine-Tuning the Metal Oxo Cluster Composition and Phase Structure of Ni/Ti Bimetallic MOFs for Efficient CO2 Reduction. The Journal of Physical Chemistry C 2021, 125 (17) , 9200-9209. https://doi.org/10.1021/acs.jpcc.1c03239
  61. Teng-Fei Chen, Lin-Yang Wang, Yi-Fan Wang, Hui Gao, Jing He, Guo Wang, Xiang-Fu Meng, Yi-Shi Wu, Yu-Heng Deng, Chong-Qing Wan. Facile Strategy for Efficient Charge Separation and High Photoactivity of Mixed-Linker MOFs. ACS Applied Materials & Interfaces 2021, 13 (17) , 20897-20905. https://doi.org/10.1021/acsami.1c04130
  62. Stavroula Kampouri, Fatmah M. Ebrahim, Maria Fumanal, Makenzie Nord, Pascal A. Schouwink, Radwan Elzein, Rafik Addou, Gregory S. Herman, Berend Smit, Christopher P. Ireland, Kyriakos C. Stylianou. Enhanced Visible-Light-Driven Hydrogen Production through MOF/MOF Heterojunctions. ACS Applied Materials & Interfaces 2021, 13 (12) , 14239-14247. https://doi.org/10.1021/acsami.0c23163
  63. Shuyang Yao, Wei-Hui Fang, Yayong Sun, San-Tai Wang, Jian Zhang. Mesoporous Assembly of Aluminum Molecular Rings for Iodine Capture. Journal of the American Chemical Society 2021, 143 (5) , 2325-2330. https://doi.org/10.1021/jacs.0c11778
  64. Farrokh Mohammadnezhad, Stavroula Kampouri, Samuel K. Wolff, Yunkai Xu, Mostafa Feyzi, Jung-Hoon Lee, Xiulei Ji, Kyriakos C. Stylianou. Tuning the Optoelectronic Properties of Hybrid Functionalized MIL-125-NH2 for Photocatalytic Hydrogen Evolution. ACS Applied Materials & Interfaces 2021, 13 (4) , 5044-5051. https://doi.org/10.1021/acsami.0c19345
  65. Jiacheng Xing, Danhua Yuan, Hua Xie, Nan Wang, Hanbang Liu, Liping Yang, Yunpeng Xu, Zhongmin Liu. Preparation of Efficient Ultraviolet-Protective Transparent Coating by Using a Titanium-Containing Hybrid Oligomer. ACS Applied Materials & Interfaces 2021, 13 (4) , 5592-5601. https://doi.org/10.1021/acsami.0c20862
  66. Belén Lerma-Berlanga, Carolina R. Ganivet, Neyvis Almora-Barrios, Sergio Tatay, Yong Peng, Josep Albero, Oscar Fabelo, Javier González-Platas, Hermenegildo García, Natalia M. Padial, Carlos Martí-Gastaldo. Effect of Linker Distribution in the Photocatalytic Activity of Multivariate Mesoporous Crystals. Journal of the American Chemical Society 2021, 143 (4) , 1798-1806. https://doi.org/10.1021/jacs.0c09015
  67. Maria A. Syzgantseva, Nikolay F. Stepanov, Olga A. Syzgantseva. Effect of Ligand Functionalization on the Rate of Charge Carrier Recombination in Metal–Organic Frameworks: A Case Study of MIL-125. The Journal of Physical Chemistry Letters 2021, 12 (2) , 829-834. https://doi.org/10.1021/acs.jpclett.0c03634
  68. Zi-You Zhang, Guan-Dong Zhang, Xi-Xi Sheng, Qian-Wen Ding, Yu-Zhuo Bai, Yan Su, Hong-Ke Liu, Zhi Su. Efficient MO Dye Degradation Catalyst of Cu(I)-Based Coordination Complex from Dissolution–Recrystallization Structural Transformation. Crystal Growth & Design 2021, 21 (1) , 333-343. https://doi.org/10.1021/acs.cgd.0c01216
  69. Niloufar Afzali, Shahram Tangestaninejad, Reza Keshavarzi, Valiollah Mirkhani, Javad Nematollahi, Majid Moghadam, Iraj Mohammadpoor-Baltork, Max Reimer, Selina Olthof, Axel Klein, Sixto Gimenez. Hierarchical Ti-Based MOF with Embedded RuO2 Nanoparticles: a Highly Efficient Photoelectrode for Visible Light Water Oxidation. ACS Sustainable Chemistry & Engineering 2020, 8 (50) , 18366-18376. https://doi.org/10.1021/acssuschemeng.0c04682
  70. Yong-Sheng Wei, Mei Zhang, Ruqiang Zou, Qiang Xu. Metal–Organic Framework-Based Catalysts with Single Metal Sites. Chemical Reviews 2020, 120 (21) , 12089-12174. https://doi.org/10.1021/acs.chemrev.9b00757
  71. Jenny G. Vitillo, Davide Presti, Ignacio Luz, Francesc X. Llabrés i Xamena, Silvia Bordiga. Visible-Light-Driven Photocatalytic Coupling of Benzylamine over Titanium-Based MIL-125-NH2 Metal–Organic Framework: A Mechanistic Study. The Journal of Physical Chemistry C 2020, 124 (43) , 23707-23715. https://doi.org/10.1021/acs.jpcc.0c06950
  72. Jenna L. Mancuso, Austin M. Mroz, Khoa N. Le, Christopher H. Hendon. Electronic Structure Modeling of Metal–Organic Frameworks. Chemical Reviews 2020, 120 (16) , 8641-8715. https://doi.org/10.1021/acs.chemrev.0c00148
  73. Jannik Benecke, Erik Svensson Grape, Alexander Fuß, Stephan Wöhlbrandt, Tobias A. Engesser, A. Ken Inge, Norbert Stock, Helge Reinsch. Polymorphous Indium Metal–Organic Frameworks Based on a Ferrocene Linker: Redox Activity, Porosity, and Structural Diversity. Inorganic Chemistry 2020, 59 (14) , 9969-9978. https://doi.org/10.1021/acs.inorgchem.0c01124
  74. Bilian Ni, Weiming Sun, Jie Kang, Yongfan Zhang. Understanding the Linear and Second-Order Nonlinear Optical Properties of UiO-66-Derived Metal–Organic Frameworks: A Comprehensive DFT Study. The Journal of Physical Chemistry C 2020, 124 (21) , 11595-11608. https://doi.org/10.1021/acs.jpcc.0c01580
  75. Andres Ortega-Guerrero, Maria Fumanal, Gloria Capano, Ivano Tavernelli, Berend Smit. Insights into the Electronic Properties and Charge Transfer Mechanism of a Porphyrin Ruthenium-Based Metal–Organic Framework. Chemistry of Materials 2020, 32 (10) , 4194-4204. https://doi.org/10.1021/acs.chemmater.0c00356
  76. Xiao-Yao Dao, Xia-Fei Xie, Jin-Han Guo, Xiao-Yu Zhang, Yan-Shang Kang, Wei-Yin Sun. Boosting Photocatalytic CO2 Reduction Efficiency by Heterostructures of NH2-MIL-101(Fe)/g-C3N4. ACS Applied Energy Materials 2020, 3 (4) , 3946-3954. https://doi.org/10.1021/acsaem.0c00352
  77. Sada Venkateswarlu, Anikireddy Seshadri Reddy, Atanu Panda, Debraj Sarkar, Younghu Son, Minyoung Yoon. Reversible Fluorescence Switching of Metal–Organic Framework Nanoparticles for Use as Security Ink and Detection of Pb2+ Ions in Aqueous Media. ACS Applied Nano Materials 2020, 3 (4) , 3684-3692. https://doi.org/10.1021/acsanm.0c00392
  78. Indrani Choudhuri, Donald G. Truhlar. Photogenerated Charge Separation in a CdSe Nanocluster Encapsulated in a Metal–Organic Framework for Improved Photocatalysis. The Journal of Physical Chemistry C 2020, 124 (16) , 8504-8513. https://doi.org/10.1021/acs.jpcc.0c00007
  79. Maria A. Syzgantseva, Nikolay F. Stepanov, Olga A. Syzgantseva. Band Alignment as the Method for Modifying Electronic Structure of Metal−Organic Frameworks. ACS Applied Materials & Interfaces 2020, 12 (15) , 17611-17619. https://doi.org/10.1021/acsami.0c02094
  80. Haowei Huang, Bapi Pradhan, Johan Hofkens, Maarten B. J. Roeffaers, Julian A. Steele. Solar-Driven Metal Halide Perovskite Photocatalysis: Design, Stability, and Performance. ACS Energy Letters 2020, 5 (4) , 1107-1123. https://doi.org/10.1021/acsenergylett.0c00058
  81. Meijuan Chen, Xiaoyan Wei, Liaoliao Zhao, Yu Huang, Shun-cheng Lee, Wingkei Ho, Kehao Chen. Novel N/Carbon Quantum Dot Modified MIL-125(Ti) Composite for Enhanced Visible-Light Photocatalytic Removal of NO. Industrial & Engineering Chemistry Research 2020, 59 (14) , 6470-6478. https://doi.org/10.1021/acs.iecr.9b06816
  82. Gloria Capano, Francesco Ambrosio, Stavroula Kampouri, Kyriakos C. Stylianou, Alfredo Pasquarello, Berend Smit. On the Electronic and Optical Properties of Metal–Organic Frameworks: Case Study of MIL-125 and MIL-125-NH2. The Journal of Physical Chemistry C 2020, 124 (7) , 4065-4072. https://doi.org/10.1021/acs.jpcc.9b09453
  83. Dongxu Gu, Weiting Yang, Guohua Ning, Fuxiang Wang, Shuixing Wu, Xiaodong Shi, Yinghui Wang, Qinhe Pan. In Situ Ligand Formation-Driven Synthesis of a Uranyl Organic Framework as a Turn-on Fluorescent pH Sensor. Inorganic Chemistry 2020, 59 (3) , 1778-1784. https://doi.org/10.1021/acs.inorgchem.9b02999
  84. Pei Yang, Zong-Wen Zhang, Guo-Dong Zou, Yang Huang, Na Li, Yang Fan. Template Thermolysis to Create a Carbon Dots-Embedded Mesoporous Titanium-Oxo Sulfate Framework for Visible-Light Photocatalytic Applications. Inorganic Chemistry 2020, 59 (3) , 2062-2069. https://doi.org/10.1021/acs.inorgchem.9b03493
  85. Grégoire Paille, Maria Gomez-Mingot, Catherine Roch-Marchal, Mohamed Haouas, Youven Benseghir, Thomas Pino, Minh-Huong Ha-Thi, Gautier Landrot, Pierre Mialane, Marc Fontecave, Anne Dolbecq, Caroline Mellot-Draznieks. Thin Films of Fully Noble Metal-Free POM@MOF for Photocatalytic Water Oxidation. ACS Applied Materials & Interfaces 2019, 11 (51) , 47837-47845. https://doi.org/10.1021/acsami.9b13121
  86. Zakary Lionet, Tae-Ho Kim, Yu Horiuchi, Soo Wohn Lee, Masaya Matsuoka. Linker Engineering of Iron-Based MOFs for Efficient Visible-Light-Driven Water Oxidation Reaction. The Journal of Physical Chemistry C 2019, 123 (45) , 27501-27508. https://doi.org/10.1021/acs.jpcc.9b06838
  87. Subrata Mandal, Sachin P. Nanavati, David J. Willock, Rajakumar Ananthakrishnan. Photoactive Ag(I)-Based Coordination Polymer as a Potential Semiconductor for Photocatalytic Water Splitting and Environmental Remediation: Experimental and Theoretical Approach. The Journal of Physical Chemistry C 2019, 123 (39) , 23940-23950. https://doi.org/10.1021/acs.jpcc.9b04957
  88. Saied Md Pratik, Christopher J. Cramer. Predicted Efficient Visible-Light Driven Water Splitting and Carbon Dioxide Reduction Using Photoredox-Active UiO-NDI Metal Organic Framework. The Journal of Physical Chemistry C 2019, 123 (32) , 19778-19785. https://doi.org/10.1021/acs.jpcc.9b05693
  89. Jiwei Ma, Wei Li, Nikolay T. Le, Jesús A. Díaz-Real, Monique Body, Christophe Legein, Jolanta Światowska, Arnaud Demortière, Olaf J. Borkiewicz, Elizaveta A. Konstantinova, Alexander I. Kokorin, Nicolas Alonso-Vante, Christel Laberty-Robert, Damien Dambournet. Red-Shifted Absorptions of Cation-Defective and Surface-Functionalized Anatase with Enhanced Photoelectrochemical Properties. ACS Omega 2019, 4 (6) , 10929-10938. https://doi.org/10.1021/acsomega.9b01219
  90. Dongying Shi, Rui Zheng, Chun-Sen Liu, Di-Ming Chen, Junwei Zhao, Miao Du. Dual-Functionalized Mixed Keggin- and Lindqvist-Type Cu24-Based POM@MOF for Visible-Light-Driven H2 and O2 Evolution. Inorganic Chemistry 2019, 58 (11) , 7229-7235. https://doi.org/10.1021/acs.inorgchem.9b00206
  91. Stavroula Kampouri, Kyriakos C. Stylianou. Dual-Functional Photocatalysis for Simultaneous Hydrogen Production and Oxidation of Organic Substances. ACS Catalysis 2019, 9 (5) , 4247-4270. https://doi.org/10.1021/acscatal.9b00332
  92. Bilian Ni, Xu Cai, Jing Lin, Yi Li, Shuping Huang, Zhaohui Li, Yongfan Zhang. Tailoring the Linear and Second-Order Nonlinear Optical Responses of the Titanium-MIL-125 Metal–Organic Framework through Ligand Functionalization: A First Principles Study. The Journal of Physical Chemistry C 2019, 123 (1) , 653-664. https://doi.org/10.1021/acs.jpcc.8b08008
  93. Julian A. Bobb, Amr Awad Ibrahim, M. Samy El-Shall. Laser Synthesis of Carbonaceous TiO2 from Metal–Organic Frameworks: Optimum Support for Pd Nanoparticles for C–C Cross-Coupling Reactions. ACS Applied Nano Materials 2018, 1 (9) , 4852-4862. https://doi.org/10.1021/acsanm.8b01045
  94. Wei-Ming Liao, Jian-Hua Zhang, Zheng Wang, Yu-Lin Lu, Shao-Yun Yin, Hai-Ping Wang, Ya-Nan Fan, Mei Pan, Cheng-Yong Su. Semiconductive Amine-Functionalized Co(II)-MOF for Visible-Light-Driven Hydrogen Evolution and CO2 Reduction. Inorganic Chemistry 2018, 57 (18) , 11436-11442. https://doi.org/10.1021/acs.inorgchem.8b01265
  95. Tu N. Nguyen, Stavroula Kampouri, Bardiya Valizadeh, Wen Luo, Daniele Ongari, Ophélie Marie Planes, Andreas Züttel, Berend Smit, Kyriakos C. Stylianou. Photocatalytic Hydrogen Generation from a Visible-Light-Responsive Metal–Organic Framework System: Stability versus Activity of Molybdenum Sulfide Cocatalysts. ACS Applied Materials & Interfaces 2018, 10 (36) , 30035-30039. https://doi.org/10.1021/acsami.8b10010
  96. Asha P, Sukhendu Mandal. Series of Mn(II)/Mg(II)/Zn(II) Coordination Polymers with Azo/Alkene Functionalized Ligands. Crystal Growth & Design 2018, 18 (9) , 4937-4944. https://doi.org/10.1021/acs.cgd.8b00243
  97. UnJin Ryu, Seohyeon Jee, Joon-Suh Park, Il Ki Han, Ju Ho Lee, Minwoo Park, Kyung Min Choi. Nanocrystalline Titanium Metal–Organic Frameworks for Highly Efficient and Flexible Perovskite Solar Cells. ACS Nano 2018, 12 (5) , 4968-4975. https://doi.org/10.1021/acsnano.8b02079
  98. Shuai Yuan, Jun-Sheng Qin, Christina T. Lollar, Hong-Cai Zhou. Stable Metal–Organic Frameworks with Group 4 Metals: Current Status and Trends. ACS Central Science 2018, 4 (4) , 440-450. https://doi.org/10.1021/acscentsci.8b00073
  99. Shuai Yuan, Jun-Sheng Qin, Hai-Qun Xu, Jie Su, Daniel Rossi, Yuanping Chen, Liangliang Zhang, Christina Lollar, Qi Wang, Hai-Long Jiang, Dong Hee Son, Hongyi Xu, Zhehao Huang, Xiaodong Zou, and Hong-Cai Zhou . [Ti8Zr2O12(COO)16] Cluster: An Ideal Inorganic Building Unit for Photoactive Metal–Organic Frameworks. ACS Central Science 2018, 4 (1) , 105-111. https://doi.org/10.1021/acscentsci.7b00497
  100. Yi Yu, Lindong Lan, and Huaqiang Cai . Integrating Down-Shifting and Down-Conversion into Metal–Organic Frameworks to Enhance the Spectral Conversion for Solar Cells. The Journal of Physical Chemistry C 2018, 122 (1) , 96-104. https://doi.org/10.1021/acs.jpcc.7b09184
Load more citations

Journal of the American Chemical Society

Cite this: J. Am. Chem. Soc. 2013, 135, 30, 10942–10945
Click to copy citationCitation copied!
https://doi.org/10.1021/ja405350u
Published July 10, 2013

Copyright © 2013 American Chemical Society. This publication is licensed under these Terms of Use.

Article Views

31k

Altmetric

-

Citations

Learn about these metrics

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • Abstract

    Figure 1

    Figure 1. (left) [001] and (right) [010] orientations of MIL-125. Ti, O, C, and H are depicted in blue, red, black, and beige, respectively.

    Figure 2

    Figure 2. Neutral linking molecules explored in this study: (left) monosubstituted linkers bdc-R; (right) diaminated linker bdc-(NH2)2.

    Figure 3

    Figure 3. SEM images of (a) MIL-125, (b) 10%-MIL-125-NH2, (c) 50%-MIL-125-NH2, (d) 100%-MIL-125-NH2, and (e) 10%-MIL-125-(NH2)2/90%-MIL-125-NH2, with their respective UV spectra and powder colors. All of the monoaminated systems show the same absorption onset.

    Figure 4

    Figure 4. (a, b) Frontier electron density of unsubstituted MIL-125: (a) the valence band is composed of the bdc C 2p orbitals (shown on the right), making these favorable for linker-based band gap modifications; (b) the conduction band is composed of O 2p orbitals and Ti 3d orbitals (shown on the right), suggesting that modifications of the aromatic bdc units are unlikely to affect the CB. Isovalue = 0.001 e·Å–3. (c) PBEsol band structures for synthetic MIL-125 (black), 10%-MIL-125-NH2 (blue), 10%-MIL-125-(NH2)2/90%-MIL-125-NH2 (orange) and the theoretical 10%-MIL-125-(NH2)2 (green). The orange bands, which have been truncated to improve the clarity of the band structures, maintain flat characteristics. The enlarged section emphasizes the VB-1...12 of the 11 nondegenerate monoamine bands. The energies are adjusted such that the highest occupied non-amine band is at 0 eV. The changes in the occupied VBs are depicted by the arrows. PBEsol is a qualitative approach; band structures could not be computed at the HSE06 level of theory because of the system size. (d) HSE06-calculated VB and CB energies of MIL-125-NH2 models containing increasing numbers of bdc-NH2 linkers [i.e. 0 (MIL-125) to 12 (100%-MIL-125-NH2)] per unit cell. The degree of amination does not affect the band gap.

    Figure 5

    Figure 5. HSE06-predicted band gaps of MIL-125 (black) and its analogues containing functionalized bdc linkers. Substitutions of ca. 10% (i.e., one functionalized linker per unit cell) were made, unless otherwise stated. Control of the band gap was achieved by varying the substituent.

  • References


    This article references 41 other publications.

    1. 1
      Park, J.; Wang, Z. U.; Sun, L.-B.; Chen, Y.-P.; Zhou, H.-C. J. Am. Chem. Soc. 2012, 134, 20110
    2. 2
      Roberts, J. M.; Fini, B. M.; Sarjeant, A. A.; Farha, O. K.; Hupp, J. T.; Scheidt, K. A. J. Am. Chem. Soc. 2012, 134, 3334
    3. 3
      Martin, R. L.; Haranczyk, M. Chem. Sci. 2013, 4, 1781
    4. 4

      Thematic issue on MOFs:

      Chem. Rev. 2012, 112, 673 1268.
    5. 5
      Li, J.-R.; Kuppler, R. J.; Zhou, H.-C. Chem. Soc. Rev. 2009, 38, 1477
    6. 6
      Allendorf, M. D.; Schwartzberg, A.; Stavila, V.; Talin, A. A. Chem.—Eur. J. 2011, 17, 11372
    7. 7
      Farrusseng, D.; Aguado, S.; Pinel, C. Angew. Chem., Int. Ed. 2009, 48, 7502
    8. 8
      Ma, L.; Abney, C.; Lin, W. Chem. Soc. Rev. 2009, 38, 1248
    9. 9
      Corma, A.; García, H.; Llabrés i Xamena, F. X. Chem. Rev. 2010, 110, 4606
    10. 10
      Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O’Keeffe, M.; Yaghi, O. M. Science 2008, 319, 939
    11. 11
      Alvaro, M.; Carbonell, E.; Ferrer, B.; Llabrés i Xamena, F. X.; García, H. Chem.—Eur. J. 2007, 13, 5106
    12. 12
      Silva, C. G.; Corma, A.; García, H. J. Mater. Chem. 2010, 20, 3141
    13. 13
      Wang, J.-L.; Wang, C.; Lin, W. ACS Catal. 2012, 2, 2630
    14. 14
      Gascon, J.; Hernández-Alonso, M. D.; Almeida, A. R.; van Klink, G. P. M.; Kapteijn, F.; Mul, G. ChemSusChem 2008, 1, 981
    15. 15
      Lin, C.-K.; Zhao, D.; Gao, W.-Y.; Yang, Z.; Ye, J.; Xu, T.; Ge, Q.; Ma, S.; Liu, D.-J. Inorg. Chem. 2012, 51, 9039
    16. 16
      Fuentes-Cabrera, M.; Nicholson, D. M.; Sumpter, B. G.; Widom, M. J. Chem. Phys. 2005, 123124713
    17. 17
      Choi, J. H.; Choi, Y. J.; Lee, J. W.; Shin, W. H.; Kang, J. K. Phys. Chem. Chem. Phys. 2009, 11, 628
    18. 18
      Kuc, A.; Enyashin, A.; Seifert, G. J. Phys. Chem. B 2007, 111, 8179
    19. 19
      Yang, L.-M.; Ravindran, P.; Vajeeston, P.; Tilset, M. RSC Adv. 2012, 2, 1618
    20. 20
      Yang, L.-M.; Ravindran, P.; Vajeeston, P.; Tilset, M. J. Mater. Chem. 2012, 22, 16324
    21. 21
      Choi, J. H.; Jeon, H. J.; Choi, K. M.; Kang, J. K. J. Mater. Chem. 2012, 22, 10144
    22. 22
      Hendon, C. H.; Tiana, D.; Vaid, T. P.; Walsh, A. J. Mater. Chem. C 2013, 1, 95
    23. 23
      Dan-Hardi, M.; Serre, C.; Frot, T.; Rozes, L.; Maurin, G.; Sanchez, C.; Férey, G. J. Am. Chem. Soc. 2009, 131, 10857
    24. 24
      Walsh, A.; Catlow, C. R. A. ChemPhysChem 2010, 11, 2341
    25. 25
      Zlotea, C.; Phanon, D.; Mazaj, M.; Heurtaux, D.; Guillerm, V.; Serre, C.; Horcajada, P.; Devic, T.; Magnier, E.; Cuevas, F.; Férey, G.; Llewellyn, P. L.; Latroche, M. Dalton Trans. 2011, 40, 4879
    26. 26
      Fu, Y.; Sun, D.; Chen, Y.; Huang, R.; Ding, Z.; Fu, X.; Li, Z. Angew. Chem. Int. Ed. 2012, 51, 3364 3367
    27. 27
      Horiuchi, Y.; Toyao, T.; Saito, M.; Mochizuki, K.; Iwata, M.; Higashimura, H.; Anpo, M.; Matsuoka, M. J. Phys. Chem. C 2012, 116, 20848
    28. 28
      Kim, S.-N.; Kim, J.; Kim, H.-Y.; Cho, H.-Y.; Ahn, W.-S. Catal. Today 2013, 204, 85
    29. 29
      de Miguel, M.; Ragon, F.; Devic, T.; Serre, C.; Horcajada, P.; García, H. ChemPhysChem 2012, 13, 3651
    30. 30
      Long, J.; Wang, S.; Ding, Z.; Wang, S.; Zhou, Y.; Huang, L.; Wang, X. Chem. Commun. 2012, 48, 11656
    31. 31
      Devic, T.; Horcajada, P.; Serre, C.; Salles, F.; Maurin, G.; Moulin, B.; Heurtaux, D.; Clet, G.; Vimont, A.; Grenéche, J.-M.; Le Ouay, B.; Moreau, F.; Magnier, E.; Filinchuk, Y.; Marrot, J.; Lavalley, J.-C.; Daturi, M.; Férey, G. J. Am. Chem. Soc. 2010, 132, 1127
    32. 32
      Torrisi, A.; Mellot-Draznieks, C.; Bell, R. G. J. Chem. Phys. 2010, 132044705
    33. 33
      Torrisi, A.; Bell, R. G.; Mellot-Draznieks, C. Cryst. Growth Des. 2010, 10, 2839
    34. 34
      Couck, S.; Denayer, J. F. M.; Baron, G. V.; Rémy, T.; Gascon, J.; Kapteijn, F. J. Am. Chem. Soc. 2009, 131, 6326
    35. 35
      Wang, X.; Li, H.; Hou, X.-J. J. Phys. Chem. C 2012, 116, 19814
    36. 36
      Jiang, D.; Keenan, L. L.; Burrows, A. D.; Edler, K. J. Chem. Commun. 2012, 48, 12053
    37. 37
      Politzer, P.; Abrahmsen, L.; Sjoberg, P. J. Am. Chem. Soc. 1984, 106, 855
    38. 38
      Cohen, S. M. Chem. Rev. 2012, 112, 970
    39. 39
      Hendon, C. H.; Tiana, D.; Walsh, A. Phys. Chem. Chem. Phys. 2012, 14, 13120
    40. 40
      Bunnett, J. F.; Morath, R. J.; Okamoto, T. J. Am. Chem. Soc. 1955, 77, 5055
    41. 41
      Tranchemontagne, D. J.; Hunt, J. R.; Yaghi, O. M. Tetrahedron 2008, 64, 8553
  • Supporting Information

    Supporting Information


    Synthetic procedures; PXRD, N2 sorption, and optical band gap data; and computational details. This material is available free of charge via the Internet at http://pubs.acs.org.


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.