ACS Publications. Most Trusted. Most Cited. Most Read
Rational Design of a Structural Framework with Potential Use to Develop Chemical Reagents That Target and Modulate Multiple Facets of Alzheimer’s Disease
My Activity

Figure 1Loading Img
    Article

    Rational Design of a Structural Framework with Potential Use to Develop Chemical Reagents That Target and Modulate Multiple Facets of Alzheimer’s Disease
    Click to copy article linkArticle link copied!

    View Author Information
    Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109-2216, United States
    Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
    § Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
    Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
    Department of Chemistry, Seoul National University of Science and Technology, Seoul 139-743, Korea
    School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Korea
    A. Ramamoorthy. E-mail: [email protected]
    M. T. Bowers. E-mail: [email protected]
    M. H. Lim. E-mail: [email protected]
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2014, 136, 1, 299–310
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja409801p
    Published December 27, 2013
    Copyright © 2013 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Alzheimer’s disease (AD) is characterized by multiple, intertwined pathological features, including amyloid-β (Aβ) aggregation, metal ion dyshomeostasis, and oxidative stress. We report a novel compound (ML) prototype of a rationally designed molecule obtained by integrating structural elements for Aβ aggregation control, metal chelation, reactive oxygen species (ROS) regulation, and antioxidant activity within a single molecule. Chemical, biochemical, ion mobility mass spectrometric, and NMR studies indicate that the compound ML targets metal-free and metal-bound Aβ (metal–Aβ) species, suppresses Aβ aggregation in vitro, and diminishes toxicity induced by Aβ and metal-treated Aβ in living cells. Comparison of ML to its structural moieties (i.e., 4-(dimethylamino)phenol (DAP) and (8-aminoquinolin-2-yl)methanol (1)) for reactivity with Aβ and metal–Aβ suggests the synergy of incorporating structural components for both metal chelation and Aβ interaction. Moreover, ML is water-soluble and potentially brain permeable, as well as regulates the formation and presence of free radicals. Overall, we demonstrate that a rational structure-based design strategy can generate a small molecule that can target and modulate multiple factors, providing a new tool to uncover and address AD complexity.

    Copyright © 2013 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Additional mass spectra, UV–vis spectra, docking diagrams, cluster energy analyses, electrophoresis visualizations, TEM images, and selectivity, speciation, and cytotoxicity, and inhibitory activity studies. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 160 publications.

    1. Kristof Pota, Shrikant Nilewar, Christina Mantsorov, Lindsay Zumwalt, Nam Nguyen, Cameron J. Bowers, David M. Freire, Robert B. Benafield, III, Giridhar R. Akkaraju, Kayla N. Green. Impact of Indole Inclusion in the Design of Multi-Tactical Metal-Binding Tetra-Aza Macrocycles that Target the Molecular Features of Neurodegeneration. ACS Chemical Neuroscience 2024, 15 (20) , 3776-3790. https://doi.org/10.1021/acschemneuro.4c00530
    2. Xikun Liu, Shuya Duan, Yingying Jin, Ethan Walker, Michelle Tsao, Joshua H. Jang, Ziying Chen, Ambuj K. Singh, Kristi Lazar Cantrell, Helgi I. Ingolfsson, Steven K. Buratto, Michael T. Bowers. Computationally Designed Molecules Modulate ALS-Related Amyloidogenic TDP-43307–319 Aggregation. ACS Chemical Neuroscience 2023, 14 (24) , 4395-4408. https://doi.org/10.1021/acschemneuro.3c00582
    3. Koilraj Stephen, Varnakumar Gayathri, Nitin Prakash Lobo, Bandaru V. N. Phani Kumar, Sellamuthu N. Jaisankar, Debasis Samanta. Improving Hydrophobicity of Collagen with Silica Nanoparticles: Probing a Noncovalent Approach. Langmuir 2023, 39 (31) , 10828-10842. https://doi.org/10.1021/acs.langmuir.3c00842
    4. Yingying Jin, Matthew A. Downey, Ambuj Singh, Steven K. Buratto, Michael T. Bowers. Computationally Designed Small Molecules Disassemble Both Soluble Oligomers and Protofibrils of Amyloid β-Protein Responsible for Alzheimer’s Disease. ACS Chemical Neuroscience 2023, 14 (15) , 2717-2726. https://doi.org/10.1021/acschemneuro.3c00266
    5. Nicolás Puentes-Díaz, Diego Chaparro, David Morales-Morales, Areli Flores-Gaspar, Jorge Alí-Torres. Role of Metal Cations of Copper, Iron, and Aluminum and Multifunctional Ligands in Alzheimer’s Disease: Experimental and Computational Insights. ACS Omega 2023, 8 (5) , 4508-4526. https://doi.org/10.1021/acsomega.2c06939
    6. Phuong H. Nguyen, Ayyalusamy Ramamoorthy, Bikash R. Sahoo, Jie Zheng, Peter Faller, John E. Straub, Laura Dominguez, Joan-Emma Shea, Nikolay V. Dokholyan, Alfonso De Simone, Buyong Ma, Ruth Nussinov, Saeed Najafi, Son Tung Ngo, Antoine Loquet, Mara Chiricotto, Pritam Ganguly, James McCarty, Mai Suan Li, Carol Hall, Yiming Wang, Yifat Miller, Simone Melchionna, Birgit Habenstein, Stepan Timr, Jiaxing Chen, Brianna Hnath, Birgit Strodel, Rakez Kayed, Sylvain Lesné, Guanghong Wei, Fabio Sterpone, Andrew J. Doig, Philippe Derreumaux. Amyloid Oligomers: A Joint Experimental/Computational Perspective on Alzheimer’s Disease, Parkinson’s Disease, Type II Diabetes, and Amyotrophic Lateral Sclerosis. Chemical Reviews 2021, 121 (4) , 2545-2647. https://doi.org/10.1021/acs.chemrev.0c01122
    7. Mingeun Kim, Min Hee Park, Geewoo Nam, Misun Lee, Juhye Kang, Im-Sook Song, Min-Koo Choi, Hee Kyung Jin, Jae-sung Bae, Mi Hee Lim. A Glycosylated Prodrug to Attenuate Neuroinflammation and Improve Cognitive Deficits in Alzheimer’s Disease Transgenic Mice. Molecular Pharmaceutics 2021, 18 (1) , 101-112. https://doi.org/10.1021/acs.molpharmaceut.0c00677
    8. Olga Press-Sandler, Yifat Miller. Assessments of the Effect of Neurokinin B on Toxic Aβ Aggregates in Alzheimer’s Disease with the Molecular Mechanisms’ Action. ACS Chemical Neuroscience 2020, 11 (20) , 3418-3429. https://doi.org/10.1021/acschemneuro.0c00535
    9. Ashley J. Mason, Ian Hurst, Ravinder Malik, Ibrar Siddique, Inna Solomonov, Irit Sagi, Frank-Gerrit Klärner, Thomas Schrader, Gal Bitan. Different Inhibitors of Aβ42-Induced Toxicity Have Distinct Metal-Ion Dependency. ACS Chemical Neuroscience 2020, 11 (15) , 2243-2255. https://doi.org/10.1021/acschemneuro.0c00192
    10. Sarah J. Cox, Brian Lam, Ajay Prasad, Hannah A. Marietta, Nicholas V. Stander, Joseph G. Joel, Bikash R. Sahoo, Fucheng Guo, Andrea K. Stoddard, Magdalena I. Ivanova, Ayyalusamy Ramamoorthy. High-Throughput Screening at the Membrane Interface Reveals Inhibitors of Amyloid-β. Biochemistry 2020, 59 (24) , 2249-2258. https://doi.org/10.1021/acs.biochem.0c00328
    11. Mingeun Kim, Juhye Kang, Misun Lee, Jiyeon Han, Geewoo Nam, Eunyoung Tak, Min Sun Kim, Hyuck Jin Lee, Eunju Nam, Jiyong Park, Soo Jin Oh, Ji-Yoon Lee, Joo-Yong Lee, Mu-Hyun Baik, Mi Hee Lim. Minimalistic Principles for Designing Small Molecules with Multiple Reactivities against Pathological Factors in Dementia. Journal of the American Chemical Society 2020, 142 (18) , 8183-8193. https://doi.org/10.1021/jacs.9b13100
    12. Veronica Laos, Dezmond Bishop, Christian A. Lang, Nicole M. Marsh, Kristi Lazar Cantrell, Steven K. Buratto, Ambuj K. Singh, Michael T. Bowers. Modulating ALS-Related Amyloidogenic TDP-43307–319 Oligomeric Aggregates with Computationally Derived Therapeutic Molecules. Biochemistry 2020, 59 (4) , 499-508. https://doi.org/10.1021/acs.biochem.9b00905
    13. Ana B. Caballero, Olga Iranzo, Alexandre Hautier, Raimon Sabaté, Patrick Gamez. Peptidic Scaffolds To Reduce the Interaction of Cu(II) Ions with β-Amyloid Protein. Inorganic Chemistry 2020, 59 (1) , 837-846. https://doi.org/10.1021/acs.inorgchem.9b03099
    14. Amir Aliyan, Nathan P. Cook, Angel A. Martí. Interrogating Amyloid Aggregates using Fluorescent Probes. Chemical Reviews 2019, 119 (23) , 11819-11856. https://doi.org/10.1021/acs.chemrev.9b00404
    15. Junting Zhou, Xueyang Jiang, Siyu He, Hongli Jiang, Feng Feng, Wenyuan Liu, Wei Qu, Haopeng Sun. Rational Design of Multitarget-Directed Ligands: Strategies and Emerging Paradigms. Journal of Medicinal Chemistry 2019, 62 (20) , 8881-8914. https://doi.org/10.1021/acs.jmedchem.9b00017
    16. Charlène Esmieu, Djamila Guettas, Amandine Conte-Daban, Laurent Sabater, Peter Faller, Christelle Hureau. Copper-Targeting Approaches in Alzheimer’s Disease: How To Improve the Fallouts Obtained from in Vitro Studies. Inorganic Chemistry 2019, 58 (20) , 13509-13527. https://doi.org/10.1021/acs.inorgchem.9b00995
    17. Sourav Samanta, Kolla Rajasekhar, Vardhaman Babagond, Thimmaiah Govindaraju. Small Molecule Inhibits Metal-Dependent and -Independent Multifaceted Toxicity of Alzheimer’s Disease. ACS Chemical Neuroscience 2019, 10 (8) , 3611-3621. https://doi.org/10.1021/acschemneuro.9b00216
    18. Meghan R. Porter, Joan M. Walker, Jeffrey M. Zaleski. The Outliers: Metal-Mediated Radical Reagents for Biological Substrate Degradation. Accounts of Chemical Research 2019, 52 (7) , 1957-1967. https://doi.org/10.1021/acs.accounts.9b00185
    19. Hongtao Du, Xinlian Liu, Jusen Xie, Fang Ma. Novel Deoxyvasicinone–Donepezil Hybrids as Potential Multitarget Drug Candidates for Alzheimer’s Disease. ACS Chemical Neuroscience 2019, 10 (5) , 2397-2407. https://doi.org/10.1021/acschemneuro.8b00699
    20. Nan Gao, Zhi Du, Yijia Guan, Kai Dong, Jinsong Ren, Xiaogang Qu. Chirality-Selected Chemical Modulation of Amyloid Aggregation. Journal of the American Chemical Society 2019, 141 (17) , 6915-6921. https://doi.org/10.1021/jacs.8b12537
    21. Wei Liu, Xiaoyan Dong, Yan Sun. d-Enantiomeric RTHLVFFARK-NH2: A Potent Multifunctional Decapeptide Inhibiting Cu2+-Mediated Amyloid β-Protein Aggregation and Remodeling Cu2+-Mediated Amyloid β Aggregates. ACS Chemical Neuroscience 2019, 10 (3) , 1390-1401. https://doi.org/10.1021/acschemneuro.8b00440
    22. Masha G. Savelieff, Geewoo Nam, Juhye Kang, Hyuck Jin Lee, Misun Lee, Mi Hee Lim. Development of Multifunctional Molecules as Potential Therapeutic Candidates for Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis in the Last Decade. Chemical Reviews 2019, 119 (2) , 1221-1322. https://doi.org/10.1021/acs.chemrev.8b00138
    23. Matthew A. Downey, Maxwell J. Giammona, Christian A. Lang, Steven K. Buratto, Ambuj Singh, Michael T. Bowers. Inhibiting and Remodeling Toxic Amyloid-Beta Oligomer Formation Using a Computationally Designed Drug Molecule That Targets Alzheimer’s Disease. Journal of the American Society for Mass Spectrometry 2019, 30 (1) , 85-93. https://doi.org/10.1007/s13361-018-1975-1
    24. Jiyeon Han, Hyuck Jin Lee, Kyu Yeon Kim, Shin Jung C. Lee, Jong-Min Suh, Jaeheung Cho, Junghyun Chae, Mi Hee Lim. Tuning Structures and Properties for Developing Novel Chemical Tools toward Distinct Pathogenic Elements in Alzheimer’s Disease. ACS Chemical Neuroscience 2018, 9 (4) , 800-808. https://doi.org/10.1021/acschemneuro.7b00454
    25. Daniel F. Tardiff, Lauren E. Brown, Xiaohui Yan, Richard Trilles, Nathan T. Jui, M. Inmaculada Barrasa, Kim A. Caldwell, Guy A. Caldwell, Scott E. Schaus, and Susan Lindquist . Dihydropyrimidine-Thiones and Clioquinol Synergize To Target β-Amyloid Cellular Pathologies through a Metal-Dependent Mechanism. ACS Chemical Neuroscience 2017, 8 (9) , 2039-2055. https://doi.org/10.1021/acschemneuro.7b00187
    26. Linlin Wang, Fujun Yao, and Xiao-feng Kang . Nanopore Single-Molecule Analysis of Metal Ion–Chelator Chemical Reaction. Analytical Chemistry 2017, 89 (15) , 7958-7965. https://doi.org/10.1021/acs.analchem.7b01119
    27. Yonghwan Ji, Hyuck Jin Lee, Minjeong Kim, Geewoo Nam, Shin Jung C. Lee, Jaeheung Cho, Cheol-Min Park, and Mi Hee Lim . Strategic Design of 2,2′-Bipyridine Derivatives to Modulate Metal–Amyloid-β Aggregation. Inorganic Chemistry 2017, 56 (11) , 6695-6705. https://doi.org/10.1021/acs.inorgchem.7b00782
    28. Mingzhen Zhang, Rundong Hu, Baiping Ren, Hong Chen, Binbo Jiang, Jie Ma, and Jie Zheng . Molecular Understanding of Aβ-hIAPP Cross-Seeding Assemblies on Lipid Membranes. ACS Chemical Neuroscience 2017, 8 (3) , 524-537. https://doi.org/10.1021/acschemneuro.6b00247
    29. Xiaokang Li, Huan Wang, Zhengyu Lu, Xinyu Zheng, Wei Ni, Jin Zhu, Yan Fu, Fulin Lian, Naixia Zhang, Jian Li, Haiyan Zhang, and Fei Mao . Development of Multifunctional Pyrimidinylthiourea Derivatives as Potential Anti-Alzheimer Agents. Journal of Medicinal Chemistry 2016, 59 (18) , 8326-8344. https://doi.org/10.1021/acs.jmedchem.6b00636
    30. Xiaoyu Hu, Qian Zhang, Wei Wang, Zhi Yuan, Xushan Zhu, Bing Chen, and Xingyu Chen . Tripeptide GGH as the Inhibitor of Copper-Amyloid-β-Mediated Redox Reaction and Toxicity. ACS Chemical Neuroscience 2016, 7 (9) , 1255-1263. https://doi.org/10.1021/acschemneuro.6b00145
    31. Leonardo Pisani, Roberta Farina, Marco Catto, Rosa Maria Iacobazzi, Orazio Nicolotti, Saverio Cellamare, Giuseppe Felice Mangiatordi, Nunzio Denora, Ramon Soto-Otero, Lydia Siragusa, Cosimo Damiano Altomare, and Angelo Carotti . Exploring Basic Tail Modifications of Coumarin-Based Dual Acetylcholinesterase-Monoamine Oxidase B Inhibitors: Identification of Water-Soluble, Brain-Permeant Neuroprotective Multitarget Agents. Journal of Medicinal Chemistry 2016, 59 (14) , 6791-6806. https://doi.org/10.1021/acs.jmedchem.6b00562
    32. Jeffrey S. Derrick, Richard A. Kerr, Kyle J. Korshavn, Michael J. McLane, Juhye Kang, Eunju Nam, Ayyalusamy Ramamoorthy, Brandon T. Ruotolo, and Mi Hee Lim . Importance of the Dimethylamino Functionality on a Multifunctional Framework for Regulating Metals, Amyloid-β, and Oxidative Stress in Alzheimer’s Disease. Inorganic Chemistry 2016, 55 (10) , 5000-5013. https://doi.org/10.1021/acs.inorgchem.6b00525
    33. Xueyun Zheng, Chun Wu, Deyu Liu, Huiyuan Li, Gal Bitan, Joan-Emma Shea, and Michael T. Bowers . Mechanism of C-Terminal Fragments of Amyloid β-Protein as Aβ Inhibitors: Do C-Terminal Interactions Play a Key Role in Their Inhibitory Activity?. The Journal of Physical Chemistry B 2016, 120 (8) , 1615-1623. https://doi.org/10.1021/acs.jpcb.5b08177
    34. Natália E. C. de Almeida, Thanh D. Do, Michael Tro, Nichole E. LaPointe, Stuart C. Feinstein, Joan-Emma Shea, and Michael T. Bowers . Opposing Effects of Cucurbit[7]uril and 1,2,3,4,6-Penta-O-galloyl-β-d-glucopyranose on Amyloid β25–35 Assembly. ACS Chemical Neuroscience 2016, 7 (2) , 218-226. https://doi.org/10.1021/acschemneuro.5b00280
    35. Robin Roychaudhuri, Xueyun Zheng, Aleksey Lomakin, Panchanan Maiti, Margaret M. Condron, George B. Benedek, Gal Bitan, Michael T. Bowers, and David B. Teplow . Role of Species-Specific Primary Structure Differences in Aβ42 Assembly and Neurotoxicity. ACS Chemical Neuroscience 2015, 6 (12) , 1941-1955. https://doi.org/10.1021/acschemneuro.5b00180
    36. Janet R. Morrow (Associate Editor). Editorial for the ACS Select Virtual Issue on Emerging Investigators in Bioinorganic Chemistry. Inorganic Chemistry 2015, 54 (23) , 11039-11042. https://doi.org/10.1021/acs.inorgchem.5b02597
    37. Jeffrey S. Derrick, Richard A. Kerr, Younwoo Nam, Shin Bi Oh, Hyuck Jin Lee, Kaylin G. Earnest, Nayoung Suh, Kristy L. Peck, Mehmet Ozbil, Kyle J. Korshavn, Ayyalusamy Ramamoorthy, Rajeev Prabhakar, Edward J. Merino, Jason Shearer, Joo-Yong Lee, Brandon T. Ruotolo, and Mi Hee Lim . A Redox-Active, Compact Molecule for Cross-Linking Amyloidogenic Peptides into Nontoxic, Off-Pathway Aggregates: In Vitro and In Vivo Efficacy and Molecular Mechanisms. Journal of the American Chemical Society 2015, 137 (46) , 14785-14797. https://doi.org/10.1021/jacs.5b10043
    38. Zhiren Wang, Yali Wang, Bo Wang, Wenrui Li, Ling Huang, and Xingshu Li . Design, Synthesis, and Evaluation of Orally Available Clioquinol-Moracin M Hybrids as Multitarget-Directed Ligands for Cognitive Improvement in a Rat Model of Neurodegeneration in Alzheimer’s Disease. Journal of Medicinal Chemistry 2015, 58 (21) , 8616-8637. https://doi.org/10.1021/acs.jmedchem.5b01222
    39. Xueyun Zheng, Deyu Liu, Robin Roychaudhuri, David B. Teplow, and Michael T. Bowers . Amyloid β-Protein Assembly: Differential Effects of the Protective A2T Mutation and Recessive A2V Familial Alzheimer’s Disease Mutation. ACS Chemical Neuroscience 2015, 6 (10) , 1732-1740. https://doi.org/10.1021/acschemneuro.5b00171
    40. Xueyun Zheng, Deyu Liu, Frank-Gerrit Klärner, Thomas Schrader, Gal Bitan, and Michael T. Bowers . Amyloid β-Protein Assembly: The Effect of Molecular Tweezers CLR01 and CLR03. The Journal of Physical Chemistry B 2015, 119 (14) , 4831-4841. https://doi.org/10.1021/acs.jpcb.5b00692
    41. Zhiren Wang, Yali Wang, Wenrui Li, Fei Mao, Yang Sun, Ling Huang, and Xingshu Li . Design, Synthesis, and Evaluation of Multitarget-Directed Selenium-Containing Clioquinol Derivatives for the Treatment of Alzheimer’s Disease. ACS Chemical Neuroscience 2014, 5 (10) , 952-962. https://doi.org/10.1021/cn500119g
    42. Masha G. Savelieff, Alaina S. DeToma, Jeffrey S. Derrick, and Mi Hee Lim . The Ongoing Search for Small Molecules to Study Metal-Associated Amyloid-β Species in Alzheimer’s Disease. Accounts of Chemical Research 2014, 47 (8) , 2475-2482. https://doi.org/10.1021/ar500152x
    43. Hiren R. Patel, Amit S. Pithadia, Jeffrey R. Brender, Carol A. Fierke, and Ayyalusamy Ramamoorthy . In Search of Aggregation Pathways of IAPP and Other Amyloidogenic Proteins: Finding Answers through NMR Spectroscopy. The Journal of Physical Chemistry Letters 2014, 5 (11) , 1864-1870. https://doi.org/10.1021/jz5001775
    44. Monika Rana, Karna Terpstra, Citlali Gutierrez, Kerui Xu, Hemant Arya, Tarun K. Bhatt, Liviu M. Mirica, Anuj K. Sharma. Evaluation of Anti‐Alzheimer's Potential of Azo‐Stilbene‐Thioflavin‐T derived Multifunctional Molecules: Synthesis, Metal and Aβ Species Binding and Cholinesterase Activity. Chemistry – A European Journal 2025, 31 (2) https://doi.org/10.1002/chem.202402748
    45. Tanmay Mondal, Sujan Kalita, Rinku Dutta, Bhubaneswar Mandal. A smart adaptable metal sequestering peptide conjugate to modulate Aβ fibrillar aggregation. Journal of Materials Chemistry B 2024, 12 (44) , 11444-11454. https://doi.org/10.1039/D4TB01093K
    46. Tai Kyoung Kim, Ju-Mi Hong, Jaewon Kim, Kyung Hee Kim, Se Jong Han, Il-Chan Kim, Hyuncheol Oh, Dong-Gyu Jo, Joung Han Yim. Therapeutic Potential of Ramalin Derivatives with Enhanced Stability in the Treatment of Alzheimer’s Disease. Molecules 2024, 29 (22) , 5223. https://doi.org/10.3390/molecules29225223
    47. Adrián Gucký, Slávka Hamuľaková. Targeting Biometals in Alzheimer’s Disease with Metal Chelating Agents Including Coumarin Derivatives. CNS Drugs 2024, 38 (7) , 507-532. https://doi.org/10.1007/s40263-024-01093-0
    48. Yan Zeng, Zhifeng Chen, Zhiyong Yang, Fangxue Yuan, Lifei Nie, Chao Niu. Discovery of a novel pyrido[1,2-a]thiazolo[5,4-d]pyrimidinone derivatives with excellent potency against acetylcholinesterase. Molecular Diversity 2024, 314 https://doi.org/10.1007/s11030-024-10920-x
    49. Sebastian Nieto-Alfonso, Nicolás Puentes Díaz, Jorge Alí-Torres. Evaluation of the Xtb Semiempirical Method for the Prediction of Antioxidant Properties in Alzheimer’s Disease: Salen-Type Ligands. Revista Facultad de Ciencias Básicas 2024, 18 (2) , 103-113. https://doi.org/10.18359/rfcb.7200
    50. Nicolás Puentes-Díaz, Diego Chaparro, Viviana Reyes-Marquez, David Morales-Morales, Areli Flores-Gaspar, Jorge Alí-Torres, . Computational Evaluation of the Potential Pharmacological Activity of Salen-Type Ligands in Alzheimer’s Disease. Journal of Alzheimer's Disease 2024, 99 (s2) , S383-S396. https://doi.org/10.3233/JAD-230542
    51. Xiaochen Zhang, Haodong Hu, Qiushi Li, Yu Zhao, ZhanZhan Zhang, Shuyue Zhao, Linlin Xu, Rujiang Ma, Fan Huang, Linqi Shi. Cascade-targeting multifunctional nanochaperone remodels brain microenvironment for synergistic therapy of Alzheimer’s disease. Nano Today 2024, 55 , 102168. https://doi.org/10.1016/j.nantod.2024.102168
    52. Suchita Dattatray Shinde, Santosh Kumar Behera, Neeraj Kulkarni, Bhaskar Dewangan, Bichismita Sahu. Bifunctional backbone modified squaramide dipeptides as amyloid beta (Aβ) aggregation inhibitors. Bioorganic & Medicinal Chemistry 2024, 97 , 117538. https://doi.org/10.1016/j.bmc.2023.117538
    53. Shiqin Cong, Yichun Shi, Guangjun Yu, Feng Zhong, Jingjing Li, Jing Liu, Chanyuan Ye, Zhenghuai Tan, Yong Deng. Discovery of novel 5-(2-hydroxyphenyl)-2-phthalide-3(3H)-pyrazolones as balanced multifunctional agents against Alzheimer's disease. European Journal of Medicinal Chemistry 2023, 250 , 115216. https://doi.org/10.1016/j.ejmech.2023.115216
    54. Zhi Du, Chun Liu, Zhenqi Liu, Hualong Song, Peter Scott, Xiubo Du, Jinsong Ren, Xiaogang Qu. In vivo visualization of enantioselective targeting of amyloid and improvement of cognitive function by clickable chiral metallohelices. Chemical Science 2023, 14 (3) , 506-513. https://doi.org/10.1039/D2SC05897A
    55. Debabrata Maity. Inhibition of Amyloid Protein Aggregation Using Selected Peptidomimetics. ChemMedChem 2023, 18 (2) https://doi.org/10.1002/cmdc.202200499
    56. Zhipei Sang, Ling Huang. Alzheimer's disease therapeutics. 2023, 405-473. https://doi.org/10.1016/B978-0-443-18611-0.00031-0
    57. Zhipei Sang, Qing Song, Zhongcheng Cao, Yong Deng, Li Zhang. Design, synthesis, and evaluation of chalcone-Vitamin E-donepezil hybrids as multi-target-directed ligands for the treatment of Alzheimer’s disease. Journal of Enzyme Inhibition and Medicinal Chemistry 2022, 37 (1) , 69-85. https://doi.org/10.1080/14756366.2021.1993845
    58. Madhu Ramesh, Thimmaiah Govindaraju. Multipronged diagnostic and therapeutic strategies for Alzheimer's disease. Chemical Science 2022, 13 (46) , 13657-13689. https://doi.org/10.1039/D2SC03932J
    59. Wesley J. Wagner, Michael L. Gross. Using mass spectrometry‐based methods to understand amyloid formation and inhibition of alpha‐synuclein and amyloid beta. Mass Spectrometry Reviews 2022, https://doi.org/10.1002/mas.21814
    60. Mahalingam Jeyakumar, Sethuraman Sathya, Soniya Gandhi, Prabhakararao Tharra, Murali Aarthy, Devasahayam Jaya Balan, Chandramohan Kiruthiga, Beeraiah Baire, Sanjeev Kumar Singh, Kasi Pandima Devi. α-bisabolol β-D-fucopyranoside inhibits β-amyloid (Aβ)25–35 induced oxidative stress in Neuro-2a cells via antioxidant approaches. Process Biochemistry 2022, 121 , 493-503. https://doi.org/10.1016/j.procbio.2022.07.026
    61. Zhipei Sang, Keren Wang, Jianghong Dong, Lei Tang. Alzheimer's disease: Updated multi-targets therapeutics are in clinical and in progress. European Journal of Medicinal Chemistry 2022, 238 , 114464. https://doi.org/10.1016/j.ejmech.2022.114464
    62. Yan Zeng, Lifei Nie, Liu Liu, Chao Niu, Yi Li, Khurshed Bozorov, Jiangyu Zhao, Jingshan Shen, Haji Akber Aisa. Design, synthesis, in vitro evaluation of a new pyrrolo[1,2‐ a ]thiazolo[5,4‐ d ]pyrimidinone derivatives as cholinesterase inhibitors against Alzheimer's disease. Journal of Heterocyclic Chemistry 2022, 59 (6) , 1086-1101. https://doi.org/10.1002/jhet.4452
    63. Tao Yang, Lei Zhang, Yicun Shang, Zhenzhu Zhu, Suxing Jin, Zijian Guo, Xiaoyong Wang. Concurrent suppression of Aβ aggregation and NLRP3 inflammasome activation for treating Alzheimer's disease. Chemical Science 2022, 13 (10) , 2971-2980. https://doi.org/10.1039/D1SC06071F
    64. Suchitra Mitra, Kallol Talukdar, Pallavi Prasad, Sandeep K. Misra, Shabana Khan, Joshua S. Sharp, Jonah W. Jurss, Saumen Chakraborty. Rational Design of a Cu Chelator That Mitigates Cu‐Induced ROS Production by Amyloid Beta. ChemBioChem 2022, 23 (4) https://doi.org/10.1002/cbic.202100485
    65. Stéphane L. Benoit, Robert J. Maier. The nickel-chelator dimethylglyoxime inhibits human amyloid beta peptide in vitro aggregation. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-86060-1
    66. Geewoo Nam, Jong-Min Suh, Yelim Yi, Mi Hee Lim. Drug repurposing: small molecules against Cu(II)–amyloid-β and free radicals. Journal of Inorganic Biochemistry 2021, 224 , 111592. https://doi.org/10.1016/j.jinorgbio.2021.111592
    67. Mingeun Kim, Mi Hee Lim. Redox Properties of Small Molecules Essential for Multiple Reactivities with Pathological Factors in Alzheimer's Disease. Bulletin of the Korean Chemical Society 2021, 42 (10) , 1272-1280. https://doi.org/10.1002/bkcs.12372
    68. Suresh K. Bowroju, Narsimha R. Penthala, Naga Rajiv Lakkaniga, Meenakshisundaram Balasubramaniam, Srinivas Ayyadevara, Robert J. Shmookler Reis, Peter A. Crooks. Novel hydroxybenzylamine-deoxyvasicinone hybrids as anticholinesterase therapeutics for Alzheimer’s disease. Bioorganic & Medicinal Chemistry 2021, 45 , 116311. https://doi.org/10.1016/j.bmc.2021.116311
    69. Weiyuan Xu, Chao Gao, Xinyang Sun, William Chi-Shing Tai, Hong Lok Lung, Ga-Lai Law. Design, synthesis and comparison of water-soluble phthalocyanine/porphyrin analogues and their inhibition effects on Aβ 42 fibrillization. Inorganic Chemistry Frontiers 2021, 8 (14) , 3501-3513. https://doi.org/10.1039/D1QI00237F
    70. Namdoo Kim, Hyuck Jin Lee. Redox-Active Metal Ions and Amyloid-Degrading Enzymes in Alzheimer’s Disease. International Journal of Molecular Sciences 2021, 22 (14) , 7697. https://doi.org/10.3390/ijms22147697
    71. Hongtao Du, Xinyu Jiang, Meng Ma, Huili Xu, Shuang Liu, Fang Ma. Novel deoxyvasicinone and tetrahydro-beta-carboline hybrids as inhibitors of acetylcholinesterase and amyloid beta aggregation. Bioorganic & Medicinal Chemistry Letters 2020, 30 (24) , 127659. https://doi.org/10.1016/j.bmcl.2020.127659
    72. Gunhee Kim, Evan Lelong, Juhye Kang, Jong-Min Suh, Nathalie Le Bris, Hélène Bernard, Dongwook Kim, Raphaël Tripier, Mi Hee Lim. Reactivities of cyclam derivatives with metal–amyloid-β. Inorganic Chemistry Frontiers 2020, 7 (21) , 4222-4238. https://doi.org/10.1039/D0QI00791A
    73. Zhipei Sang, Keren Wang, Ping Bai, Anguo Wu, Jian Shi, Wenmin Liu, Gaofeng Zhu, Yiling Wang, Yu Lan, Zude Chen, Yiyang Zhao, Zhanpin Qiao, Changning Wang, Zhenghuai Tan. Design, synthesis and biological evaluation of novel O-carbamoyl ferulamide derivatives as multi-target-directed ligands for the treatment of Alzheimer’s disease. European Journal of Medicinal Chemistry 2020, 194 , 112265. https://doi.org/10.1016/j.ejmech.2020.112265
    74. Ziyi Yang, Qing Song, Zhongcheng Cao, Guangjun Yu, Zhuoling Liu, Zhenghuai Tan, Yong Deng. Design, synthesis and evaluation of flurbiprofen-clioquinol hybrids as multitarget-directed ligands against Alzheimer’s disease. Bioorganic & Medicinal Chemistry 2020, 28 (7) , 115374. https://doi.org/10.1016/j.bmc.2020.115374
    75. Zhipei Sang, Keren Wang, Jian Shi, Wenmin Liu, Xinfeng Cheng, Gaofeng Zhu, Yiling Wang, Yiyang Zhao, Zhanpin Qiao, Anguo Wu, Zhenghuai Tan. The development of advanced structural framework as multi-target-directed ligands for the treatment of Alzheimer’s disease. European Journal of Medicinal Chemistry 2020, 192 , 112180. https://doi.org/10.1016/j.ejmech.2020.112180
    76. Zhipei Sang, Keren Wang, Jian Shi, Xinfeng Cheng, Gaofeng Zhu, Rongrui Wei, Qinge Ma, Lintao Yu, Yiyang Zhao, Zhenghuai Tan, Wenmin Liu. Apigenin-rivastigmine hybrids as multi-target-directed liagnds for the treatment of Alzheimer’s disease. European Journal of Medicinal Chemistry 2020, 187 , 111958. https://doi.org/10.1016/j.ejmech.2019.111958
    77. Angela De Simone, Marina Naldi, Daniele Tedesco, Manuela Bartolini, Lara Davani, Vincenza Andrisano. Advanced analytical methodologies in Alzheimer’s disease drug discovery. Journal of Pharmaceutical and Biomedical Analysis 2020, 178 , 112899. https://doi.org/10.1016/j.jpba.2019.112899
    78. Luiza M. F. Gomes, Janaina C. Bataglioli, Allison J. Jussila, Jason R. Smith, Charles J. Walsby, Tim Storr. Modification of Aβ Peptide Aggregation via Covalent Binding of a Series of Ru(III) Complexes. Frontiers in Chemistry 2019, 7 https://doi.org/10.3389/fchem.2019.00838
    79. Tao Yang, Zhenzhu Zhu, Enmao Yin, Yanqing Wang, Changli Zhang, Hao Yuan, Hongmei Zhang, Suxing Jin, Zijian Guo, Xiaoyong Wang. Alleviation of symptoms of Alzheimer's disease by diminishing Aβ neurotoxicity and neuroinflammation. Chemical Science 2019, 10 (43) , 10149-10158. https://doi.org/10.1039/C9SC03042E
    80. Caroline Lanthier, Hugo Payan, Irene Liparulo, Bérénice Hatat, Cédric Lecoutey, Marc Since, Audrey Davis, Christian Bergamini, Sylvie Claeysen, Patrick Dallemagne, Maria-Laura Bolognesi, Christophe Rochais. Novel multi target-directed ligands targeting 5-HT4 receptors with in cellulo antioxidant properties as promising leads in Alzheimer's disease. European Journal of Medicinal Chemistry 2019, 182 , 111596. https://doi.org/10.1016/j.ejmech.2019.111596
    81. Kasper P. Kepp, Rosanna Squitti. Copper imbalance in Alzheimer’s disease: Convergence of the chemistry and the clinic. Coordination Chemistry Reviews 2019, 397 , 168-187. https://doi.org/10.1016/j.ccr.2019.06.018
    82. Sneha R. Sagar, Devendra Pratap Singh, Rajesh D. Das, Nirupa B. Panchal, Vasudevan Sudarsanam, Manish Nivsarkar, Kamala K. Vasu. Pharmacological investigation of quinoxaline-bisthiazoles as multitarget-directed ligands for the treatment of Alzheimer’s disease. Bioorganic Chemistry 2019, 89 , 102992. https://doi.org/10.1016/j.bioorg.2019.102992
    83. Siyue Ma, Jiabao Qiang, Linyang Li, Yan Mo, Mengyao She, Zheng Yang, Ping Liu, Shengyong Zhang, Jianli Li. An efficient biosensor for monitoring Alzheimer's disease risk factors: modulation and disaggregation of the Aβ aggregation process. Journal of Materials Chemistry B 2019, 7 (26) , 4124-4132. https://doi.org/10.1039/C9TB00291J
    84. He Tian, Zhan-You Wang. Zinc Chelator Inhibits Zinc-Induced Islet Amyloid Polypeptide Deposition and Apoptosis in INS-1 Cells. Biological Trace Element Research 2019, 189 (1) , 201-208. https://doi.org/10.1007/s12011-018-1444-5
    85. Thais A. Sales, Ingrid G. Prandi, Alexandre A. de Castro, Daniel H. S. Leal, Elaine F. F. da Cunha, Kamil Kuca, Teodorico C. Ramalho. Recent Developments in Metal-Based Drugs and Chelating Agents for Neurodegenerative Diseases Treatments. International Journal of Molecular Sciences 2019, 20 (8) , 1829. https://doi.org/10.3390/ijms20081829
    86. Luiza M. F. Gomes, Atif Mahammed, Kathleen E. Prosser, Jason R. Smith, Michael A. Silverman, Charles J. Walsby, Zeev Gross, Tim Storr. A catalytic antioxidant for limiting amyloid-beta peptide aggregation and reactive oxygen species generation. Chemical Science 2019, 10 (6) , 1634-1643. https://doi.org/10.1039/C8SC04660C
    87. Julien Lalut, Gianluca Santoni, Delphine Karila, Cédric Lecoutey, Audrey Davis, Florian Nachon, Israel Silman, Joel Sussman, Martin Weik, Tangui Maurice, Patrick Dallemagne, Christophe Rochais. Novel multitarget-directed ligands targeting acetylcholinesterase and σ1 receptors as lead compounds for treatment of Alzheimer's disease: Synthesis, evaluation, and structural characterization of their complexes with acetylcholinesterase. European Journal of Medicinal Chemistry 2019, 162 , 234-248. https://doi.org/10.1016/j.ejmech.2018.10.064
    88. Chun-Li Xia, Gui-Hua Tang, Yan-Qiong Guo, You-Kai Xu, Zhi-Shu Huang, Sheng Yin. Mulberry Diels-Alder-type adducts from Morus alba as multi-targeted agents for Alzheimer's disease. Phytochemistry 2019, 157 , 82-91. https://doi.org/10.1016/j.phytochem.2018.10.028
    89. Nuno Martins, Joana L. Pereira, Filipe E. Antunes, Elodie Melro, Cláudia M.G. Duarte, Lídia Dias, Amadeu M.V.M. Soares, Isabel Lopes. Role of surfactant headgroups on the toxicity of SLEnS-LAS mixed micelles: A case study using microtox test. Science of The Total Environment 2018, 643 , 1366-1372. https://doi.org/10.1016/j.scitotenv.2018.06.293
    90. Abha Sharma, Vidhu Pachauri, S. J. S. Flora. Advances in Multi-Functional Ligands and the Need for Metal-Related Pharmacology for the Management of Alzheimer Disease. Frontiers in Pharmacology 2018, 9 https://doi.org/10.3389/fphar.2018.01247
    91. Mengmeng Ma, Nan Gao, Yuhuan Sun, Xiubo Du, Jinsong Ren, Xiaogang Qu. Redox‐Activated Near‐Infrared‐Responsive Polyoxometalates Used for Photothermal Treatment of Alzheimer's Disease. Advanced Healthcare Materials 2018, 7 (20) https://doi.org/10.1002/adhm.201800320
    92. Xinwei Ge, Yunxiang Sun, Feng Ding. Structures and dynamics of β-barrel oligomer intermediates of amyloid-beta16-22 aggregation. Biochimica et Biophysica Acta (BBA) - Biomembranes 2018, 1860 (9) , 1687-1697. https://doi.org/10.1016/j.bbamem.2018.03.011
    93. Baiping Ren, Yonglan Liu, Yanxian Zhang, Mingzhen Zhang, Yan Sun, Guizhao Liang, Jianxiong Xu, Jie Zheng. Tanshinones inhibit hIAPP aggregation, disaggregate preformed hIAPP fibrils, and protect cultured cells. Journal of Materials Chemistry B 2018, 6 (1) , 56-67. https://doi.org/10.1039/C7TB02538F
    94. Hyuck Jin Lee, Masha G. Savelieff, Juhye Kang, Megan Brunjes Brophy, Toshiki G. Nakashige, Shin Jung C. Lee, Elizabeth M. Nolan, Mi Hee Lim. Calprotectin influences the aggregation of metal-free and metal-bound amyloid-β by direct interaction. Metallomics 2018, 10 (8) , 1116-1127. https://doi.org/10.1039/C8MT00091C
    95. Chaofeng Zhang, Luiza M.F. Gomes, Tonglu Zhang, Tim Storr. A small bifunctional chelator that modulates Aβ 42 aggregation. Canadian Journal of Chemistry 2018, 96 (1) , 78-82. https://doi.org/10.1139/cjc-2017-0623
    96. Dan Wang, Qian Zhang, Xiaoyu Hu, Wei Wang, Xushan Zhu, Zhi Yuan. Pharmacodynamics in Alzheimer’s disease model rats of a bifunctional peptide with the potential to accelerate the degradation and reduce the toxicity of amyloid β-Cu fibrils. Acta Biomaterialia 2018, 65 , 327-338. https://doi.org/10.1016/j.actbio.2017.10.039
    97. Mengmeng Ma, Nan Gao, Yuhuan Sun, Jinsong Ren, Xiaogang Qu. A Near‐Infrared Responsive Drug Sequential Release System for Better Eradicating Amyloid Aggregates. Small 2017, 13 (46) https://doi.org/10.1002/smll.201701817
    98. Michael W. Beck, Jeffrey S. Derrick, Jong‐Min Suh, Mingeun Kim, Kyle J. Korshavn, Richard A. Kerr, Woo Jong Cho, Scott D. Larsen, Brandon T. Ruotolo, Ayyalusamy Ramamoorthy, Mi Hee Lim. Minor Structural Variations of Small Molecules Tune Regulatory Activities toward Pathological Factors in Alzheimer's Disease. ChemMedChem 2017, 12 (22) , 1828-1838. https://doi.org/10.1002/cmdc.201700456
    99. Fang Ma, Hongtao Du. Novel deoxyvasicinone derivatives as potent multitarget-directed ligands for the treatment of Alzheimer's disease: Design, synthesis, and biological evaluation. European Journal of Medicinal Chemistry 2017, 140 , 118-127. https://doi.org/10.1016/j.ejmech.2017.09.008
    100. Kasper P. Kepp. Alzheimer’s disease: How metal ions define β-amyloid function. Coordination Chemistry Reviews 2017, 351 , 127-159. https://doi.org/10.1016/j.ccr.2017.05.007
    Load all citations

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2014, 136, 1, 299–310
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja409801p
    Published December 27, 2013
    Copyright © 2013 American Chemical Society

    Article Views

    7214

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.