ACS Publications. Most Trusted. Most Cited. Most Read
Dynamic Nuclear Polarization Enhanced NMR Spectroscopy for Pharmaceutical Formulations
My Activity

Figure 1Loading Img
  • Open Access
Article

Dynamic Nuclear Polarization Enhanced NMR Spectroscopy for Pharmaceutical Formulations
Click to copy article linkArticle link copied!

View Author Information
Centre de RMN à Trés Hauts Champs, Institut de Sciences Analytiques, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), 69100 Villeurbanne, France
Department of Chemistry, Laboratory of Inorganic Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland
Open PDFSupporting Information (1)

Journal of the American Chemical Society

Cite this: J. Am. Chem. Soc. 2014, 136, 6, 2324–2334
Click to copy citationCitation copied!
https://doi.org/10.1021/ja4092038
Published January 10, 2014

Copyright © 2014 American Chemical Society. This publication is licensed under these Terms of Use.

Abstract

Click to copy section linkSection link copied!

Dynamic nuclear polarization (DNP) enhanced solid-state NMR spectroscopy at 9.4 T is demonstrated for the detailed atomic-level characterization of commercial pharmaceutical formulations. To enable DNP experiments without major modifications of the formulations, the gently ground tablets are impregnated with solutions of biradical polarizing agents. The organic liquid used for impregnation (here 1,1,2,2-tetrachloroethane) is chosen so that the active pharmaceutical ingredient (API) is minimally perturbed. DNP enhancements (ε) of between 40 and 90 at 105 K were obtained for the microparticulate API within four different commercial formulations of the over-the-counter antihistamine drug cetirizine dihydrochloride. The different formulations contain between 4.8 and 8.7 wt % API. DNP enables the rapid acquisition with natural isotopic abundances of one- and two-dimensional 13C and 15N solid-state NMR spectra of the formulations while preserving the microstructure of the API particles. Here this allowed immediate identification of the amorphous form of the API in the tablet. API–excipient interactions were observed in high-sensitivity 1H–15N correlation spectra, revealing direct contacts between povidone and the API. The API domain sizes within the formulations were determined by measuring the variation of ε as a function of the polarization time and numerically modeling nuclear spin diffusion. Here we measure an API particle radius of 0.3 μm with a single particle model, while modeling with a Weibull distribution of particle sizes suggests most particles possess radii of around 0.07 μm.

Copyright © 2014 American Chemical Society

1 Introduction

Click to copy section linkSection link copied!

The characterization of the composition and structure of formulated multicomponent materials in general, and of pharmaceutical formulations in particular, is of great industrial importance today, yet in many respects it remains an unsolved analytical challenge. While several methods can be used as indirect probes of the properties of formulations, there are very few direct probes available. On the other hand, today solid-state NMR (together with diffraction methods) is frequently used to probe the solid-state structures of pure active pharmaceutical ingredients (APIs), often in the context of identifying structural polymorphs. (1-5) In this respect, solid-state NMR spectroscopy would appear to be a potentially powerful direct probe of structure for formulations.
In favorable cases, three-dimensional crystal structures can be determined from pure powdered samples by solid-state NMR with the NMR crystallography approach. This is accomplished either by directly measuring internuclear distances/proximities (e.g., 1H–1H, 1H–13C, 29Si–29Si, etc.) (6-10) or by comparing trial structures and computed NMR parameters and/or distances with observed parameters and/or internuclear distance constraints. (11-22) A number of other solid-state NMR techniques exploiting quadrupolar or uncommon spin-1/2 nuclei such as 7Li, 14N, 15N, 17O, 19F, 23Na, 35Cl, etc., have also been demonstrated as probes of structure and dynamics for organic solids. (23-36)
While all of these NMR based techniques have been successfully demonstrated for the characterization of pure crystalline powdered solids, it would be of great interest to extend these techniques to the characterization of APIs in formulations. This could enable solid-state NMR structure determination “in situ”, allowing polymorph screening and identification, quantification of the degree of crystallinity of the API, measurement of domain sizes, and/or the determination of API–excipient interactions. Characterization of these properties is especially important, since they influence the activity/release properties of the formulations, and the overall stability of the API phase. (30, 37-40) However, the characterization of formulated APIs by solid-state NMR is often challenging due to the combination of the intrinsically low sensitivity of NMR, long longitudinal relaxation times, (41, 42) and the low API content of many formulations (typically between 5 and 10 wt %).
Early solid-state NMR studies of formulated pharmaceuticals were performed on aspirin (2-acetoxybenzoic acid) and paracetamol (N-(4-hydroxyphenyl)ethanamide), because of the importance of these drugs, the very high API contents (>30 wt %), and limited number of excipients. (43-45) Byrn and co-workers subsequently demonstrated that natural abundance 13C CPMAS NMR spectra of formulated APIs with contents as low as 5 wt % could be acquired in 8–12 h. (37) Subsequent experiments demonstrated that natural abundance 13C solid-state NMR can be applied to formulated APIs with contents as low as 0.5 wt %; however, acquisition times are usually long (∼12–24 h). (25, 38, 39, 46) For these reasons, subsequent solid-state NMR studies of formulated APIs have exploited highly receptive nuclei and/or proton detection, (25, 31, 47-50) have been performed on formulations with relatively high API contents (43-46, 51) (>10 wt %), or used model formulations with a limited number of excipients. (39, 40, 46, 51) Studies of formulations containing many excipients and/or low API contents are relatively rare. (31, 37, 47, 52-54)
More importantly, the 1H and 13C solid-state NMR spectra of formulations generally possess many overlapping resonances from the large number of constituents, and multidimensional NMR spectra are generally required to restore spectral resolution and information content. Moreover, multidimensional methods are often essential to probe API–excipient interactions, or any of the other structural features discussed above. In formulations where resolution is high enough to permit 1H NMR experiments (47) or highly receptive nuclei are present (such as 19F and 23Na), multidimensional experiments are possible even at low API loadings. (23, 25, 31, 36) However, the low sensitivity of NMR usually precludes multidimensional acquisitions at natural isotopic abundance for 13C and 15N (to our knowledge, multidimensional 13C experiments have only been previously reported for model formulations with high API contents >30 wt %), (27, 48, 49, 51, 53, 55) and thus, low sensitivity is the key barrier to the introduction of in situ NMR structural characterization methods for formulations.
High field dynamic nuclear polarization (DNP) low temperature (∼105 K) magic angle spinning (MAS) experiments have been demonstrated to enhance the sensitivity of high field solid-state NMR experiments by several orders of magnitude. (56, 57) This technique has recently been applied to characterize biological systems (58-65) and materials. (42, 66-75) In such experiments, a polarizing agent, usually a stable exogenous biradical, (76) is homogeneously dispersed within the sample, resulting in a uniform distribution of enhanced polarization. This is obviously not suited to the analysis of microparticulate APIs within formulations. However, it was previously shown that the protons in the bulk of nanometer sized crystallites of polypeptides could be highly polarized through proton spin diffusion when the polarizing agent is restricted only to the surface of the crystals. (77) We have recently generalized this concept to show how very high polarization enhancements can be obtained from ordinary crystalline organic solids impregnated with a radical containing solution, provided proton longitudinal relaxation times are long (>100 s). (42) This technique provides enhanced NMR sensitivity for powdered organic solids while preserving the crystal structures of the solids and the intrinsic spectral resolution. Griffin and co-workers have recently suggested that DNP experiments on amorphous organic solids (such as amorphous APIs) could be performed by including the radical during solidification/deposition of the amorphous APIs. (78)
Here we show that simple impregnation DNP can be applied to obtain large sensitivity enhancements for formulated pharmaceuticals. This enables the rapid acquisition of 1D and 2D 1H–13C and 1H–15N solid-state NMR spectra from drug formulations, at natural isotopic abundance, with API contents between 4.8 and 8.7 wt %. We then show that impregnation DNP can be used to determine in situ the distributions of domain sizes of the API in a formulation, something which was not previously possible by NMR for such a complex sample.

2 Experimental Section

Click to copy section linkSection link copied!

Crystalline cetirizine dihydrochloride (A, [2-[4-[(4-chlorophenyl)phenylmethyl]-1-piperazinyl]ethoxy]acetic acid dihydrochloride) was obtained from Sigma-Aldrich and used without further purification. Polyvinylpyrrolidone (povidone), starch, α-lactose monohydrate, and hydroxypropylmethylcellulose (hypromellose) were purchased from Alfa Aesar and used without further purification. Amorphous A was prepared by dissolving ca. 0.3 g of A in ca. 60 mL of 50:50 acetone:water solution within a 100 mL ceramic crucible. The volatile solvent was then allowed to evaporate overnight, producing a clear amorphous film of A. The four commercial formulations of the drug containing A as the API were purchased over the counter at different pharmacies in the USA and Canada. The commercial formulations (and manufacturers where available) were “Life Brand Extra Strength Aller-Relief” (Pharmascience, Inc.) (F1), “CVS Indoor/Outdoor Allergy Relief” (manufacturer not provided, product of India, distributed by CVS Pharmacy, Inc.) (F2), “Reactine” (Pfizer, Inc.) (F3), and “Walgreens WAL-ZYR All Day Allergy” (distributed by Walgreens, Co.) (F4). SEM images of F1 were acquired with a LEO 1530 Gemini FEG SEM microscope.
For DNP NMR experiments, typically 40–45 mg of gently ground tablet was impregnated with 20–25 μL of a biradical solution of 1,1,2,2-tetrachlroethane (TCE). Amorphous and crystalline A were finely ground by hand with a mortar and pestle to reduce the particle size prior to impregnation. TEKPol (79) and bCTbK (80) nitroxide biradicals were used as polarizing agents with biradical concentrations between 14 and 24 mM. The biradical TCE solution was partially deuterated with TCE-d2 in order to increase ε (Table 1). (80)
DNP solid-state NMR experiments were performed on a widebore 400 MHz Bruker Avance III spectrometer equipped with a 263 GHz gyrotron, a low temperature cooling cabinet, and a triple resonance 3.2 mm low temperature probe. (81) The sample temperature for DNP experiments was approximately 105 K. The field sweep coil of the main magnetic field was set so that microwave irradiation occurred at the same position as the positive enhancement maximum for 1-(TEMPO-4-oxy)-3-(TEMPO-4-amino)propan-2-ol (TOTAPOL). (76, 81) DNP enhancements (ε) were determined by comparing the intensity of spectra acquired with and without microwave irradiation. Additional solid-state NMR experiments were performed on 500 or 700 MHz Bruker Avance III solid-state NMR spectrometers. 15N chemical shifts were referenced with respect to nitromethane by comparison to the 1H resonance frequency. (82) CPMAS experiments were performed with a contact pulse on 1H which was linearly ramped from ν1 = 66 to 93 kHz and from 58 to 82 kHz for 13C and 15N experiments, respectively. (83, 84)13C and 15N CP spin lock rf field amplitudes of 57 and 42 kHz were used, respectively. The SPINAL-64 heteronuclear decoupling scheme was applied during acquisition with 1H rf fields of ca. 100 kHz. (85) During t1 of the dipolar heteronuclear correlation (HETCOR) experiments, eDUMBO-122 homonuclear 1H decoupling was applied and proton chemical shifts were corrected by applying a scaling factor of 0.57. (86) Low temperature experiments at 500 MHz were performed with a double resonance 3.2 mm low temperature MAS probe similar to that used for DNP. Room temperature experiments at 700 and 500 MHz employed 3.2 mm triple resonance HXY and 4 mm double resonance HX probes, respectively. Numerical spin diffusion models were constructed with MatLab v7.10 (The MathWorks, Inc.) as previously described. (42) Differing from the previous procedure, no reduction in the proton T1’s at the surface of the API particles was assumed in the present case due to the small particle size and similarity of the proton T1’s at the surface and in the core of the API particles. The MatLab code is available in the Supporting Information, or from the authors upon request.
Table 1. Sample Characteristics, Measured DNP Enhancements, and Relaxation Properties
sample name and composition of the impregnating liquidbrand name/retailertablet mass (mg)initial API contenta (wt %)εC CPbTDNP(1H)c (s)13C sensitivityd (s–1/2)
crystalline cetirizine dihydrochloride A (16 mM TEKPol, TCE-d2-20%)eSigma-Aldrich100312274
crystalline cetirizine dihydrochloride A (298 K, no DNP, 16.45 T)Sigma-Aldrich100240.2
polyvinylpyrrolidone (povidone, P) (24 mM TEKPol, TCE-d2-26%)0102.339
formulation F1 (24 mM TEKPol, TCE-d2-26%)Life115.18.7642.221.5
formulation F2 (16 mM TEKPol, TCE-d2-20%)CVS207.24.8902.97.8
formulation F3 (16 mM TEKPol, TCE-d2-20%)Reactine170.35.9624.25.5
formulation F4 (16 mM TEKPol, TCE-d2-20%)Wal-Zyr181.25.5406.53.1
formulation F1 (115 K, no radical solution, 11.7 T)Life115.18.76.60.6
a

The listed API dose of 10 mg was used for the calculation.

b

εC CP is the DNP enhancement measured with 1H–13C cross-polarization. It usually matches the proton DNP enhancement (εH), since all of the polarization is derived from protons.

c

TDNP is the signal build-up rate constant measured with 1H saturation recovery experiments with 13C CPMAS for signal detection and microwave irradiation to drive DNP. The polarization time was varied from 0.5 to 20 s. T1 is reported for the 298 K experiment rather than TDNP.

d

Sensitivity = [SNR × (τopt × NS)−1/2], where SNR is the measured signal-to-noise ratio of the API resonance (or most intense resonance for povidone and pure API) acquired with a polarization delay near to that providing optimal sensitivity (τopt = 1.3 × TDNP) and NS is the number of scans/transients. 80 Hz of exponential line broadening was applied to the spectra of the formulations prior to Fourier transformation. For the spectra of crystalline cetirizine dihydrochloride acquired with DNP at 105 K (at 9.4 T) and acquired at 298 K (at 16.4 T), 20 and 30 Hz of exponential line broadening were applied, respectively.

e

The percentage of 2H labeled TCE in the radical solution is indicated.

Chart 1

Chart 1. Molecular Structures of the API Cetirizine Dihydrochloride (A) and the Excipients Magnesium Stearate (M), Hydroxypropyl Methylcellulose (Hypromellose, H), Polyvinylpyrrolidone (Povidone, P), and Lactose (L)

3 Results and Discussion

Click to copy section linkSection link copied!

3.1 DNP Enhanced NMR for Pharmaceutical Formulations

3.1.1 DNP Enhanced Solid-State NMR of Crystalline Cetirizine Dihydrochloride

Prior to discussing results from DNP experiments on the formulated pharmaceutical, we first discuss experiments on crystalline cetirizine dihydrochloride (A, molecular structure depicted in Chart 1) for reference and to illustrate how DNP can improve the characterization of pure pharmaceuticals. The insolubility of crystalline A in solvents compatible with DNP (87) was screened with solution NMR spectroscopy as previously described. (42)A was found to be insoluble in both TCE and 1,4-dibromobutane. TCE was favored for the experiments here, since its lone 13C NMR resonance has minimal overlap with the resonances of A and it usually provides higher enhancements. 13C CPMAS NMR spectra of crystalline A with and without the addition of TEKPol TCE solution and powder X-ray diffraction patterns of crystalline A at 298 and 110 K suggest that neither the impregnation procedure nor the reduced sample temperature induce phase transitions in crystalline A (Figure S1, Supporting Information).
Figure 1 shows the DNP enhanced natural abundance 13C and 15N CPMAS NMR spectra of samples of crystalline A impregnated with 16 mM TEKPol TCE solution and cooled to ∼105 K. For crystalline A, a 13C CPMAS DNP enhancement (εC CP) of 31 was obtained with a polarization delay (τ) of 26 s. The proton DNP enhancement (εH) of the TCE at the surface of the crystals was about 118, as indicated by 1H spin echo experiments (Figure S2, Supporting Information). The high spectral resolution and the reduced ε for A as compared to the impregnating liquid are fully consistent with an externally impregnated crystalline organic solid. (42) The large gain in sensitivity enables the rapid acquisition of 1H–13C and 1H–15N 1D CPMAS, 2D dipolar HETCOR, and 13C–13C scalar correlation (refocused INADEQUATE) solid-state NMR spectra at natural isotopic abundance (Figures 13 and 5 and Figure S3, Supporting Information). For example, with impregnation DNP, a one-dimensional natural abundance 13C CPMAS spectrum of A with a high signal-to-noise ratio (SNR > 400) was acquired in only 2 min (Figure 1A). For comparison, with standard solid-state NMR instrumentation at 298 K, a spectrum with a SNR of ∼23 required about 4.2 h (Figure S4, Supporting Information). This demonstrates the sensitivity enhancement of several orders of magnitude provided by impregnation DNP at 105 K for crystalline solids. (42)

Figure 1

Figure 1. 105 K DNP enhanced natural abundance (A) 13C CPMAS spectrum (4 scans, 26 s τ), (B) 13C–13C refocused INADEQUATE correlation spectrum, and (C) 15N CPMAS spectrum (8 scans, 26 s τ) of crystalline A impregnated with a 16 mM solution of TEKPol in TCE (with 20% d2-TCE). The INADEQUATE spectrum enables the assignment of the 13C resonances as indicated on the molecular structure drawing (assigned chemical shifts are given in Table S2, Supporting Information). The 2D spectrum was acquired in 14.2 h (32 scans per increment, a 20 s polarization delay between scans, and 80 t1 increments with a 32 μs t1 increment). The States-TPPI procedure (88, 89) was employed to achieve quadrature detection in the indirect dimension. Asterisks indicate folded-back sidebands.

It was also possible to rapidly acquire a one-dimensional 15N CPMAS spectrum of A with a high SNR (∼40) in only 8 min with DNP (Figure 1C). There are only two resonances in the 15N CPMAS spectrum, with shifts of 59.1 and 46.4 ppm, corresponding to the two in-equivalent nitrogen atoms in the molecule. The observation of a single set of 15N and 13C peaks suggests that there is only one molecule within the asymmetric unit cell (i.e., Z′ = 1). To the best of our knowledge, a crystal structure for A has not been previously reported, nor have any polymorphs of A been identified.
A 13C–13C refocused INADEQUATE (90) correlation spectrum was acquired in only 14.2 h (Figure 1). 2D 1H–15N dipolar HETCOR spectra of A were acquired in only 27 min (Figure 5A and B). Notably, with short contact times (τCP), correlations are observed to acidic protons directly bound to the amine nitrogen atoms (with shifts >10 ppm in the 1H dimension) and correlations to the adjacent −CH2 protons are visible. At long contact times, additional long-range correlations to the aromatic protons are visible. The complete assignment of the 1H, 13C, and 15N resonances for A resulting from this analysis is given in Table S2 (Supporting Information).

3.1.2 DNP Enhanced NMR of Pharmaceutical Formulations

We have applied DNP enhanced NMR to four commercially available solid formulations of the over-the-counter antihistamine drug cetirizine dihydrochloride. The formulations contain from 4.8 to 8.7 wt % API (Table 1). All of the formulations contain the excipients polyvinylpyrrolidone (povidone, P), lactose (L), hydroxypropyl methylcellulose (hypromellose, H), magnesium stearate (M), corn starch (S), polyethylene glycol, and titanium dioxide (structures for some excipients are depicted in Chart 1). These are some of the most commonly encountered excipients in formulated pharmaceuticals. (91) In order to prepare samples for DNP, the tablets were gently ground by hand with a mortar and pestle and then impregnated with a small volume of 1,1,2,2-tetrachloroethane (TCE) solution of the nitroxide biradical TEKPol (Table S1, Supporting Information). (79) The impregnation DNP method is well adapted here, since just enough liquid is used so as to impregnate the sample, without creating a suspension, and thus without significantly diluting the sample. (72)
Ideally, the impregnation procedure should not affect the structure (phase, particle size, etc.) of the API within the formulation. However, as discussed below, here we find that the API within the tablets is present as an amorphous form rather than as a crystalline form. For these reasons, an amorphous form of A was also prepared and characterized by DNP and low temperature NMR experiments (vide infra).
While crystalline A is insoluble in TCE, the form of amorphous A prepared here was found to be soluble in TCE (by solution 1H NMR experiments, Figure S5, Supporting Information). 1H solution NMR spectra of extracts of F1 and F4 into a large of excess of TCE indicate that up to ca. 60 and 32% of A can be solubilized, respectively (with less than 200 mg of ground tablet being extracted into more than 0.9 mL of TCE, Figure S6, Supporting Information). Impregnation of less than 50 mg of ground tablet with less than 30 μL of TEKPol TCE solution for the DNP experiments should solubilize only a marginal amount of amorphous A. Within the formulations, a substantial fraction of the TCE solution will be absorbed by swelling of the polymeric components such as H and P. We also note that, for the DNP experiments, the ground formulations are impregnated and then quickly (less than 10 min) frozen when placed into the low temperature NMR probe for experiments. Therefore, it is unlikely that the structure of A within the formulation is significantly perturbed by the impregnation procedure. Consistent with this hypothesis, DNP solid-state NMR experiments on impregnated F1 clearly indicate that amorphous A exists in the sample in microparticulate domains that are externally polarized via spin diffusion (vide infra).
From DNP enhanced 13C NMR experiments on P and H, it is clear that these two polymer excipients readily swell and absorb the radical solution. It is likely that the other excipients, which are insoluble in TCE, such as L, S, and titanium dioxide, are unaffected by the impregnation. As we illustrate below, penetration of the impregnating solution into the polymer matrix surrounding the API is a highly advantageous feature of the experiments.

3.1.3 DNP Enhanced Solid-State NMR of Pure Excipients and Formulation F1

The DNP enhanced 13C CPMAS spectra of the pure excipients and of crystalline A and amorphous A are compared to the spectrum of F1 in Figure 2. The spectra of the pure excipients enable the “background” signals from the various excipients and the signals from A to be assigned within the DNP enhanced 13C CPMAS spectrum of F1, as illustrated in Figure 2.
Comparison of the spectra of pure amorphous or crystalline A and F1 clearly demonstrate that A is amorphous within F1 (and all of the other formulations, vide infra). Comparison of room temperature and low temperature 13C CPMAS experiments on F1 (and amorphous A) without the impregnating solvent (Figure S7, Supporting Information) make it clear that the broadening of the 13C resonances of A does not arise from the impregnation procedure (or possible partial dissolution of A, as discussed above) or from the reduction in sample temperature. Rather, A clearly exists as an amorphous phase within F1. The room temperature powder X-ray diffraction pattern of F1 does not show any reflections associated with crystalline A, also consistent with an amorphous phase of A (Figure S8, Supporting Information). Previous solid-state NMR studies of formulations indicate that crystalline API is present in most formulations; (25, 31, 36, 39, 43-46, 52) however, at least two studies have also observed amorphous API phases within formulated pharmaceuticals. (23, 54) A number of solid-state NMR studies have also been performed on model amorphous API dispersions. (27, 40, 49)
The DNP enhancements εC CP can also be measured for the individual components of F1 with resolved/isolated 13C resonances, and we find significant variation between A and the different excipients. A had a relatively high εC CP of 55 (measured with νrot = 12.5 kHz to eliminate spinning sideband overlap), which enables 13C NMR signals for A to be detected with high SNR. In F1, L has an εC CP of 34 (with a 60 s polarization delay, Figure S9, Supporting Information), P has an εC CP of 85, and H/S have an εC CP of 3. The enhancements observed for pure H and L are similar to the enhancements observed for those excipients within F1. Pure P and M possess significantly larger ε in F1 than they do in their pure forms. The difference in ε for pure excipients and excipients within F1 likely reflects a change in the morphology (e.g., particulate vs molecularly dispersed) and/or concentration of the excipients. The enhancements will also likely also depend upon the concentration of the radical near the particular excipient within the formulation. The relatively low enhancements for H, S, and L in F1 are advantageous in the present case because the “background” signals from these excipients are suppressed compared to the API signal.

3.1.4 DNP Enhanced Solid-State NMR of Pure Povidone

Povidone (P) is a water-soluble polymer and is a commonly encountered pharmaceutical excipient. We focus here on P, since interactions between the API and P within formulations are hypothesized to stabilize the amorphous API and to modulate API release rates. (27, 49, 53) For P impregnated with a 24 mM solution of TEKPol in TCE, a εH of ∼10 was obtained (Figure 2E). The relatively low ε here probably arises from short proton longitudinal relaxation times (T1 ∼ 2.3 s at 105 K), high proton concentration, and the dilution of the biradical in the swollen polymer. The low temperature DNP enhanced 13C CPMAS NMR spectrum is very similar to a previously reported room temperature spectrum. (27, 40)

Figure 2

Figure 2. 105 K DNP enhanced natural abundance 13C CPMAS spectra of (A) magnesium stearate (M), (B) hypromellose (H), (C) α-lactose monohydrate (L), (D) starch (S), (E) povidone (P), (F) crystalline cetirizine dihydrochloride (A), (G) amorphous cetirizine dihydrochloride (A), and (H) formulation F1. All solids were ground and impregnated with TCE solutions of TEKPol except for S where spectra were acquired from the pure solid without any DNP enhancement (Table S1, Supporting Information, provides details of sample preparation). The 13C CP DNP enhancement (εC CP) for the compound, the number of scans, and the polarization delay (τ) are indicated. Asterisks denote spinning sidebands. Spectra are shown with arbitrary vertical scaling.

The DNP enhanced 15N CPMAS NMR spectrum possesses a single broad resonance centered at 128 ppm (Figure 3). The 1H chemical shifts observed in the 1H–13C and 1H–15N HETCOR spectra of impregnated P (Figure S10C, Supporting Information) are useful for interpreting the 1H–15N HETCOR spectra of F1 below. Notably, at a short CP contact time (0.25 ms), all 13C nuclei correlate with protons with chemical shifts between 1.0 and 1.7 ppm. With a longer CP contact time (1.5 ms), additional correlations are observed between the solvent carbon nuclei of TCE and the protons of P. These observations are consistent with swelling of the povidone by the solvent and indicate direct incorporation of TCE and TEKPol into P. The 1H–15N HETCOR spectrum acquired with a long CP contact time (2.5 ms) primarily shows a correlation between the single nitrogen resonance and a broad proton resonance centered at 1.8 ppm (Figure S10, Supporting Information).

Figure 3

Figure 3. 105 K DNP enhanced natural abundance 13C (left column) and 15N (right column) CPMAS solid-state NMR spectra of (A) crystalline cetirizine dihydrochloride (A), (B) amorphous cetirizine dihydrochloride (A), (C) povidone (P), (D) “LIFE” brand formulation (F1), (E) “CVS” brand formulation (F2), (F) “Reactine” brand formulation (F3), and (G) “Wal-Zyr” brand formulation (F4) impregnated with TCE solutions of TEKPol (Table 1). 13C CP DNP enhancements for the API (or povidone) are listed for each spectrum, and the TCE resonance has been truncated to better illustrate low intensity signals. The number of scans and polarization delay (τ) used for each spectrum are indicated in the figure. All spectra were acquired with a sample spinning frequency (νrot) of 12500 Hz in order to eliminate sideband overlap. Note that the DNP enhancements were measured in separate experiments with νrot = 8000 Hz. Experiments on F1 indicate that εC CP with a 12500 Hz spinning rate are ca. 85% of those measured at 8000 Hz. 15N CPMAS spectra were acquired with contact times between 2.5 and 4.0 ms.

3.1.5 Sensitivity Enhancement by DNP for Pharmaceutical Formulations

One-dimensional DNP enhanced 13C and 15N CPMAS solid-state NMR spectra of the four commercial formulations of cetirizine dihydrochloride (F1F4, Table 1) are shown in Figure 3. All four formulations are characterized by relatively low API contents (4.8–8.7 wt % of A). The 13C and 15N CPMAS spectra of F1F4 are broadly similar because all of the formulations contain the same ingredients (Figure 3). Notably, in all four formulations, A is amorphous, as indicated by the broad 13C resonances. Since none of the excipients possess aromatic carbons, the aromatic carbon resonances of A are well resolved in the 13C CPMAS spectra, and εC CP for the API resonances can be easily measured and used for optimizing experimental conditions. The biradical concentration and TCE deuteration levels providing optimal ε for the API were optimized for F1 and F3. Only a small variation of ε with radical concentration and solvent deuteration level was observed (Figure S11, Supporting Information). With these conditions, large εC CP values for the API of between 40 and 90 were obtained for the different formulations (measured with νrot = 8 kHz). The variation in εC CP for A among F1F4 likely arises from variations in the grain size of A, API proton longitudinal relaxation times, and the excipient concentrations at the API particle surface. High SNR 1D 13C CPMAS spectra could be rapidly acquired for F1F4 because of the large ε and relatively short TDNP. For example, the DNP enhanced 13C CPMAS spectrum of F1 was acquired in only 13 min (256 scans, 3.0 s polarization delay) with a SNR of ∼600 for the API resonance, despite the relatively low API content of 8.7 wt %. A similar sensitivity is obtained for the other formulations (Table 1). F4 possesses the lowest 13C NMR sensitivity due to the relatively low εC CP of 40 and API content of 5.5 wt %; however, the SNR was ∼145 after 17 min (128 scans, 8.0 s polarization delay) for the API. This suggests that a 1D 13C CPMAS spectrum of F4 with SNR > 15 could be acquired in a similar time frame even if the API wt % was reduced to levels as low as 0.5 wt %. This clearly illustrates the tremendous gain in sensitivity afforded by DNP for pharmaceutical formulations which enables the rapid acquisition of 1D and 2D 1H–15N CPMAS spectra of F1F4.

Figure 4

Figure 4. (A) Signal build-ups observed for F1 with a saturation recovery CP pulse sequence with (black) and without (red) microwave irradiation. Curves were fit with stretched exponential functions of the form S(t) = S0 × [exp(−(t/T1*)β)]. The values of T1* and β are indicated. (B) The measured values of εC CP for the API resonance of F1 at 128 ppm as a function of polarization time. The inset shows εC CP at short τ. Error bars were calculated by propagation of error using the noise levels of the spectra acquired with and without microwave irradiation as the standard deviation. (C) Measured values of εC CP for the povidone resonance of F1 at 41.5 ppm. The average value of εC CP for P was 43, and this was assumed to be the enhancement at the surface of the API particles (ε0). (D) Comparison between experimental and simulated ε of the API as a function of τ using a numerical model of spin diffusion for spherical particles of the indicated radius (see ref 42 for more details). (E) Simulations of the variation of ε for different Weibull distributions of the particle radius. (F) Plots of the Weibull distributions of the particle radius used in part E. Weibull distributions 1, 2 and 3 employed shape parameters (k) of 1.5 and the center of the distributions (λ) was 0.10, 0.15 and 0.20 μm, respectively. For all simulations, the surface enhancement (ε0) was fixed at 43, the proton longitudinal relaxation time (T1) of the API was 5.3 s, the T1 at the surface of the particles was set to 2.3 s to match the T1 measured for povidone, and the diffusion constant (D) was 1.0 × 105 Å2 s–1.

3.2 DNP Enhanced NMR to Probe the Microstructure of Formulations

The gain in sensitivity provided by the impregnation DNP method described above allows us to envisage NMR approaches to determine some key properties of formulations. Here we show how DNP enhanced NMR enables previously inaccessible measurements of (i) the API domain sizes and (ii) API–excipient interactions between the domains. For these in-depth analyses, we focus on F1, since it has the highest A content which reduces the required spectrometer time. However, the sensitivity is high enough with DNP that it would certainly be possible to perform such experiments for the other formulations with lower A content.

3.2.1 Measuring API Domain Sizes with DNP

In DNP experiments where the radical is homogeneously distributed and the cross effect is the dominant polarization mechanism, ε is usually constant regardless of the polarization delay (τ). However, in our previous study on slowly relaxing externally impregnated crystalline solids, we observed that ε significantly decreases to a plateau value as τ is increased. (42) This occurs because of the slow signal build-up rates associated with weakly enhanced nuclei residing in the core of particulate solids, and the polarization dynamics can be used to estimate domain size distributions for the particles. Here we use this phenomenon to measure the domain sizes of the particles of amorphous A present within the complex superstructure within the formulation F1.

Figure 5

Figure 5. Natural abundance DNP enhanced 1H–15N dipolar HETCOR spectra of crystalline A (A and B), amorphous A (C and D), and F1 (E and F). The spectra were acquired with contact times (τCP) of 0.5 ms (top spectra) and 3.0 ms (lower spectra) to probe for short- and long-range 1H–15N distances, respectively. Key 15N chemical shifts and 1H correlations are indicated on the spectra with dashed lines. An expanded view of the correlations is provided for part F. HETCOR spectra of crystalline A were acquired with 4 scans per increment, an 8 s polarization delay, 52 individual t1 increments, and a 64 μs t1 increment (27 min each). HETCOR spectra of amorphous A were acquired with (C) 64 or (D) 48 scans per increment, a 5.2 s polarization delay, 64 individual t1 increments, and a 64 μs t1 increment (5.2 and 4.4 h, respectively). HETCOR spectra of F1 were acquired with 128 scans (E) or 96 scans (F) per increment, a 3 s polarization delay, 52 individual t1 increments, and a 64 μs t1 increment (5.5 and 4.2 h, respectively). During t1, eDUMBO-122 homonuclear 1H dipolar decoupling (86) was applied and proton chemical shifts were corrected by applying a scaling factor of 0.57. The States-TPPI procedure (88, 89) was employed to achieve quadrature detection in the indirect dimension.

Such NMR domain size measurements in complex materials (such as polymer blends) are usually accomplished with 1H spin diffusion correlation experiments; however, this requires resolution of the different phases (or amorphous/crystalline domains) within the directly or indirectly detected 1H NMR spectrum. (92) For example, the molecular level association of APIs and excipients can be confirmed with dipolar HETCOR experiments. (27) Carbon-13 detected proton T1 measurements for excipients and API signals are also useful to place an upper limit on the size of API domains: the observation of distinct T1’s for the API and excipients proves phase separation, while the observation of a common T1 usually suggests that the API exists in domains smaller than 100 nm that are well mixed with the excipient(s). (27) Munson and co-workers have previously demonstrated that qualitative measurements of domain (crystallite) sizes in pharmaceutical solids can be obtained by measuring proton T1’s and/or measuring the 13C peak widths to quantify anisotropic bulk magnetic susceptibility (ABMS). (41, 93) However, domain sizes have never been directly measured by NMR for a formulated pharmaceutical compound. The advantage of the DNP based method is that no 1H chemical shift differences are required; rather, only CP signal build-ups with and without microwaves need to be observed. For these experiments, F1 was packed into a thin wall 3.2 mm zirconia rotor to maximize sensitivity in the experiments without DNP. Poorer microwave transmission through the zirconia rotor (94) leads to the reduced values of εC CP for F1 reported in Figure 4.
As shown in Figure 4A and B, similar to previous observations for crystalline solids, we observed stretched exponential signal build-ups and a significant variation in εC CP for the aromatic API carbon resonances as a function of τ. This clearly indicates that A exists in distinct particulate domains within F1 and that the API is externally polarized through proton spin diffusion. (42) Using our previously developed numerical model of the diffusion equation, we can simulate the signal build-up rates and variation in ε with τ for different particle size ranges. We assume that the proton longitudinal relaxation time within the amorphous A particles is 5.3 s based upon a measurement of the proton T1 for amorphous A in F1 in the absence of added radical solution at 110 K (Figure S12, Supporting Information). The enhancement at the surface of the API particles (ε0) was assumed to be equal to the εC CP value measured for the P resonance at 41.5 ppm, which was found to be 43(7) (Figure 4C). This assumption was made because the enhancement for the API is similar (but less than) the enhancement for P at short polarization delays. The enhancement for P does not decrease with the polarization delay (within the uncertainty of the measurements), and DNP experiments on pure impregnated P also indicate that the biradical solution is directly incorporated into the polymer. The spin diffusion constant (D) was assumed to be equal to 1.0 × 105 Å2 s–1, a value typical of fully protonated organic solids. (77) Using these parameters, simulations of ε as a function of τ with uniform radius particles provide the best agreement for 0.3 μm radius particles (Figure 4D).
Single particle simulations were also performed with D values between 1.0 × 105 and 1.0 × 104 Å2 s–1 (typical values for organic solids) (77, 95) to explore the influence of D on the predicted particle size. As expected, if the particle radius is held constant at 0.3 μm, then the calculated values of ε decrease as D decreases (Figure S13A, Supporting Information). On the other hand, for reduced D values of 1.0 × 104 and 5.0 × 104 Å2 s–1, better agreement with experiment is realized for smaller particles with a radius less than 0.3 μm (Figure S13B, Supporting Information). Therefore, if the precise value of D is unknown, the DNP based particle size measurements will in principle provide an upper limit on the particle size if a large diffusion constant of 1.0 × 105 Å2 s–1 is assumed in the model.
For simulations with (traditional) Weibull distributions (96) of particle radii, we find the agreement is best with an equivalent distribution having a maximum around 0.07 μm (Figure 4E). Note that both the single particle model and Weibull distribution models predict that the majority of particles have radii less than 0.3 μm. We attempted to confirm the DNP solid-state NMR based API domain size measurements with scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX) mapping of chlorine within F1; however, the measurements were too insensitive because of the low Cl content of F1. SEM images of ground F1 indicate the presence of particles smaller than 1 μm in diameter, which is consistent with the DNP-NMR particle size measurements (Figure S14, Supporting Information). As discussed above, in the present case, the impregnation procedure may slightly reduce the domain size of A due to the partial solubility of amorphous A in TCE. For formulations with crystalline API, this should not be an issue.

3.2.2 Probing API–Excipient Interactions with DNP Enhanced Solid-State NMR

For all formulations, both the 13C and 15N resonances of the API are much broader than those observed for the corresponding DNP enhanced spectra of crystalline A (Figure 3). The observed chemical shifts and breadths of the observed resonances are similar to those observed for pure amorphous A, consistent with an amorphous phase of A within the formulations. The DNP enhanced 15N CPMAS spectra of F1F4 possess two separated broad features with shifts centered around ca. 58 and 44 ppm. Additional broad 15N sites with shifts between 54 and 51 ppm are also clearly visible for F1F4 and amorphous A.
Natural abundance 2D 1H–15N HETCOR spectra of crystalline and amorphous A and F1 are shown in Figure 5. 2D 1H–15N HETCOR NMR spectra were acquired for F1, since it had the highest API wt %, although sensitivity is high enough that 2D 15N NMR spectra could also be acquired for the other formulations. The 1H–15N HETCOR spectrum of F1 acquired with a 3.0 ms contact time shown in Figure 5F indicates the presence of a 15N chemical shift for A centered at 51.5 ppm. This 15N chemical shift was not observed in the 15N CPMAS spectra of crystalline A, but a similar chemical shift is observed in spectra of amorphous A. Within F1, the site at 51.5 ppm correlates to 1H nuclei with chemical shifts of 1.7 ppm (and other aliphatic protons with shifts >2.0 ppm). Importantly, this correlation is not observed in the HETCOR spectra of amorphous A alone. 1H–13C and 1H–15N HETCOR spectra of P show that the 1H nuclei of P possess shifts between 1.0 and 1.8 ppm (Figure S10, Supporting Information), while all the 1H nuclei in both amorphous and crystalline A possess chemical shifts greater than 2.7 ppm. Therefore, the 1H–15N correlation at 1.7 and 51.5 ppm indicates that a small amount of A is in contact with P (likely through dispersive forces and/or hydrogen bonding interactions). (30, 37-40) As discussed above, amorphous A exists within small sub-μm domains within F1. The 15N resonance at 51.5 ppm likely corresponds to molecules of A at the surface of the amorphous API particles which interact with P. 1H–13C HETCOR spectra of F1 do not unambiguously show correlations between the povidone carbon nuclei and the protons of A (Figure S3, Supporting Information) because these key correlations are obscured in the crowded 1H and 13C spectra. This demonstrates one of the advantages of 15N solid-state NMR for the analysis of pharmaceutical formulations. Finally, we note that as discussed above solution 1H NMR spectra of extracts of F4 in an excess of TCE show signals from A (Figures S6 and S15, Supporting Information). However, in the solution 1H NMR spectrum, the peaks of A and P are both significantly broadened, suggesting that the A observed in solution is associated with P, consistent with the hypotheses above regarding AP intermolecular interactions.

4 Conclusions

Click to copy section linkSection link copied!

In summary, impregnation DNP enables the expedient acquisition of 1D and 2D natural abundance 15N and 13C solid-state NMR spectra of pure organic solids and formulated APIs. This overcomes the sensitivity limitation for formulations with low API contents. The impregnation method is extremely simple, and the only requirement is the identification of a solvent that does not dissolve the API and is compatible with DNP. In the present case, the amorphous API was found to be slightly soluble within the impregnating solution but not to the extent that it prevented the study. With state of the art polarizing agents, (79) sensitivity enhancements of 2 orders of magnitude were obtained for the commercial formulations examined here. The ability to rapidly acquire both 13C and 15N multidimensional CPMAS NMR spectra should aid NMR crystallography studies of bulk solids in situ and provide novel structural insight into formulated pharmaceuticals. In this instance, we immediately identified that the API was present in an amorphous form, and by analyzing the variation in DNP enhancement with polarization delay, it was possible to straightforwardly determine the distribution of API particle sizes present within the complex superstructure of the formulated samples. Furthermore, using high-sensitivity 1H–15N correlation NMR spectra, we were able to indentify characteristic 15N resonances corresponding to API molecules interacting with the excipient. Measuring domain sizes in situ and API–excipient interactions are some of the most challenging parameters to measure by conventional means.
Since DNP enhancements can vary between different components, these experiments do not provide easy access to quantitative measures of composition. In cases where multiple phases of the API are present (e.g., multiple polymorphs, crystalline vs amorphous, molecular vs aggregated, etc.), we expect that quantification of the API phase by NMR is best performed with conventional 1D 13C CPMAS NMR spectra. However, with DNP enhanced solid-state NMR, it should be possible to rapidly identify API polymorphs in formulations (including trace amounts of secondary phases), perform in situ NMR crystallography, and/or study the aging of formulations, etc. In particular, the method is well suited for the characterization of APIs with long proton longitudinal relaxation times, (42) something that is extremely challenging for conventional NMR experiments.

Supporting Information

Click to copy section linkSection link copied!

Details on sample preparations, additional 1D and 2D NMR spectra, SEM images, and MatLab code for the numerical calculations. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

Click to copy section linkSection link copied!

  • Corresponding Author
    • Lyndon Emsley - Centre de RMN à Trés Hauts Champs, Institut de Sciences Analytiques, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), 69100 Villeurbanne, France
  • Authors
    • Aaron J. Rossini - Centre de RMN à Trés Hauts Champs, Institut de Sciences Analytiques, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), 69100 Villeurbanne, France
    • Cory M. Widdifield - Centre de RMN à Trés Hauts Champs, Institut de Sciences Analytiques, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), 69100 Villeurbanne, France
    • Alexandre Zagdoun - Centre de RMN à Trés Hauts Champs, Institut de Sciences Analytiques, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), 69100 Villeurbanne, France
    • Moreno Lelli - Centre de RMN à Trés Hauts Champs, Institut de Sciences Analytiques, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), 69100 Villeurbanne, France
    • Martin Schwarzwälder - Department of Chemistry, Laboratory of Inorganic Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland
    • Christophe Copéret - Department of Chemistry, Laboratory of Inorganic Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland
    • Anne Lesage - Centre de RMN à Trés Hauts Champs, Institut de Sciences Analytiques, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), 69100 Villeurbanne, France
  • Notes
    The authors declare no competing financial interest.

Acknowledgment

Click to copy section linkSection link copied!

We are grateful to Dr. Fabien Aussenac for his assistance with all of the DNP solid-state NMR experiments. We would like to thank Drs. Werner Maas, Alain Belguise, Melanie Rosay, and Bruker for providing access to the DNP solid-state NMR spectrometer. Dr. David Gajan is thanked for assistance with some DNP experiments. We thank the EMEZ center and Dr. F. Krumeich for acquiring SEM images. A.J.R. acknowledges support from a EU Marie-Curie IIF Fellowship (PIIF-GA-2010-274574). C.M.W. acknowledges the Natural Sciences and Engineering Research Council (NSERC) of Canada for a postdoctoral fellowship. Financial support is acknowledged from the Agence Nationale de la Recherche grant ANR-2010-BLAN-0806-01, EQUIPEX contract ANR-10-EQPX-47-01, SNF project number 200021_134775/1, ERC Advanced Grant No. 320860, and the ETH Zürich. We thank Prof. Paul Tordo, Dr. Olivier Ouari and Dr. Gilles Casano (Aix-Marseille Université) for supplying the TEKPol and bCTbK biradicals.

References

Click to copy section linkSection link copied!

This article references 96 other publications.

  1. 1
    Threlfall, T. L. Analyst 1995, 120, 2435 2460
  2. 2
    Bernstein, J. Polymorphism in Molecular Crystals; Oxford University Press: Oxford, U.K., 2002.
  3. 3
    Harris, R. K. Analyst 2006, 131, 351 373
  4. 4
    Berendt, R. T.; Sperger, D. M.; Isbester, P. K.; Munson, E. J. TrAC, Trends Anal. Chem. 2006, 25, 977 984
  5. 5
    Vogt, F. G. Future Med. Chem. 2010, 2, 915 921
  6. 6
    Brown, S. P.; Zhu, X. X.; Saalwachter, K.; Spiess, H. W. J. Am. Chem. Soc. 2001, 123, 4275 4285
  7. 7
    Elena, B.; Emsley, L. J. Am. Chem. Soc. 2005, 127, 9140 9146
  8. 8
    Brouwer, D. H.; Darton, R. J.; Morris, R. E.; Levitt, M. H. J. Am. Chem. Soc. 2005, 127, 10365 10370
  9. 9
    Seidel, K.; Etzkorn, M.; Sonnenberg, L.; Griesinger, C.; Sebald, A.; Baldus, M. J. Phys. Chem. A 2005, 109, 2436 2442
  10. 10
    Elena, B.; Pintacuda, G.; Mifsud, N.; Emsley, L. J. Am. Chem. Soc. 2006, 128, 9555 9560
  11. 11
    Facelli, J. C.; Grant, D. M. Nature 1993, 365, 325 327
  12. 12
    Ochsenfeld, C.; Brown, S. P.; Schnell, I.; Gauss, J.; Spiess, H. W. J. Am. Chem. Soc. 2001, 123, 2597 2606
  13. 13
    Rapp, A.; Schnell, I.; Sebastiani, D.; Brown, S. P.; Percec, V.; Spiess, H. W. J. Am. Chem. Soc. 2003, 125, 13284 13297
  14. 14
    Pickard, C. J.; Salager, E.; Pintacuda, G.; Elena, B.; Emsley, L. J. Am. Chem. Soc. 2007, 129, 8932 8933
  15. 15
    Cadars, S.; Brouwer, D. H.; Chmelka, B. F. Phys. Chem. Chem. Phys. 2009, 11, 1825 1837
  16. 16
    Salager, E.; Stein, R. S.; Pickard, C. J.; Elena, B.; Emsley, L. Phys. Chem. Chem. Phys. 2009, 11, 2610 2621
  17. 17
    Salager, E.; Day, G. M.; Stein, R. S.; Pickard, C. J.; Elena, B.; Emsley, L. J. Am. Chem. Soc. 2010, 132, 2564 2565
  18. 18
    Perras, F. A.; Bryce, D. L. J. Phys. Chem. C 2012, 116, 19472 19482
  19. 19
    Mafra, L.; Santos, S. M.; Siegel, R.; Alves, I.; Almeida Paz, F. A.; Dudenko, D.; Spiess, H. W. J. Am. Chem. Soc. 2012, 134, 71 74
  20. 20
    Baias, M.; Widdifield, C. M.; Dumez, J.-N.; Thompson, H. P. G.; Cooper, T. G.; Salager, E.; Bassil, S.; Stein, R. S.; Lesage, A.; Day, G. M.; Emsley, L. Phys. Chem. Chem. Phys. 2013, 15, 8069 8080
  21. 21
    Brouwer, D. H.; Cadars, S.; Eckert, J.; Liu, Z.; Terasaki, O.; Chmelka, B. F. J. Am. Chem. Soc. 2013, 135, 5641 5655
  22. 22
    Baias, M.; Dumez, J.-N.; Svensson, P. H.; Schantz, S.; Day, G. M.; Emsley, L. J. Am. Chem. Soc. 2013, 135, 17501 17507
  23. 23
    Wenslow, R. M. Drug Dev. Ind. Pharm. 2002, 28, 555 561
  24. 24
    Hamaed, H.; Pawlowski, J. M.; Cooper, B. F. T.; Fu, R.; Eichhorn, S. H.; Schurko, R. W. J. Am. Chem. Soc. 2008, 130, 11056 11065
  25. 25
    Katrincic, L. M.; Sun, Y. T.; Carlton, R. A.; Diederich, A. M.; Mueller, R. L.; Vogt, F. G. Int. J. Pharm. 2009, 366, 1 13
  26. 26
    Hung, I.; Uldry, A. C.; Becker-Baldus, J.; Webber, A. L.; Wong, A.; Smith, M. E.; Joyce, S. A.; Yates, J. R.; Pickard, C. J.; Dupree, R.; Brown, S. P. J. Am. Chem. Soc. 2009, 131, 1820 1834
  27. 27
    Pham, T. N.; Watson, S. A.; Edwards, A. J.; Chavda, M.; Clawson, J. S.; Strohmeier, M.; Vogt, F. G. Mol. Pharmaceutics 2010, 7, 1667 1691
  28. 28
    O’Dell, L. A.; Schurko, R. W.; Harris, K. J.; Autschbach, J.; Ratcliffe, C. I. J. Am. Chem. Soc. 2011, 133, 527 546
  29. 29
    Bonhomme, C.; Gervais, C.; Folliet, N.; Pourpoint, F.; Diogo, C. C.; Lao, J.; Jallot, E.; Lacroix, J.; Nedelec, J. M.; Iuga, D.; Hanna, J. V.; Smith, M. E.; Xiang, Y.; Du, J. C.; Laurencin, D. J. Am. Chem. Soc. 2012, 134, 12611 12628
  30. 30
    Tatton, A. S.; Pham, T. N.; Vogt, F. G.; Iuga, D.; Edwards, A. J.; Brown, S. P. CrystEngComm 2012, 14, 2654 2659
  31. 31
    Burgess, K. M. N.; Perras, F. A.; Lebrun, A.; Messner-Henning, E.; Korobkov, I.; Bryce, D. L. J. Pharm. Sci. 2012, 101, 2930 2940
  32. 32
    Kong, X. Q.; O’Dell, L. A.; Terskikh, V.; Ye, E.; Wang, R. Y.; Wu, G. J. Am. Chem. Soc. 2012, 134, 14609 14617
  33. 33
    Haimovich, A.; Eliav, U.; Goldbourt, A. J. Am. Chem. Soc. 2012, 134, 5647 5651
  34. 34
    Vogt, F. G.; Yin, H.; Forcino, R. G.; Wu, L. Mol. Pharmacol. 2013, 10, 3433 3446
  35. 35
    Kong, X. Q.; Shan, M.; Terskikh, V.; Hung, I.; Gan, Z. H.; Wu, G. J. Phys. Chem. B 2013, 117, 9643 9654
  36. 36
    Umino, M.; Higashi, K.; Masu, H.; Limwikrant, W.; Yamamoto, K.; Moribe, K. J. Pharm. Sci. 2013, 102, 2738 2747
  37. 37
    Saindon, P. J.; Cauchon, N. S.; Sutton, P. A.; Chang, C. J.; Peck, G. E.; Byrn, S. R. Pharm. Res. 1993, 10, 197 203
  38. 38
    Lubach, J. W.; Padden, B. E.; Winslow, S. L.; Salsbury, J. S.; Masters, D. B.; Topp, E. M.; Munson, E. J. Anal. Bioanal. Chem. 2004, 378, 1504 1510
  39. 39
    Harris, R. K.; Hodgkinson, P.; Larsson, T.; Muruganantham, A. J. Pharm. Biomed. Anal. 2005, 38, 858 864
  40. 40
    Tobyn, M.; Brown, J.; Dennis, A. B.; Fakes, M.; Gao, Q.; Gamble, J.; Khimyak, Y. Z.; McGeorge, G.; Patel, C.; Sinclair, W.; Timmins, P.; Yin, S. J. Pharm. Sci. 2009, 98, 3456 3468
  41. 41
    Lubach, J. W.; Xu, D.; Segmuller, B. E.; Munson, E. J. J. Pharm. Sci. 2007, 96, 777 787
  42. 42
    Rossini, A. J.; Zagdoun, A.; Hegner, F. S.; Schwarzwälder, M.; Gajan, D.; Copéret, C.; Lesage, A.; Emsley, L. J. Am. Chem. Soc. 2012, 134, 16899 16908
  43. 43
    Chang, C. J.; Diaz, L. E.; Morin, F.; Grant, D. M. Magn. Reson. Chem. 1986, 24, 768 771
  44. 44
    Diaz, L. E.; Frydman, L.; Olivieri, A. C.; Frydman, B. Anal. Lett. 1987, 20, 1657 1666
  45. 45
    Jagannathan, N. R. Curr. Sci. 1987, 56, 827 830
  46. 46
    Sanchez, S.; Ziarelli, F.; Viel, S.; Delaurent, C.; Caldarelli, S. J. Pharm. Biomed. Anal. 2008, 47, 683 687
  47. 47
    Griffin, J. M.; Martin, D. R.; Brown, S. P. Angew. Chem., Int. Ed. 2007, 46, 8036 8038
  48. 48
    Zhou, D. H.; Rienstra, C. M. Angew. Chem., Int. Ed. 2008, 47, 7328 7331
  49. 49
    Tatton, A. S.; Pham, T. N.; Vogt, F. G.; Iuga, D.; Edwards, A. J.; Brown, S. P. Mol. Pharmacol. 2013, 10, 999 1007
  50. 50
    Zhou, D. H.; Shah, G.; Mullen, C.; Sandoz, D.; Rienstra, C. M. Angew. Chem., Int. Ed. 2009, 48, 1253 1256
  51. 51
    Nishiyama, Y.; Frey, M. H.; Mukasa, S.; Utsumi, H. J. Magn. Reson. 2010, 202, 135 139
  52. 52
    Zielinska-Pisklak, M.; Pisklak, D. M.; Wawer, I. J. Pharm. Sci. 2012, 101, 1763 1772
  53. 53
    Vogt, F. G.; Williams, G. R. Pharm. Res. 2012, 29, 1866 1881
  54. 54
    Kelley, W. P.; Chen, S. J.; Floyd, P. D.; Hu, P.; Kapsi, S. G.; Kord, A. S.; Sun, M. J.; Vogt, F. G. Anal. Chem. 2012, 84, 4357 4372
  55. 55
    Vogt, F. G.; Strohmeier, M. Mol. Pharm. 2012, 9, 3357 3374
  56. 56
    Maly, T.; Debelouchina, G. T.; Bajaj, V. S.; Hu, K. N.; Joo, C. G.; Mak-Jurkauskas, M. L.; Sirigiri, J. R.; van der Wel, P. C. A.; Herzfeld, J.; Temkin, R. J.; Griffin, R. G. J. Chem. Phys. 2008, 128, 052211
  57. 57
    Ni, Q. Z.; Daviso, E.; Can, T. V.; Markhasin, E.; Jawla, S. K.; Swager, T. M.; Temkin, R. J.; Herzfeld, J.; Griffin, R. G. Acc. Chem. Res. 2013, 48, 1933 1941
  58. 58
    Mak-Jurkauskas, M. L.; Bajaj, V. S.; Hornstein, M. K.; Belenky, M.; Griffin, R. G.; Herzfeld, J. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 883 888
  59. 59
    Salnikov, E.; Rosay, M.; Pawsey, S.; Ouari, O.; Tordo, P.; Bechinger, B. J. Am. Chem. Soc. 2010, 132, 5940 5941
  60. 60
    Sergeyev, I. V.; Day, L. A.; Goldbourt, A.; McDermott, A. E. J. Am. Chem. Soc. 2011, 133, 20208 20217
  61. 61
    Linden, A. H.; Lange, S.; Franks, W. T.; Akbey, U.; Specker, E.; van Rossum, B.-J.; Oschkinat, H. J. Am. Chem. Soc. 2011, 133, 19266 19269
  62. 62
    Reggie, L.; Lopez, J. J.; Collinson, I.; Glaubitz, C.; Lorch, M. J. Am. Chem. Soc. 2011, 133, 19084 19086
  63. 63
    Potapov, A.; Yau, W.-M.; Tycko, R. J. Magn. Reson. 2013, 231, 5 14
  64. 64
    Takahashi, H.; Ayala, I.; Bardet, M.; De Paepe, G.; Simorre, J. P.; Hediger, S. J. Am. Chem. Soc. 2013, 135, 5105 5110
  65. 65
    Wang, T.; Park, Y. B.; Caporini, M. A.; Rosay, M.; Zhong, L. H.; Cosgrove, D. J.; Hong, M. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 16444 16449
  66. 66
    Lesage, A.; Lelli, M.; Gajan, D.; Caporini, M. A.; Vitzthum, V.; Mieville, P.; Alauzun, J.; Roussey, A.; Thieuleux, C.; Mehdi, A.; Bodenhausen, G.; Copéret, C.; Emsley, L. J. Am. Chem. Soc. 2010, 132, 15459 15461
  67. 67
    Lelli, M.; Gajan, D.; Lesage, A.; Caporini, M. A.; Vitzthum, V.; Mieville, P.; Heroguel, F.; Rascon, F.; Roussey, A.; Thieuleux, C.; Boualleg, M.; Veyre, L.; Bodenhausen, G.; Copéret, C.; Emsley, L. J. Am. Chem. Soc. 2011, 133, 2104 2107
  68. 68
    Lafon, O.; Rosay, M.; Aussenac, F.; Lu, X.; Trebosc, J.; Cristini, O.; Kinowski, C.; Touati, N.; Vezin, H.; Amoureux, J. P. Angew. Chem., Int. Ed. 2011, 50, 8367 8370
  69. 69
    Rossini, A. J.; Zagdoun, A.; Lelli, M.; Canivet, J.; Aguado, S.; Ouari, O.; Tordo, P.; Rosay, M.; Maas, W. E.; Copéret, C.; Farrusseng, D.; Emsley, L.; Lesage, A. Angew. Chem., Int. Ed. 2012, 51, 123 127
  70. 70
    Zagdoun, A.; Casano, G.; Ouari, O.; Lapadula, G.; Rossini, A. J.; Lelli, M.; Baffert, M.; Gajan, D.; Veyre, L.; Maas, W. E.; Rosay, M.; Weber, R. T.; Thieuleux, C.; Copéret, C.; Lesage, A.; Tordo, P.; Emsley, L. J. Am. Chem. Soc. 2012, 134, 2284 2291
  71. 71
    Takahashi, H.; Lee, D.; Dubois, L.; Bardet, M.; Hediger, S.; De Paëpe, G. Angew. Chem., Int. Ed. 2012, 124, 11936 11939
  72. 72
    Rossini, A. J.; Zagdoun, A.; Lelli, M.; Lesage, A.; Copéret, C.; Emsley, L. Acc. Chem. Res. 2013, 46, 1942 1951
  73. 73
    Blanc, F.; Sperrin, L.; Jefferson, D. A.; Pawsey, S.; Rosay, M.; Grey, C. P. J. Am. Chem. Soc. 2013, 135, 2975 2978
  74. 74
    Lafon, O.; Thankamony, A. S. L.; Kobayashi, T.; Carnevale, D.; Vitzthum, V.; Slowing, I. I.; Kandel, K.; Vezin, H.; Amoureux, J. P.; Bodenhausen, G.; Pruski, M. J. Phys. Chem. C 2013, 117, 1375 1382
  75. 75
    Blanc, F.; Chong, S. Y.; McDonald, T. O.; Adams, D. J.; Pawsey, S.; Caporini, M. A.; Cooper, A. I. J. Am. Chem. Soc. 2013, 135, 15290 15293
  76. 76
    Song, C. S.; Hu, K. N.; Joo, C. G.; Swager, T. M.; Griffin, R. G. J. Am. Chem. Soc. 2006, 128, 11385 11390
  77. 77
    van der Wel, P. C. A.; Hu, K. N.; Lewandowski, J.; Griffin, R. G. J. Am. Chem. Soc. 2006, 128, 10840 10846
  78. 78
    Ong, T. C.; Mak-Jurkauskas, M. L.; Walish, J. J.; Michaelis, V. K.; Corzilius, B.; Smith, A. A.; Clausen, A. M.; Cheetham, J. C.; Swager, T. M.; Griffin, R. G. J. Phys. Chem. B 2013, 117, 3040 3046
  79. 79
    Zagdoun, A.; Casano, G.; Ouari, O.; Schwarzwälder, M.; Rossini, A. J.; Aussenac, F.; M., Y.; G., J.; Copéret, C.; Lesage, A.; Tordo, P.; Emsley, L. J. Am. Chem. Soc. 2013, 135, 12790 12797
  80. 80
    Zagdoun, A.; Casano, G.; Ouari, O.; Lapadula, G.; Rossini, A. J.; Lelli, M.; Baffert, M.; Gajan, D.; Veyre, L.; Maas, W. E.; Rosay, M.; Weber, R. T.; Thieuleux, C.; Copéret, C.; Lesage, A.; Tordo, P.; Emsley, L. J. Am. Chem. Soc. 2012, 134, 2284 2291
  81. 81
    Rosay, M.; Tometich, L.; Pawsey, S.; Bader, R.; Schauwecker, R.; Blank, M.; Borchard, P. M.; Cauffman, S. R.; Felch, K. L.; Weber, R. T.; Temkin, R. J.; Griffin, R. G.; Maas, W. E. Phys. Chem. Chem. Phys. 2010, 12, 5850 5860
  82. 82
    Harris, R. K.; Becker, E. D.; De Menezes, S. M. C.; Goodfellow, R.; Granger, P. Pure Appl. Chem. 2001, 73, 1795 1818
  83. 83
    Metz, G.; Wu, X.; Smith, S. J. Magn. Reson., Ser. A 1994, 110, 219 227
  84. 84
    Peersen, O.; Wu, X.; Kustanovich, I.; Smith, S. J. Magn. Reson., Ser. A 1993, 104, 334 339
  85. 85
    Fung, B. M.; Khitrin, A. K.; Ermolaev, K. J. Magn. Reson. 2000, 142, 97 101
  86. 86
    Elena, B.; de Paepe, G.; Emsley, L. Chem. Phys. Lett. 2004, 398, 532 538
  87. 87
    Zagdoun, A.; Rossini, A. J.; Gajan, D.; Bourdolle, A.; Ouari, O.; Rosay, M.; Maas, W. E.; Tordo, P.; Lelli, M.; Emsley, L.; Lesage, A.; Copéret, C. Chem. Commun. 2011, 48, 654 656
  88. 88
    States, D. J; Haberkorn, R. A.; Ruben, D. J. J. Magn. Reson. 1982, 48, 286 292
  89. 89
    Marion, D.; Wuthrich, K. Biochem. Biophys. Res. Commun. 1983, 113, 967 974
  90. 90
    Lesage, A.; Bardet, M.; Emsley, L. J. Am. Chem. Soc. 1999, 121, 10987 10993
  91. 91
    Allen, L. V.; Popovich, N. G.; Ansel, H. C. Ansel’s Pharmaceutical Dosage Forms and Drug Delivery Systems; Wolters Kluwer: Philadelphia, PA, 2011.
  92. 92
    Schmidt-Rohr, K.; Spiess, H. W. Multidimensional Solid-State NMR and Polymers, 2nd ed.; Academic Press: London, 1996.
  93. 93
    Barich, D. H.; Davis, J. M.; Schieber, L. J.; Zell, M. T.; Munson, E. J. J. Pharm. Sci. 2006, 95, 1586 1594
  94. 94
    Akbey, U.; Franks, W. T.; Linden, A.; Lange, S.; Griffin, R. G.; van Rossum, B. J.; Oschkinat, H. Angew. Chem., Int. Ed. 2010, 49, 7803 7806
  95. 95
    Chen, Q.; Schmidt-Rohr, K. Solid State Nucl. Magn. Reson. 2006, 29, 142 152
  96. 96
    Weibull, W. J. Appl. Mech. 1951, 18, 293 297

Cited By

Click to copy section linkSection link copied!
Citation Statements
Explore this article's citation statements on scite.ai

This article is cited by 155 publications.

  1. Chaithanya Hareendran, T.G. Ajithkumar. Probing the Effect of Fluorine on Hydrogen Bonding Interactions in a Pharmaceutical Hydrate Using Advanced Solid-State NMR. Molecular Pharmaceutics 2025, 22 (4) , 1869-1880. https://doi.org/10.1021/acs.molpharmaceut.4c01055
  2. Ran Wei, Yu Rao, Amrit Venkatesh, Lyndon Emsley. Solid Effect Dynamic Nuclear Polarization Enhancement of >500 at 9.4 T. The Journal of Physical Chemistry Letters 2024, 15 (50) , 12408-12415. https://doi.org/10.1021/acs.jpclett.4c03147
  3. Yu Rao, Pierrick Berruyer, Andrea Bertarello, Amrit Venkatesh, Marinella Mazzanti, Lyndon Emsley. An Efficient and Stable Polarizing Agent for In-Cell Magic-Angle Spinning Dynamic Nuclear Polarization NMR Spectroscopy. The Journal of Physical Chemistry Letters 2024, 15 (46) , 11601-11607. https://doi.org/10.1021/acs.jpclett.4c02709
  4. Faith J. Scott, Samuel Eddy, Terry Gullion, Frédéric Mentink-Vigier. Sorbitol-Based Glass Matrices Enable Dynamic Nuclear Polarization beyond 200 K. The Journal of Physical Chemistry Letters 2024, 15 (34) , 8743-8751. https://doi.org/10.1021/acs.jpclett.4c02054
  5. Navneet Dwivedi, Bijaylaxmi Patra, Frederic Mentink-Vigier, Sungsool Wi, Neeraj Sinha. Unveiling Charge-Pair Salt-Bridge Interaction Between GAGs and Collagen Protein in Cartilage: Atomic Evidence from DNP-Enhanced ssNMR at Natural Isotopic Abundance. Journal of the American Chemical Society 2024, 146 (34) , 23663-23668. https://doi.org/10.1021/jacs.4c05539
  6. Jiashan Mi, Yunhua Chen, Benjamin A. Atterberry, Fredrik L. Nordstrom, David A. Hirsh, Aaron J. Rossini. Probing the Molecular and Macroscopic Structure of Solid Solutions by Dynamic Nuclear Polarization (DNP) Enhanced 13C and 15N Solid-State NMR Spectroscopy. Molecular Pharmaceutics 2024, 21 (6) , 2949-2959. https://doi.org/10.1021/acs.molpharmaceut.4c00083
  7. Aditya Mishra, Michael A. Hope, Gabriele Stevanato, Dominik J. Kubicki, Lyndon Emsley. Dynamic Nuclear Polarization of Inorganic Halide Perovskites. The Journal of Physical Chemistry C 2023, 127 (23) , 11094-11102. https://doi.org/10.1021/acs.jpcc.3c01527
  8. Pierrick Berruyer, Cynthia Cibaka-Ndaya, Arthur Pinon, Clément Sanchez, Glenna L. Drisko, Lyndon Emsley. Imaging Radial Distribution Functions of Complex Particles by Relayed Dynamic Nuclear Polarization. Journal of the American Chemical Society 2023, 145 (17) , 9700-9707. https://doi.org/10.1021/jacs.3c01279
  9. James Eills, Dmitry Budker, Silvia Cavagnero, Eduard Y. Chekmenev, Stuart J. Elliott, Sami Jannin, Anne Lesage, Jörg Matysik, Thomas Meersmann, Thomas Prisner, Jeffrey A. Reimer, Hanming Yang, Igor V. Koptyug. Spin Hyperpolarization in Modern Magnetic Resonance. Chemical Reviews 2023, 123 (4) , 1417-1551. https://doi.org/10.1021/acs.chemrev.2c00534
  10. Stuart J. Elliott, Benjamin B. Duff, Ashlea R. Taylor-Hughes, Daniel J. Cheney, John P. Corley, Subhradip Paul, Adam Brookfield, Shane Pawsey, David Gajan, Helen C. Aspinall, Anne Lesage, Frédéric Blanc. Off-the-Shelf Gd(NO3)3 as an Efficient High-Spin Metal Ion Polarizing Agent for Magic Angle Spinning Dynamic Nuclear Polarization. The Journal of Physical Chemistry B 2022, 126 (33) , 6281-6289. https://doi.org/10.1021/acs.jpcb.2c04184
  11. Thomas Biedenbänder, Victoria Aladin, Siavash Saeidpour, Björn Corzilius. Dynamic Nuclear Polarization for Sensitivity Enhancement in Biomolecular Solid-State NMR. Chemical Reviews 2022, 122 (10) , 9738-9794. https://doi.org/10.1021/acs.chemrev.1c00776
  12. Shinji Tanaka, Shingo Takada, Tohru Suzuki, Yumiko Nakajima, Kazuhiko Sato. End-Groups of Poly(p-phenylene sulfide) Characterized by DNP NMR Spectroscopy. Macromolecules 2022, 55 (7) , 2806-2812. https://doi.org/10.1021/acs.macromol.2c00102
  13. Tong Zhang, Waldemar Schilling, Shahid Ullah Khan, H. Y. Vincent Ching, Can Lu, Jianhong Chen, Aleksander Jaworski, Giovanni Barcaro, Susanna Monti, Karolien De Wael, Adam Slabon, Shoubhik Das. Atomic-Level Understanding for the Enhanced Generation of Hydrogen Peroxide by the Introduction of an Aryl Amino Group in Polymeric Carbon Nitrides. ACS Catalysis 2021, 11 (22) , 14087-14101. https://doi.org/10.1021/acscatal.1c03733
  14. Yizhe Dai, Victor Terskikh, Andreas Brinmkmann, Gang Wu. Solid-State 1H, 13C, and 17O NMR Characterization of the Two Uncommon Polymorphs of Curcumin. Crystal Growth & Design 2020, 20 (11) , 7484-7491. https://doi.org/10.1021/acs.cgd.0c01164
  15. Gabriele Stevanato, Gilles Casano, Dominik J. Kubicki, Yu Rao, Laura Esteban Hofer, Georges Menzildjian, Hakim Karoui, Didier Siri, Manuel Cordova, Maxim Yulikov, Gunnar Jeschke, Moreno Lelli, Anne Lesage, Olivier Ouari, Lyndon Emsley. Open and Closed Radicals: Local Geometry around Unpaired Electrons Governs Magic-Angle Spinning Dynamic Nuclear Polarization Performance. Journal of the American Chemical Society 2020, 142 (39) , 16587-16599. https://doi.org/10.1021/jacs.0c04911
  16. Frédéric A. Perras, Muralikrishna Raju, Scott L. Carnahan, Dooman Akbarian, Adri C. T. van Duin, Aaron J. Rossini, Marek Pruski. Full-Scale Ab Initio Simulation of Magic-Angle-Spinning Dynamic Nuclear Polarization. The Journal of Physical Chemistry Letters 2020, 11 (14) , 5655-5660. https://doi.org/10.1021/acs.jpclett.0c00955
  17. Mingyue Li, Fan Meng, Yu Tsutsumi, Jean-Paul Amoureux, Wei Xu, Xingyu Lu, Feng Zhang, Yongchao Su. Understanding Molecular Interactions in Rafoxanide–Povidone Amorphous Solid Dispersions from Ultrafast Magic Angle Spinning NMR. Molecular Pharmaceutics 2020, 17 (6) , 2196-2207. https://doi.org/10.1021/acs.molpharmaceut.0c00317
  18. Markus M. Hoffmann, Sarah Bothe, Martin Brodrecht, Vytautas Klimavicius, Nadia B. Haro-Mares, Torsten Gutmann, Gerd Buntkowsky. Direct and Indirect Dynamic Nuclear Polarization Transfer Observed in Mesoporous Materials Impregnated with Nonionic Surfactant Solutions of Polar Polarizing Agents. The Journal of Physical Chemistry C 2020, 124 (9) , 5145-5156. https://doi.org/10.1021/acs.jpcc.9b10504
  19. Jasmine Viger-Gravel, Wu Lan, Arthur C. Pinon, Pierrick Berruyer, Lyndon Emsley, Michel Bardet, Jeremy Luterbacher. Topology of Pretreated Wood Fibers Using Dynamic Nuclear Polarization. The Journal of Physical Chemistry C 2019, 123 (50) , 30407-30415. https://doi.org/10.1021/acs.jpcc.9b09272
  20. Jiafei Mao, Victoria Aladin, Xinsheng Jin, Alexander J. Leeder, Lynda J. Brown, Richard C. D. Brown, Xiao He, Björn Corzilius, Clemens Glaubitz. Exploring Protein Structures by DNP-Enhanced Methyl Solid-State NMR Spectroscopy. Journal of the American Chemical Society 2019, 141 (50) , 19888-19901. https://doi.org/10.1021/jacs.9b11195
  21. Adam N. Smith, Katharina Märker, Sabine Hediger, Gaël De Paëpe. Natural Isotopic Abundance 13C and 15N Multidimensional Solid-State NMR Enabled by Dynamic Nuclear Polarization. The Journal of Physical Chemistry Letters 2019, 10 (16) , 4652-4662. https://doi.org/10.1021/acs.jpclett.8b03874
  22. David A. Hirsh, Anuradha V. Wijesekara, Scott L. Carnahan, Ivan Hung, Joseph W. Lubach, Karthik Nagapudi, Aaron J. Rossini. Rapid Characterization of Formulated Pharmaceuticals Using Fast MAS 1H Solid-State NMR Spectroscopy. Molecular Pharmaceutics 2019, 16 (7) , 3121-3132. https://doi.org/10.1021/acs.molpharmaceut.9b00343
  23. Xingyu Lu, Chengbin Huang, Michael B. Lowinger, Fengyuan Yang, Wei Xu, Chad D. Brown, David Hesk, Athanas Koynov, Luke Schenck, Yongchao Su. Molecular Interactions in Posaconazole Amorphous Solid Dispersions from Two-Dimensional Solid-State NMR Spectroscopy. Molecular Pharmaceutics 2019, 16 (6) , 2579-2589. https://doi.org/10.1021/acs.molpharmaceut.9b00174
  24. Arthur C. Pinon, Urban Skantze, Jasmine Viger-Gravel, Staffan Schantz, Lyndon Emsley. Core–Shell Structure of Organic Crystalline Nanoparticles Determined by Relayed Dynamic Nuclear Polarization NMR. The Journal of Physical Chemistry A 2018, 122 (44) , 8802-8807. https://doi.org/10.1021/acs.jpca.8b08630
  25. Edward P. Saliba, Erika L. Sesti, Nicholas Alaniva, Alexander B. Barnes. Pulsed Electron Decoupling and Strategies for Time Domain Dynamic Nuclear Polarization with Magic Angle Spinning. The Journal of Physical Chemistry Letters 2018, 9 (18) , 5539-5547. https://doi.org/10.1021/acs.jpclett.8b01695
  26. Aaron J. Rossini. Materials Characterization by Dynamic Nuclear Polarization-Enhanced Solid-State NMR Spectroscopy. The Journal of Physical Chemistry Letters 2018, 9 (17) , 5150-5159. https://doi.org/10.1021/acs.jpclett.8b01891
  27. Snædís Björgvinsdóttir, Brennan J. Walder, Arthur C. Pinon, Lyndon Emsley. Bulk Nuclear Hyperpolarization of Inorganic Solids by Relay from the Surface. Journal of the American Chemical Society 2018, 140 (25) , 7946-7951. https://doi.org/10.1021/jacs.8b03883
  28. Li Zhao, Michael P. Hanrahan, Paroma Chakravarty, Antonio G. DiPasquale, Lauren E. Sirois, Karthik Nagapudi, Joseph W. Lubach, Aaron J. Rossini. Characterization of Pharmaceutical Cocrystals and Salts by Dynamic Nuclear Polarization-Enhanced Solid-State NMR Spectroscopy. Crystal Growth & Design 2018, 18 (4) , 2588-2601. https://doi.org/10.1021/acs.cgd.8b00203
  29. Bertrand Plainchont, Pierrick Berruyer, Jean-Nicolas Dumez, Sami Jannin, Patrick Giraudeau. Dynamic Nuclear Polarization Opens New Perspectives for NMR Spectroscopy in Analytical Chemistry. Analytical Chemistry 2018, 90 (6) , 3639-3650. https://doi.org/10.1021/acs.analchem.7b05236
  30. Jasmine Viger-Gravel, Anna Schantz, Arthur C. Pinon, Aaron J. Rossini, Staffan Schantz, and Lyndon Emsley . Structure of Lipid Nanoparticles Containing siRNA or mRNA by Dynamic Nuclear Polarization-Enhanced NMR Spectroscopy. The Journal of Physical Chemistry B 2018, 122 (7) , 2073-2081. https://doi.org/10.1021/acs.jpcb.7b10795
  31. Takeshi Kobayashi, Igor I. Slowing, and Marek Pruski . Measuring Long-Range 13C–13C Correlations on a Surface under Natural Abundance Using Dynamic Nuclear Polarization-Enhanced Solid-State Nuclear Magnetic Resonance. The Journal of Physical Chemistry C 2017, 121 (44) , 24687-24691. https://doi.org/10.1021/acs.jpcc.7b08841
  32. César Leroy, Fabien Aussenac, Laure Bonhomme-Coury, Akiyoshi Osaka, Satoshi Hayakawa, Florence Babonneau, Cristina Coelho-Diogo, and Christian Bonhomme . Hydroxyapatites: Key Structural Questions and Answers from Dynamic Nuclear Polarization. Analytical Chemistry 2017, 89 (19) , 10201-10207. https://doi.org/10.1021/acs.analchem.7b01332
  33. Qing Zhe Ni, Fengyuan Yang, Thach V. Can, Ivan V. Sergeyev, Suzanne M. D’Addio, Sudheer K. Jawla, Yongjun Li, Maya P. Lipert, Wei Xu, R. Thomas Williamson, Anthony Leone, Robert G. Griffin, and Yongchao Su . In Situ Characterization of Pharmaceutical Formulations by Dynamic Nuclear Polarization Enhanced MAS NMR. The Journal of Physical Chemistry B 2017, 121 (34) , 8132-8141. https://doi.org/10.1021/acs.jpcb.7b07213
  34. Arnab Dey, Abhishek Banerjee, and Narayanan Chandrakumar . Transferred Overhauser DNP: A Fast, Efficient Approach for Room Temperature 13C ODNP at Moderately Low Fields and Natural Abundance. The Journal of Physical Chemistry B 2017, 121 (29) , 7156-7162. https://doi.org/10.1021/acs.jpcb.7b05081
  35. Arthur C. Pinon, Judith Schlagnitweit, Pierrick Berruyer, Aaron J. Rossini, Moreno Lelli, Etienne Socie, Mingxue Tang, Tran Pham, Anne Lesage, Staffan Schantz, and Lyndon Emsley . Measuring Nano- to Microstructures from Relayed Dynamic Nuclear Polarization NMR. The Journal of Physical Chemistry C 2017, 121 (29) , 15993-16005. https://doi.org/10.1021/acs.jpcc.7b04438
  36. Edward P. Saliba, Erika L. Sesti, Faith J. Scott, Brice J. Albert, Eric J. Choi, Nicholas Alaniva, Chukun Gao, and Alexander B. Barnes . Electron Decoupling with Dynamic Nuclear Polarization in Rotating Solids. Journal of the American Chemical Society 2017, 139 (18) , 6310-6313. https://doi.org/10.1021/jacs.7b02714
  37. Christophe Copéret, Aleix Comas-Vives, Matthew P. Conley, Deven P. Estes, Alexey Fedorov, Victor Mougel, Haruki Nagae, Francisco Núñez-Zarur, and Pavel A. Zhizhko . Surface Organometallic and Coordination Chemistry toward Single-Site Heterogeneous Catalysts: Strategies, Methods, Structures, and Activities. Chemical Reviews 2016, 116 (2) , 323-421. https://doi.org/10.1021/acs.chemrev.5b00373
  38. Takeshi Kobayashi, Frédéric A. Perras, Igor I. Slowing, Aaron D. Sadow, and Marek Pruski . Dynamic Nuclear Polarization Solid-State NMR in Heterogeneous Catalysis Research. ACS Catalysis 2015, 5 (12) , 7055-7062. https://doi.org/10.1021/acscatal.5b02039
  39. Moreno Lelli, Sachin R. Chaudhari, David Gajan, Gilles Casano, Aaron J. Rossini, Olivier Ouari, Paul Tordo, Anne Lesage, and Lyndon Emsley . Solid-State Dynamic Nuclear Polarization at 9.4 and 18.8 T from 100 K to Room Temperature. Journal of the American Chemical Society 2015, 137 (46) , 14558-14561. https://doi.org/10.1021/jacs.5b08423
  40. Katharina Märker, Morgane Pingret, Jean-Marie Mouesca, Didier Gasparutto, Sabine Hediger, and Gaël De Paëpe . A New Tool for NMR Crystallography: Complete 13C/15N Assignment of Organic Molecules at Natural Isotopic Abundance Using DNP-Enhanced Solid-State NMR. Journal of the American Chemical Society 2015, 137 (43) , 13796-13799. https://doi.org/10.1021/jacs.5b09964
  41. Arthur C. Pinon, Aaron J. Rossini, Cory M. Widdifield, David Gajan, and Lyndon Emsley . Polymorphs of Theophylline Characterized by DNP Enhanced Solid-State NMR. Molecular Pharmaceutics 2015, 12 (11) , 4146-4153. https://doi.org/10.1021/acs.molpharmaceut.5b00610
  42. Judith Schlagnitweit, Mingxue Tang, Maria Baias, Sara Richardson, Staffan Schantz, and Lyndon Emsley . Nanostructure of Materials Determined by Relayed Paramagnetic Relaxation Enhancement. Journal of the American Chemical Society 2015, 137 (39) , 12482-12485. https://doi.org/10.1021/jacs.5b08249
  43. Matthew L. Hirsch, Neal Kalechofsky, Avrum Belzer, Melanie Rosay, and James G. Kempf . Brute-Force Hyperpolarization for NMR and MRI. Journal of the American Chemical Society 2015, 137 (26) , 8428-8434. https://doi.org/10.1021/jacs.5b01252
  44. Chandan Singh, Ratan Kumar Rai, Fabien Aussenac, and Neeraj Sinha . Direct Evidence of Imino Acid–Aromatic Interactions in Native Collagen Protein by DNP-Enhanced Solid-State NMR Spectroscopy. The Journal of Physical Chemistry Letters 2014, 5 (22) , 4044-4048. https://doi.org/10.1021/jz502081j
  45. Dominik J. Kubicki, Aaron J. Rossini, Armin Purea, Alexandre Zagdoun, Olivier Ouari, Paul Tordo, Frank Engelke, Anne Lesage, and Lyndon Emsley . Amplifying Dynamic Nuclear Polarization of Frozen Solutions by Incorporating Dielectric Particles. Journal of the American Chemical Society 2014, 136 (44) , 15711-15718. https://doi.org/10.1021/ja5088453
  46. Daniel Lee, Guillaume Monin, Nghia Tuan Duong, Isabel Zamanillo Lopez, Michel Bardet, Vincent Mareau, Laurent Gonon, and Gaël De Paëpe . Untangling the Condensation Network of Organosiloxanes on Nanoparticles using 2D 29Si–29Si Solid-State NMR Enhanced by Dynamic Nuclear Polarization. Journal of the American Chemical Society 2014, 136 (39) , 13781-13788. https://doi.org/10.1021/ja506688m
  47. Dao Le, Gilles Casano, Trang N. T. Phan, Fabio Ziarelli, Olivier Ouari, Fabien Aussenac, Pierre Thureau, Giulia Mollica, Didier Gigmes, Paul Tordo, and Stéphane Viel . Optimizing Sample Preparation Methods for Dynamic Nuclear Polarization Solid-state NMR of Synthetic Polymers. Macromolecules 2014, 47 (12) , 3909-3916. https://doi.org/10.1021/ma500788n
  48. Neethu Thomas, Claire Welton, Tomasz Pawlak, Parth Raval, Julien Trébosc, Sheetal K. Jain, G.N. Manjunatha Reddy. Deuteron-proton isotope correlation spectroscopy at high magnetic fields. Solid State Nuclear Magnetic Resonance 2025, 136 , 101993. https://doi.org/10.1016/j.ssnmr.2025.101993
  49. L. P. Hughes, P. M. J. Szell, H. Blade, S. P. Brown. NMR Crystallography in Pharmaceutical Development. 2025, 413-450. https://doi.org/10.1039/9781837673179-00413
  50. G. Mollica. Applications of MAS DNP to NMR Crystallography of Bulk Molecular Solids. 2025, 632-671. https://doi.org/10.1039/9781837673179-00632
  51. Hampus Karlsson, Leo Svenningsson, Robin Storm, Poppy Chaiyupatham, Anders Brolin, Anette Larsson, Arthur C. Pinon, Staffan Schantz, Leif Karlson, Per A. Larsson, Lars Evenäs. Dynamic nuclear polarization solid-state NMR spectroscopy as a tool to rapidly determine degree of modification in dialcohol cellulose. Cellulose 2024, 31 (18) , 10727-10744. https://doi.org/10.1007/s10570-024-06234-8
  52. Devi Deepti Attinti, Kwasi Kantanka Safo, M. Balakrishna, Noble George, Shivani Pandya. Nuclear Magnetic Resonance Spectroscopy. 2024, 113-147. https://doi.org/10.1002/9781394167340.ch5
  53. Sahand Tabatabaei, Pritam Priyadarsi, Namanish Singh, Pardis Sahafi, Daniel Tay, Andrew Jordan, Raffi Budakian. Large-enhancement nanoscale dynamic nuclear polarization near a silicon nanowire surface. Science Advances 2024, 10 (34) https://doi.org/10.1126/sciadv.ado9059
  54. A. McCudden, K. Embrey. The Application of Magnetic Resonance to Testing Counterfeit, Falsified, and Substandard Medicines. 2024, 62-148. https://doi.org/10.1039/9781788019996-00062
  55. Leslie P. Hughes, Patrick M. J. Szell, Helen Blade, Steven P. Brown. NMR Crystallography in Pharmaceutical Development. 2024, 179-212. https://doi.org/10.1039/9781788019996-00179
  56. Saumya Badoni, Pierrick Berruyer, Lyndon Emsley. Optimal sensitivity for 1H detected relayed DNP of organic solids at fast MAS. Journal of Magnetic Resonance 2024, 360 , 107645. https://doi.org/10.1016/j.jmr.2024.107645
  57. Amrit Venkatesh, Gilles Casano, Ran Wei, Yu Rao, Hugo Lingua, Hakim Karoui, Maxim Yulikov, Olivier Ouari, Lyndon Emsley. Rational Design of Dinitroxide Polarizing Agents for Dynamic Nuclear Polarization to Enhance Overall NMR Sensitivity. Angewandte Chemie 2024, 136 (9) https://doi.org/10.1002/ange.202317337
  58. Amrit Venkatesh, Gilles Casano, Ran Wei, Yu Rao, Hugo Lingua, Hakim Karoui, Maxim Yulikov, Olivier Ouari, Lyndon Emsley. Rational Design of Dinitroxide Polarizing Agents for Dynamic Nuclear Polarization to Enhance Overall NMR Sensitivity. Angewandte Chemie International Edition 2024, 63 (9) https://doi.org/10.1002/anie.202317337
  59. Rania Harrabi, Thomas Halbritter, Shadi Alarab, Satyaki Chatterjee, Malgorzata Wolska-Pietkiewicz, Krishna K. Damodaran, Johan van Tol, Daniel Lee, Subhradip Paul, Sabine Hediger, Snorri Th. Sigurdsson, Frederic Mentink-Vigier, Gaël De Paëpe. AsymPol-TEKs as efficient polarizing agents for MAS-DNP in glass matrices of non-aqueous solvents. Physical Chemistry Chemical Physics 2024, 26 (6) , 5669-5682. https://doi.org/10.1039/D3CP04271E
  60. Peter Millington-Hotze, Santanu Manna, Saimon F. Covre da Silva, Armando Rastelli, Evgeny A. Chekhovich. Nuclear spin diffusion in the central spin system of a GaAs/AlGaAs quantum dot. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-38349-0
  61. Manuel Cordova, Pinelopi Moutzouri, Sten O. Nilsson Lill, Alexander Cousen, Martin Kearns, Stefan T. Norberg, Anna Svensk Ankarberg, James McCabe, Arthur C. Pinon, Staffan Schantz, Lyndon Emsley. Atomic-level structure determination of amorphous molecular solids by NMR. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-40853-2
  62. Samuel F. Cousin, Colan E. Hughes, Fabio Ziarelli, Stéphane Viel, Giulia Mollica, Kenneth D. M. Harris, Arthur C. Pinon, Pierre Thureau. Exploiting solid-state dynamic nuclear polarization NMR spectroscopy to establish the spatial distribution of polymorphic phases in a solid material. Chemical Science 2023, 14 (37) , 10121-10128. https://doi.org/10.1039/D3SC02063K
  63. Georges Menzildjian, Judith Schlagnitweit, Gilles Casano, Olivier Ouari, David Gajan, Anne Lesage. Polarizing agents for efficient high field DNP solid-state NMR spectroscopy under magic-angle spinning: from design principles to formulation strategies. Chemical Science 2023, 14 (23) , 6120-6148. https://doi.org/10.1039/D3SC01079A
  64. Jakub Harwacki, Dariusz Maciej Pisklak, Lukasz Szeleszczuk. Solid state 13C NMR spectroscopy as a tool for identification of counterfeit Viagra tablets and guide for develop new identification approach of falsified product. International Journal of Pharmaceutics 2023, 636 , 122837. https://doi.org/10.1016/j.ijpharm.2023.122837
  65. Yong Du, Jochem Struppe, Barbara Perrone, Alia Hassan, Anna Codina, Yongchao Su. Efficient analysis of pharmaceutical drug substances and products using a solid-state NMR CryoProbe. The Analyst 2023, 148 (4) , 724-734. https://doi.org/10.1039/D2AN01903E
  66. Adam N. Smith, Rania Harrabi, Thomas Halbritter, Daniel Lee, Fabien Aussenac, Patrick C.A. van der Wel, Sabine Hediger, Snorri Th. Sigurdsson, Gaël De Paëpe. Fast magic angle spinning for the characterization of milligram quantities of organic and biological solids at natural isotopic abundance by 13C–13C correlation DNP-enhanced NMR. Solid State Nuclear Magnetic Resonance 2023, 123 , 101850. https://doi.org/10.1016/j.ssnmr.2022.101850
  67. Koki Hara, Shunji Yamada, Atsushi Kurotani, Eisuke Chikayama, Jun Kikuchi. Materials informatics approach using domain modelling for exploring structure–property relationships of polymers. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-14394-5
  68. Eric Besson, Aurelien Vebr, Fabio Ziarelli, Emily Bloch, Guillaume Gerbaud, Séverine Queyroy, Pierre Thureau, Stéphane Viel, Stéphane Gastaldi. Investigating the efficiency of silica materials with wall-embedded nitroxide radicals for dynamic nuclear polarisation NMR. Physical Chemistry Chemical Physics 2022, 24 (41) , 25279-25286. https://doi.org/10.1039/D2CP02872G
  69. Claire Welton, Parth Raval, Julien Trébosc, G. N. Manjunatha Reddy. Chemical exchange of labile protons by deuterium enables selective detection of pharmaceuticals in solid formulations. Chemical Communications 2022, 58 (82) , 11551-11554. https://doi.org/10.1039/D2CC04585K
  70. Eugene Cheung, Yan Xia, Marc A. Caporini, Jamie L. Gilmore. Tools shaping drug discovery and development. Biophysics Reviews 2022, 3 (3) https://doi.org/10.1063/5.0087583
  71. Yong Du, Yongchao Su. 19F Solid-state NMR characterization of pharmaceutical solids. Solid State Nuclear Magnetic Resonance 2022, 120 , 101796. https://doi.org/10.1016/j.ssnmr.2022.101796
  72. Ilia B. Moroz, Michal Leskes. Dynamic Nuclear Polarization Solid-State NMR Spectroscopy for Materials Research. Annual Review of Materials Research 2022, 52 (1) , 25-55. https://doi.org/10.1146/annurev-matsci-081720-085634
  73. Koki Hara, Shunji Yamada, Eisuke Chikayama, Jun Kikuchi. Parameter Visualization of Benchtop Nuclear Magnetic Resonance Spectra toward Food Process Monitoring. Processes 2022, 10 (7) , 1264. https://doi.org/10.3390/pr10071264
  74. Renny Mathew, Ivan V. Sergeyev, Fabien Aussenac, Lydia Gkoura, Melanie Rosay, Maria Baias. Complete resonance assignment of a pharmaceutical drug at natural isotopic abundance from DNP-Enhanced solid-state NMR. Solid State Nuclear Magnetic Resonance 2022, 119 , 101794. https://doi.org/10.1016/j.ssnmr.2022.101794
  75. Edward P. Saliba, Alexander B. Barnes, . The Clebsch–Gordan Coefficients and Their Application to Magnetic Resonance. Concepts in Magnetic Resonance Part A 2022, 2022 , 1-18. https://doi.org/10.1155/2022/1143341
  76. Rania Harrabi, Thomas Halbritter, Fabien Aussenac, Ons Dakhlaoui, Johan van Tol, Krishna K. Damodaran, Daniel Lee, Subhradip Paul, Sabine Hediger, Frederic Mentink‐Vigier, Snorri Th. Sigurdsson, Gaël De Paëpe. Highly Efficient Polarizing Agents for MAS‐DNP of Proton‐Dense Molecular Solids. Angewandte Chemie 2022, 134 (12) https://doi.org/10.1002/ange.202114103
  77. Rania Harrabi, Thomas Halbritter, Fabien Aussenac, Ons Dakhlaoui, Johan van Tol, Krishna K. Damodaran, Daniel Lee, Subhradip Paul, Sabine Hediger, Frederic Mentink‐Vigier, Snorri Th. Sigurdsson, Gaël De Paëpe. Highly Efficient Polarizing Agents for MAS‐DNP of Proton‐Dense Molecular Solids. Angewandte Chemie International Edition 2022, 61 (12) https://doi.org/10.1002/anie.202114103
  78. Sungsool Wi, Navneet Dwivedi, Richa Dubey, Frederic Mentink-Vigier, Neeraj Sinha. Dynamic nuclear polarization-enhanced, double-quantum filtered 13C-13C dipolar correlation spectroscopy of natural 13C abundant bone-tissue biomaterial. Journal of Magnetic Resonance 2022, 335 , 107144. https://doi.org/10.1016/j.jmr.2022.107144
  79. Walid Al Maksoud, Sandeep Mishra, Aya Saidi, Manoja K. Samantaray, Jean Marie Basset. Surface Organometallic Chemistry and Catalysis. 2022, 463-533. https://doi.org/10.1016/B978-0-12-820206-7.00133-5
  80. Manuel Cordova, Martins Balodis, Albert Hofstetter, Federico Paruzzo, Sten O. Nilsson Lill, Emma S. E. Eriksson, Pierrick Berruyer, Bruno Simões de Almeida, Michael J. Quayle, Stefan T. Norberg, Anna Svensk Ankarberg, Staffan Schantz, Lyndon Emsley. Structure determination of an amorphous drug through large-scale NMR predictions. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-23208-7
  81. Florian Venel, Hiroki Nagashima, Andrew G. M. Rankin, Christelle Anquetil, Vytautas Klimavicius, Torsten Gutmann, Gerd Buntkowsky, Sylvie Derenne, Olivier Lafon, Arnaud Huguet, Frédérique Pourpoint. Characterization of Functional Groups in Estuarine Dissolved Organic Matter by DNP‐enhanced 15 N and 13 C Solid‐State NMR. ChemPhysChem 2021, 22 (18) , 1907-1913. https://doi.org/10.1002/cphc.202100334
  82. Jasmine Viger-Gravel, Arthur C. Pinon, Snædís Björgvinsdóttir, Urban Skantze, Anna Svensk Ankarberg, Christian Von corswant, Staffan Schantz, Lyndon Emsley. High Sensitivity Detection of a Solubility Limiting Surface Transformation of Drug Particles by DNP SENS. Journal of Pharmaceutical Sciences 2021, 110 (6) , 2452-2456. https://doi.org/10.1016/j.xphs.2020.12.037
  83. Mingyue Li, Wei Xu, Yongchao Su. Solid-state NMR spectroscopy in pharmaceutical sciences. TrAC Trends in Analytical Chemistry 2021, 135 , 116152. https://doi.org/10.1016/j.trac.2020.116152
  84. Moritz K. Jackl, Christopher P. Gordon, Christophe Copéret, Jeffrey W. Bode. Spirocyclic Nitroxide Biradicals: Synthesis and Evaluation as Dynamic Nuclear Polarizing Agents. Helvetica Chimica Acta 2020, 103 (12) https://doi.org/10.1002/hlca.202000179
  85. Mingyue Li, Xingyu Lu, Wei Xu, Gregory M. Troup, Michael J. McNevin, Haichen Nie, Yongchao Su. Quantifying Pharmaceutical Formulations from Proton Detected Solid-State NMR under Ultrafast Magic Angle Spinning. Journal of Pharmaceutical Sciences 2020, 109 (10) , 3045-3053. https://doi.org/10.1016/j.xphs.2020.06.026
  86. Jasmine Viger‐Gravel, Federico M. Paruzzo, Corine Cazaux, Ribal Jabbour, Amandine Leleu, Françoise Canini, Pierre Florian, Frédéric Ronzon, David Gajan, Anne Lesage. Atomic‐Scale Description of Interfaces between Antigen and Aluminum‐Based Adjuvants Used in Vaccines by Dynamic Nuclear Polarization (DNP) Enhanced NMR Spectroscopy. Chemistry – A European Journal 2020, 26 (41) , 8976-8982. https://doi.org/10.1002/chem.202001141
  87. Fengyuan Yang, Yongchao Su, James Small, Chengbin Huang, Gary E. Martin, Andrew M. Farrington, James DiNunzio, Chad D. Brown. Probing the Molecular-Level Interactions in an Active Pharmaceutical Ingredient (API) - Polymer Dispersion and the Resulting Impact on Drug Product Formulation. Pharmaceutical Research 2020, 37 (6) https://doi.org/10.1007/s11095-020-02813-z
  88. You-lee Hong, G.N. Manjunatha Reddy, Yusuke Nishiyama. Selective detection of active pharmaceutical ingredients in tablet formulations using solid-state NMR spectroscopy. Solid State Nuclear Magnetic Resonance 2020, 106 , 101651. https://doi.org/10.1016/j.ssnmr.2020.101651
  89. Shinji Tanaka, Wei-Chih Liao, Atsuko Ogawa, Kazuhiko Sato, Christophe Copéret. DNP NMR spectroscopy of cross-linked organic polymers: rational guidelines towards optimal sample preparation. Physical Chemistry Chemical Physics 2020, 22 (6) , 3184-3190. https://doi.org/10.1039/C9CP05208A
  90. Edward P. Saliba, Alexander B. Barnes. Fast electron paramagnetic resonance magic angle spinning simulations using analytical powder averaging techniques. The Journal of Chemical Physics 2019, 151 (11) https://doi.org/10.1063/1.5113598
  91. Khoa D. Nguyen, Christel Kutzscher, Sebastian Ehrling, Irena Senkovska, Volodymyr Bon, Marcos de Oliveira, Torsten Gutmann, Gerd Buntkowsky, Stefan Kaskel. Insights into the role of zirconium in proline functionalized metal-organic frameworks attaining high enantio- and diastereoselectivity. Journal of Catalysis 2019, 377 , 41-50. https://doi.org/10.1016/j.jcat.2019.07.003
  92. Andrew G.M. Rankin, Julien Trébosc, Frédérique Pourpoint, Jean-Paul Amoureux, Olivier Lafon. Recent developments in MAS DNP-NMR of materials. Solid State Nuclear Magnetic Resonance 2019, 101 , 116-143. https://doi.org/10.1016/j.ssnmr.2019.05.009
  93. Patrick T. Judge, Erika L. Sesti, Edward P. Saliba, Nicholas Alaniva, Thomas Halbritter, Snorri Th. Sigurdsson, Alexander B. Barnes. Sensitivity analysis of magic angle spinning dynamic nuclear polarization below 6 K. Journal of Magnetic Resonance 2019, 305 , 51-57. https://doi.org/10.1016/j.jmr.2019.05.011
  94. Pierre Thureau, Marie Juramy, Fabio Ziarelli, Stephane Viel, Giulia Mollica. Brute-force solvent suppression for DNP studies of powders at natural isotopic abundance. Solid State Nuclear Magnetic Resonance 2019, 99 , 15-19. https://doi.org/10.1016/j.ssnmr.2019.02.002
  95. Jasmine Viger‐Gravel, Claudia E. Avalos, Dominik J. Kubicki, David Gajan, Moreno Lelli, Olivier Ouari, Anne Lesage, Lyndon Emsley. 19 F Magic Angle Spinning Dynamic Nuclear Polarization Enhanced NMR Spectroscopy. Angewandte Chemie 2019, 131 (22) , 7327-7331. https://doi.org/10.1002/ange.201814416
  96. Jasmine Viger‐Gravel, Claudia E. Avalos, Dominik J. Kubicki, David Gajan, Moreno Lelli, Olivier Ouari, Anne Lesage, Lyndon Emsley. 19 F Magic Angle Spinning Dynamic Nuclear Polarization Enhanced NMR Spectroscopy. Angewandte Chemie International Edition 2019, 58 (22) , 7249-7253. https://doi.org/10.1002/anie.201814416
  97. Mukul G. Jain, Kaustubh R. Mote, Perunthiruthy K. Madhu. NMR Crystallography at Fast Magic-Angle Spinning Frequencies: Application of Novel Recoupling Methods. Crystals 2019, 9 (5) , 231. https://doi.org/10.3390/cryst9050231
  98. Xingyu Lu, Wei Xu, Masataka Hanada, Scott V. Jermain, Robert O. Williams, Yongchao Su. Solid-state NMR analysis of crystalline and amorphous Indomethacin: An experimental protocol for full resonance assignments. Journal of Pharmaceutical and Biomedical Analysis 2019, 165 , 47-55. https://doi.org/10.1016/j.jpba.2018.11.001
  99. Rolf Hilfiker, Susan M. De Paul, Timo Rager. Analytical Tools to Characterize Solid Forms. 2018, 415-446. https://doi.org/10.1002/9783527697847.ch14
  100. Enrico Ravera, Panteleimon G. Takis, Marco Fragai, Giacomo Parigi, Claudio Luchinat. NMR Spectroscopy and Metal Ions in Life Sciences. European Journal of Inorganic Chemistry 2018, 2018 (44) , 4752-4770. https://doi.org/10.1002/ejic.201800875
Load all citations

Journal of the American Chemical Society

Cite this: J. Am. Chem. Soc. 2014, 136, 6, 2324–2334
Click to copy citationCitation copied!
https://doi.org/10.1021/ja4092038
Published January 10, 2014

Copyright © 2014 American Chemical Society. This publication is licensed under these Terms of Use.

Article Views

6332

Altmetric

-

Citations

Learn about these metrics

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • Abstract

    Chart 1

    Chart 1. Molecular Structures of the API Cetirizine Dihydrochloride (A) and the Excipients Magnesium Stearate (M), Hydroxypropyl Methylcellulose (Hypromellose, H), Polyvinylpyrrolidone (Povidone, P), and Lactose (L)

    Figure 1

    Figure 1. 105 K DNP enhanced natural abundance (A) 13C CPMAS spectrum (4 scans, 26 s τ), (B) 13C–13C refocused INADEQUATE correlation spectrum, and (C) 15N CPMAS spectrum (8 scans, 26 s τ) of crystalline A impregnated with a 16 mM solution of TEKPol in TCE (with 20% d2-TCE). The INADEQUATE spectrum enables the assignment of the 13C resonances as indicated on the molecular structure drawing (assigned chemical shifts are given in Table S2, Supporting Information). The 2D spectrum was acquired in 14.2 h (32 scans per increment, a 20 s polarization delay between scans, and 80 t1 increments with a 32 μs t1 increment). The States-TPPI procedure (88, 89) was employed to achieve quadrature detection in the indirect dimension. Asterisks indicate folded-back sidebands.

    Figure 2

    Figure 2. 105 K DNP enhanced natural abundance 13C CPMAS spectra of (A) magnesium stearate (M), (B) hypromellose (H), (C) α-lactose monohydrate (L), (D) starch (S), (E) povidone (P), (F) crystalline cetirizine dihydrochloride (A), (G) amorphous cetirizine dihydrochloride (A), and (H) formulation F1. All solids were ground and impregnated with TCE solutions of TEKPol except for S where spectra were acquired from the pure solid without any DNP enhancement (Table S1, Supporting Information, provides details of sample preparation). The 13C CP DNP enhancement (εC CP) for the compound, the number of scans, and the polarization delay (τ) are indicated. Asterisks denote spinning sidebands. Spectra are shown with arbitrary vertical scaling.

    Figure 3

    Figure 3. 105 K DNP enhanced natural abundance 13C (left column) and 15N (right column) CPMAS solid-state NMR spectra of (A) crystalline cetirizine dihydrochloride (A), (B) amorphous cetirizine dihydrochloride (A), (C) povidone (P), (D) “LIFE” brand formulation (F1), (E) “CVS” brand formulation (F2), (F) “Reactine” brand formulation (F3), and (G) “Wal-Zyr” brand formulation (F4) impregnated with TCE solutions of TEKPol (Table 1). 13C CP DNP enhancements for the API (or povidone) are listed for each spectrum, and the TCE resonance has been truncated to better illustrate low intensity signals. The number of scans and polarization delay (τ) used for each spectrum are indicated in the figure. All spectra were acquired with a sample spinning frequency (νrot) of 12500 Hz in order to eliminate sideband overlap. Note that the DNP enhancements were measured in separate experiments with νrot = 8000 Hz. Experiments on F1 indicate that εC CP with a 12500 Hz spinning rate are ca. 85% of those measured at 8000 Hz. 15N CPMAS spectra were acquired with contact times between 2.5 and 4.0 ms.

    Figure 4

    Figure 4. (A) Signal build-ups observed for F1 with a saturation recovery CP pulse sequence with (black) and without (red) microwave irradiation. Curves were fit with stretched exponential functions of the form S(t) = S0 × [exp(−(t/T1*)β)]. The values of T1* and β are indicated. (B) The measured values of εC CP for the API resonance of F1 at 128 ppm as a function of polarization time. The inset shows εC CP at short τ. Error bars were calculated by propagation of error using the noise levels of the spectra acquired with and without microwave irradiation as the standard deviation. (C) Measured values of εC CP for the povidone resonance of F1 at 41.5 ppm. The average value of εC CP for P was 43, and this was assumed to be the enhancement at the surface of the API particles (ε0). (D) Comparison between experimental and simulated ε of the API as a function of τ using a numerical model of spin diffusion for spherical particles of the indicated radius (see ref 42 for more details). (E) Simulations of the variation of ε for different Weibull distributions of the particle radius. (F) Plots of the Weibull distributions of the particle radius used in part E. Weibull distributions 1, 2 and 3 employed shape parameters (k) of 1.5 and the center of the distributions (λ) was 0.10, 0.15 and 0.20 μm, respectively. For all simulations, the surface enhancement (ε0) was fixed at 43, the proton longitudinal relaxation time (T1) of the API was 5.3 s, the T1 at the surface of the particles was set to 2.3 s to match the T1 measured for povidone, and the diffusion constant (D) was 1.0 × 105 Å2 s–1.

    Figure 5

    Figure 5. Natural abundance DNP enhanced 1H–15N dipolar HETCOR spectra of crystalline A (A and B), amorphous A (C and D), and F1 (E and F). The spectra were acquired with contact times (τCP) of 0.5 ms (top spectra) and 3.0 ms (lower spectra) to probe for short- and long-range 1H–15N distances, respectively. Key 15N chemical shifts and 1H correlations are indicated on the spectra with dashed lines. An expanded view of the correlations is provided for part F. HETCOR spectra of crystalline A were acquired with 4 scans per increment, an 8 s polarization delay, 52 individual t1 increments, and a 64 μs t1 increment (27 min each). HETCOR spectra of amorphous A were acquired with (C) 64 or (D) 48 scans per increment, a 5.2 s polarization delay, 64 individual t1 increments, and a 64 μs t1 increment (5.2 and 4.4 h, respectively). HETCOR spectra of F1 were acquired with 128 scans (E) or 96 scans (F) per increment, a 3 s polarization delay, 52 individual t1 increments, and a 64 μs t1 increment (5.5 and 4.2 h, respectively). During t1, eDUMBO-122 homonuclear 1H dipolar decoupling (86) was applied and proton chemical shifts were corrected by applying a scaling factor of 0.57. The States-TPPI procedure (88, 89) was employed to achieve quadrature detection in the indirect dimension.

  • References


    This article references 96 other publications.

    1. 1
      Threlfall, T. L. Analyst 1995, 120, 2435 2460
    2. 2
      Bernstein, J. Polymorphism in Molecular Crystals; Oxford University Press: Oxford, U.K., 2002.
    3. 3
      Harris, R. K. Analyst 2006, 131, 351 373
    4. 4
      Berendt, R. T.; Sperger, D. M.; Isbester, P. K.; Munson, E. J. TrAC, Trends Anal. Chem. 2006, 25, 977 984
    5. 5
      Vogt, F. G. Future Med. Chem. 2010, 2, 915 921
    6. 6
      Brown, S. P.; Zhu, X. X.; Saalwachter, K.; Spiess, H. W. J. Am. Chem. Soc. 2001, 123, 4275 4285
    7. 7
      Elena, B.; Emsley, L. J. Am. Chem. Soc. 2005, 127, 9140 9146
    8. 8
      Brouwer, D. H.; Darton, R. J.; Morris, R. E.; Levitt, M. H. J. Am. Chem. Soc. 2005, 127, 10365 10370
    9. 9
      Seidel, K.; Etzkorn, M.; Sonnenberg, L.; Griesinger, C.; Sebald, A.; Baldus, M. J. Phys. Chem. A 2005, 109, 2436 2442
    10. 10
      Elena, B.; Pintacuda, G.; Mifsud, N.; Emsley, L. J. Am. Chem. Soc. 2006, 128, 9555 9560
    11. 11
      Facelli, J. C.; Grant, D. M. Nature 1993, 365, 325 327
    12. 12
      Ochsenfeld, C.; Brown, S. P.; Schnell, I.; Gauss, J.; Spiess, H. W. J. Am. Chem. Soc. 2001, 123, 2597 2606
    13. 13
      Rapp, A.; Schnell, I.; Sebastiani, D.; Brown, S. P.; Percec, V.; Spiess, H. W. J. Am. Chem. Soc. 2003, 125, 13284 13297
    14. 14
      Pickard, C. J.; Salager, E.; Pintacuda, G.; Elena, B.; Emsley, L. J. Am. Chem. Soc. 2007, 129, 8932 8933
    15. 15
      Cadars, S.; Brouwer, D. H.; Chmelka, B. F. Phys. Chem. Chem. Phys. 2009, 11, 1825 1837
    16. 16
      Salager, E.; Stein, R. S.; Pickard, C. J.; Elena, B.; Emsley, L. Phys. Chem. Chem. Phys. 2009, 11, 2610 2621
    17. 17
      Salager, E.; Day, G. M.; Stein, R. S.; Pickard, C. J.; Elena, B.; Emsley, L. J. Am. Chem. Soc. 2010, 132, 2564 2565
    18. 18
      Perras, F. A.; Bryce, D. L. J. Phys. Chem. C 2012, 116, 19472 19482
    19. 19
      Mafra, L.; Santos, S. M.; Siegel, R.; Alves, I.; Almeida Paz, F. A.; Dudenko, D.; Spiess, H. W. J. Am. Chem. Soc. 2012, 134, 71 74
    20. 20
      Baias, M.; Widdifield, C. M.; Dumez, J.-N.; Thompson, H. P. G.; Cooper, T. G.; Salager, E.; Bassil, S.; Stein, R. S.; Lesage, A.; Day, G. M.; Emsley, L. Phys. Chem. Chem. Phys. 2013, 15, 8069 8080
    21. 21
      Brouwer, D. H.; Cadars, S.; Eckert, J.; Liu, Z.; Terasaki, O.; Chmelka, B. F. J. Am. Chem. Soc. 2013, 135, 5641 5655
    22. 22
      Baias, M.; Dumez, J.-N.; Svensson, P. H.; Schantz, S.; Day, G. M.; Emsley, L. J. Am. Chem. Soc. 2013, 135, 17501 17507
    23. 23
      Wenslow, R. M. Drug Dev. Ind. Pharm. 2002, 28, 555 561
    24. 24
      Hamaed, H.; Pawlowski, J. M.; Cooper, B. F. T.; Fu, R.; Eichhorn, S. H.; Schurko, R. W. J. Am. Chem. Soc. 2008, 130, 11056 11065
    25. 25
      Katrincic, L. M.; Sun, Y. T.; Carlton, R. A.; Diederich, A. M.; Mueller, R. L.; Vogt, F. G. Int. J. Pharm. 2009, 366, 1 13
    26. 26
      Hung, I.; Uldry, A. C.; Becker-Baldus, J.; Webber, A. L.; Wong, A.; Smith, M. E.; Joyce, S. A.; Yates, J. R.; Pickard, C. J.; Dupree, R.; Brown, S. P. J. Am. Chem. Soc. 2009, 131, 1820 1834
    27. 27
      Pham, T. N.; Watson, S. A.; Edwards, A. J.; Chavda, M.; Clawson, J. S.; Strohmeier, M.; Vogt, F. G. Mol. Pharmaceutics 2010, 7, 1667 1691
    28. 28
      O’Dell, L. A.; Schurko, R. W.; Harris, K. J.; Autschbach, J.; Ratcliffe, C. I. J. Am. Chem. Soc. 2011, 133, 527 546
    29. 29
      Bonhomme, C.; Gervais, C.; Folliet, N.; Pourpoint, F.; Diogo, C. C.; Lao, J.; Jallot, E.; Lacroix, J.; Nedelec, J. M.; Iuga, D.; Hanna, J. V.; Smith, M. E.; Xiang, Y.; Du, J. C.; Laurencin, D. J. Am. Chem. Soc. 2012, 134, 12611 12628
    30. 30
      Tatton, A. S.; Pham, T. N.; Vogt, F. G.; Iuga, D.; Edwards, A. J.; Brown, S. P. CrystEngComm 2012, 14, 2654 2659
    31. 31
      Burgess, K. M. N.; Perras, F. A.; Lebrun, A.; Messner-Henning, E.; Korobkov, I.; Bryce, D. L. J. Pharm. Sci. 2012, 101, 2930 2940
    32. 32
      Kong, X. Q.; O’Dell, L. A.; Terskikh, V.; Ye, E.; Wang, R. Y.; Wu, G. J. Am. Chem. Soc. 2012, 134, 14609 14617
    33. 33
      Haimovich, A.; Eliav, U.; Goldbourt, A. J. Am. Chem. Soc. 2012, 134, 5647 5651
    34. 34
      Vogt, F. G.; Yin, H.; Forcino, R. G.; Wu, L. Mol. Pharmacol. 2013, 10, 3433 3446
    35. 35
      Kong, X. Q.; Shan, M.; Terskikh, V.; Hung, I.; Gan, Z. H.; Wu, G. J. Phys. Chem. B 2013, 117, 9643 9654
    36. 36
      Umino, M.; Higashi, K.; Masu, H.; Limwikrant, W.; Yamamoto, K.; Moribe, K. J. Pharm. Sci. 2013, 102, 2738 2747
    37. 37
      Saindon, P. J.; Cauchon, N. S.; Sutton, P. A.; Chang, C. J.; Peck, G. E.; Byrn, S. R. Pharm. Res. 1993, 10, 197 203
    38. 38
      Lubach, J. W.; Padden, B. E.; Winslow, S. L.; Salsbury, J. S.; Masters, D. B.; Topp, E. M.; Munson, E. J. Anal. Bioanal. Chem. 2004, 378, 1504 1510
    39. 39
      Harris, R. K.; Hodgkinson, P.; Larsson, T.; Muruganantham, A. J. Pharm. Biomed. Anal. 2005, 38, 858 864
    40. 40
      Tobyn, M.; Brown, J.; Dennis, A. B.; Fakes, M.; Gao, Q.; Gamble, J.; Khimyak, Y. Z.; McGeorge, G.; Patel, C.; Sinclair, W.; Timmins, P.; Yin, S. J. Pharm. Sci. 2009, 98, 3456 3468
    41. 41
      Lubach, J. W.; Xu, D.; Segmuller, B. E.; Munson, E. J. J. Pharm. Sci. 2007, 96, 777 787
    42. 42
      Rossini, A. J.; Zagdoun, A.; Hegner, F. S.; Schwarzwälder, M.; Gajan, D.; Copéret, C.; Lesage, A.; Emsley, L. J. Am. Chem. Soc. 2012, 134, 16899 16908
    43. 43
      Chang, C. J.; Diaz, L. E.; Morin, F.; Grant, D. M. Magn. Reson. Chem. 1986, 24, 768 771
    44. 44
      Diaz, L. E.; Frydman, L.; Olivieri, A. C.; Frydman, B. Anal. Lett. 1987, 20, 1657 1666
    45. 45
      Jagannathan, N. R. Curr. Sci. 1987, 56, 827 830
    46. 46
      Sanchez, S.; Ziarelli, F.; Viel, S.; Delaurent, C.; Caldarelli, S. J. Pharm. Biomed. Anal. 2008, 47, 683 687
    47. 47
      Griffin, J. M.; Martin, D. R.; Brown, S. P. Angew. Chem., Int. Ed. 2007, 46, 8036 8038
    48. 48
      Zhou, D. H.; Rienstra, C. M. Angew. Chem., Int. Ed. 2008, 47, 7328 7331
    49. 49
      Tatton, A. S.; Pham, T. N.; Vogt, F. G.; Iuga, D.; Edwards, A. J.; Brown, S. P. Mol. Pharmacol. 2013, 10, 999 1007
    50. 50
      Zhou, D. H.; Shah, G.; Mullen, C.; Sandoz, D.; Rienstra, C. M. Angew. Chem., Int. Ed. 2009, 48, 1253 1256
    51. 51
      Nishiyama, Y.; Frey, M. H.; Mukasa, S.; Utsumi, H. J. Magn. Reson. 2010, 202, 135 139
    52. 52
      Zielinska-Pisklak, M.; Pisklak, D. M.; Wawer, I. J. Pharm. Sci. 2012, 101, 1763 1772
    53. 53
      Vogt, F. G.; Williams, G. R. Pharm. Res. 2012, 29, 1866 1881
    54. 54
      Kelley, W. P.; Chen, S. J.; Floyd, P. D.; Hu, P.; Kapsi, S. G.; Kord, A. S.; Sun, M. J.; Vogt, F. G. Anal. Chem. 2012, 84, 4357 4372
    55. 55
      Vogt, F. G.; Strohmeier, M. Mol. Pharm. 2012, 9, 3357 3374
    56. 56
      Maly, T.; Debelouchina, G. T.; Bajaj, V. S.; Hu, K. N.; Joo, C. G.; Mak-Jurkauskas, M. L.; Sirigiri, J. R.; van der Wel, P. C. A.; Herzfeld, J.; Temkin, R. J.; Griffin, R. G. J. Chem. Phys. 2008, 128, 052211
    57. 57
      Ni, Q. Z.; Daviso, E.; Can, T. V.; Markhasin, E.; Jawla, S. K.; Swager, T. M.; Temkin, R. J.; Herzfeld, J.; Griffin, R. G. Acc. Chem. Res. 2013, 48, 1933 1941
    58. 58
      Mak-Jurkauskas, M. L.; Bajaj, V. S.; Hornstein, M. K.; Belenky, M.; Griffin, R. G.; Herzfeld, J. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 883 888
    59. 59
      Salnikov, E.; Rosay, M.; Pawsey, S.; Ouari, O.; Tordo, P.; Bechinger, B. J. Am. Chem. Soc. 2010, 132, 5940 5941
    60. 60
      Sergeyev, I. V.; Day, L. A.; Goldbourt, A.; McDermott, A. E. J. Am. Chem. Soc. 2011, 133, 20208 20217
    61. 61
      Linden, A. H.; Lange, S.; Franks, W. T.; Akbey, U.; Specker, E.; van Rossum, B.-J.; Oschkinat, H. J. Am. Chem. Soc. 2011, 133, 19266 19269
    62. 62
      Reggie, L.; Lopez, J. J.; Collinson, I.; Glaubitz, C.; Lorch, M. J. Am. Chem. Soc. 2011, 133, 19084 19086
    63. 63
      Potapov, A.; Yau, W.-M.; Tycko, R. J. Magn. Reson. 2013, 231, 5 14
    64. 64
      Takahashi, H.; Ayala, I.; Bardet, M.; De Paepe, G.; Simorre, J. P.; Hediger, S. J. Am. Chem. Soc. 2013, 135, 5105 5110
    65. 65
      Wang, T.; Park, Y. B.; Caporini, M. A.; Rosay, M.; Zhong, L. H.; Cosgrove, D. J.; Hong, M. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 16444 16449
    66. 66
      Lesage, A.; Lelli, M.; Gajan, D.; Caporini, M. A.; Vitzthum, V.; Mieville, P.; Alauzun, J.; Roussey, A.; Thieuleux, C.; Mehdi, A.; Bodenhausen, G.; Copéret, C.; Emsley, L. J. Am. Chem. Soc. 2010, 132, 15459 15461
    67. 67
      Lelli, M.; Gajan, D.; Lesage, A.; Caporini, M. A.; Vitzthum, V.; Mieville, P.; Heroguel, F.; Rascon, F.; Roussey, A.; Thieuleux, C.; Boualleg, M.; Veyre, L.; Bodenhausen, G.; Copéret, C.; Emsley, L. J. Am. Chem. Soc. 2011, 133, 2104 2107
    68. 68
      Lafon, O.; Rosay, M.; Aussenac, F.; Lu, X.; Trebosc, J.; Cristini, O.; Kinowski, C.; Touati, N.; Vezin, H.; Amoureux, J. P. Angew. Chem., Int. Ed. 2011, 50, 8367 8370
    69. 69
      Rossini, A. J.; Zagdoun, A.; Lelli, M.; Canivet, J.; Aguado, S.; Ouari, O.; Tordo, P.; Rosay, M.; Maas, W. E.; Copéret, C.; Farrusseng, D.; Emsley, L.; Lesage, A. Angew. Chem., Int. Ed. 2012, 51, 123 127
    70. 70
      Zagdoun, A.; Casano, G.; Ouari, O.; Lapadula, G.; Rossini, A. J.; Lelli, M.; Baffert, M.; Gajan, D.; Veyre, L.; Maas, W. E.; Rosay, M.; Weber, R. T.; Thieuleux, C.; Copéret, C.; Lesage, A.; Tordo, P.; Emsley, L. J. Am. Chem. Soc. 2012, 134, 2284 2291
    71. 71
      Takahashi, H.; Lee, D.; Dubois, L.; Bardet, M.; Hediger, S.; De Paëpe, G. Angew. Chem., Int. Ed. 2012, 124, 11936 11939
    72. 72
      Rossini, A. J.; Zagdoun, A.; Lelli, M.; Lesage, A.; Copéret, C.; Emsley, L. Acc. Chem. Res. 2013, 46, 1942 1951
    73. 73
      Blanc, F.; Sperrin, L.; Jefferson, D. A.; Pawsey, S.; Rosay, M.; Grey, C. P. J. Am. Chem. Soc. 2013, 135, 2975 2978
    74. 74
      Lafon, O.; Thankamony, A. S. L.; Kobayashi, T.; Carnevale, D.; Vitzthum, V.; Slowing, I. I.; Kandel, K.; Vezin, H.; Amoureux, J. P.; Bodenhausen, G.; Pruski, M. J. Phys. Chem. C 2013, 117, 1375 1382
    75. 75
      Blanc, F.; Chong, S. Y.; McDonald, T. O.; Adams, D. J.; Pawsey, S.; Caporini, M. A.; Cooper, A. I. J. Am. Chem. Soc. 2013, 135, 15290 15293
    76. 76
      Song, C. S.; Hu, K. N.; Joo, C. G.; Swager, T. M.; Griffin, R. G. J. Am. Chem. Soc. 2006, 128, 11385 11390
    77. 77
      van der Wel, P. C. A.; Hu, K. N.; Lewandowski, J.; Griffin, R. G. J. Am. Chem. Soc. 2006, 128, 10840 10846
    78. 78
      Ong, T. C.; Mak-Jurkauskas, M. L.; Walish, J. J.; Michaelis, V. K.; Corzilius, B.; Smith, A. A.; Clausen, A. M.; Cheetham, J. C.; Swager, T. M.; Griffin, R. G. J. Phys. Chem. B 2013, 117, 3040 3046
    79. 79
      Zagdoun, A.; Casano, G.; Ouari, O.; Schwarzwälder, M.; Rossini, A. J.; Aussenac, F.; M., Y.; G., J.; Copéret, C.; Lesage, A.; Tordo, P.; Emsley, L. J. Am. Chem. Soc. 2013, 135, 12790 12797
    80. 80
      Zagdoun, A.; Casano, G.; Ouari, O.; Lapadula, G.; Rossini, A. J.; Lelli, M.; Baffert, M.; Gajan, D.; Veyre, L.; Maas, W. E.; Rosay, M.; Weber, R. T.; Thieuleux, C.; Copéret, C.; Lesage, A.; Tordo, P.; Emsley, L. J. Am. Chem. Soc. 2012, 134, 2284 2291
    81. 81
      Rosay, M.; Tometich, L.; Pawsey, S.; Bader, R.; Schauwecker, R.; Blank, M.; Borchard, P. M.; Cauffman, S. R.; Felch, K. L.; Weber, R. T.; Temkin, R. J.; Griffin, R. G.; Maas, W. E. Phys. Chem. Chem. Phys. 2010, 12, 5850 5860
    82. 82
      Harris, R. K.; Becker, E. D.; De Menezes, S. M. C.; Goodfellow, R.; Granger, P. Pure Appl. Chem. 2001, 73, 1795 1818
    83. 83
      Metz, G.; Wu, X.; Smith, S. J. Magn. Reson., Ser. A 1994, 110, 219 227
    84. 84
      Peersen, O.; Wu, X.; Kustanovich, I.; Smith, S. J. Magn. Reson., Ser. A 1993, 104, 334 339
    85. 85
      Fung, B. M.; Khitrin, A. K.; Ermolaev, K. J. Magn. Reson. 2000, 142, 97 101
    86. 86
      Elena, B.; de Paepe, G.; Emsley, L. Chem. Phys. Lett. 2004, 398, 532 538
    87. 87
      Zagdoun, A.; Rossini, A. J.; Gajan, D.; Bourdolle, A.; Ouari, O.; Rosay, M.; Maas, W. E.; Tordo, P.; Lelli, M.; Emsley, L.; Lesage, A.; Copéret, C. Chem. Commun. 2011, 48, 654 656
    88. 88
      States, D. J; Haberkorn, R. A.; Ruben, D. J. J. Magn. Reson. 1982, 48, 286 292
    89. 89
      Marion, D.; Wuthrich, K. Biochem. Biophys. Res. Commun. 1983, 113, 967 974
    90. 90
      Lesage, A.; Bardet, M.; Emsley, L. J. Am. Chem. Soc. 1999, 121, 10987 10993
    91. 91
      Allen, L. V.; Popovich, N. G.; Ansel, H. C. Ansel’s Pharmaceutical Dosage Forms and Drug Delivery Systems; Wolters Kluwer: Philadelphia, PA, 2011.
    92. 92
      Schmidt-Rohr, K.; Spiess, H. W. Multidimensional Solid-State NMR and Polymers, 2nd ed.; Academic Press: London, 1996.
    93. 93
      Barich, D. H.; Davis, J. M.; Schieber, L. J.; Zell, M. T.; Munson, E. J. J. Pharm. Sci. 2006, 95, 1586 1594
    94. 94
      Akbey, U.; Franks, W. T.; Linden, A.; Lange, S.; Griffin, R. G.; van Rossum, B. J.; Oschkinat, H. Angew. Chem., Int. Ed. 2010, 49, 7803 7806
    95. 95
      Chen, Q.; Schmidt-Rohr, K. Solid State Nucl. Magn. Reson. 2006, 29, 142 152
    96. 96
      Weibull, W. J. Appl. Mech. 1951, 18, 293 297
  • Supporting Information

    Supporting Information


    Details on sample preparations, additional 1D and 2D NMR spectra, SEM images, and MatLab code for the numerical calculations. This material is available free of charge via the Internet at http://pubs.acs.org.


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.