Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Catalytic Reduction of N2 to NH3 by an Fe–N2 Complex Featuring a C-Atom Anchor
My Activity
CONTENT TYPES

Figure 1Loading Img
    Article

    Catalytic Reduction of N2 to NH3 by an Fe–N2 Complex Featuring a C-Atom Anchor
    Click to copy article linkArticle link copied!

    View Author Information
    Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
    Other Access OptionsSupporting Information (2)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2014, 136, 3, 1105–1115
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja4114962
    Published December 18, 2013
    Copyright © 2013 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    While recent spectroscopic studies have established the presence of an interstitial carbon atom at the center of the iron–molybdenum cofactor (FeMoco) of MoFe-nitrogenase, its role is unknown. We have pursued Fe–N2 model chemistry to explore a hypothesis whereby this C-atom (previously denoted as a light X-atom) may provide a flexible trans interaction with an Fe center to expose an Fe–N2 binding site. In this context, we now report on Fe complexes of a new tris(phosphino)alkyl (CPiPr3) ligand featuring an axial carbon donor. It is established that the iron center in this scaffold binds dinitrogen trans to the Calkyl-atom anchor in three distinct and structurally characterized oxidation states. Fe–Calkyl lengthening is observed upon reduction, reflective of significant ionic character in the Fe–Calkyl interaction. The anionic (CPiPr3)FeN2 species can be functionalized by a silyl electrophile to generate (CPiPr3)Fe–N2SiR3. (CPiPr3)FeN2 also functions as a modest catalyst for the reduction of N2 to NH3 when supplied with electrons and protons at −78 °C under 1 atm N2 (4.6 equiv NH3/Fe).

    Copyright © 2013 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Spectroscopic data for new compounds, further experimental and computational details, and additional data on catalytic runs. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 298 publications.

    1. Nandita Biswas, Peter Lönnecke, Evgueni Kirillov, Dmitri Gelman. Hydrogenation of CO2 by a Tripodal Palladium Pincer Complex. ACS Catalysis 2024, 14 (17) , 13163-13173. https://doi.org/10.1021/acscatal.4c02523
    2. Xiuyan He, Xiaowei Pan, Chunyan Xiong, Yun Zhang, Dongjing Hong, Huayi Fang, Peng Cui. Rare-Earth Metalloligands for Low-Valent Cobalt Complexes: Fine Electronic Tuning via Co→RE Dative Interactions. Inorganic Chemistry 2024, 63 (18) , 8155-8162. https://doi.org/10.1021/acs.inorgchem.4c00367
    3. Yuqin Zhang, Da Wang, Guanping Wei, Baolei Li, Zongchang Mao, Si-Min Xu, Shaobin Tang, Jun Jiang, Zhenyu Li, Xijun Wang, Xin Xu. Engineering Spin Polarization of the Surface-Adsorbed Fe Atom by Intercalating a Transition Metal Atom into the MoS2 Bilayer for Enhanced Nitrogen Reduction. JACS Au 2024, 4 (4) , 1509-1520. https://doi.org/10.1021/jacsau.4c00030
    4. Vanessa R. Landaeta, Thomas M. Horsley Downie, Robert Wolf. Low-Valent Transition Metalate Anions in Synthesis, Small Molecule Activation, and Catalysis. Chemical Reviews 2024, 124 (4) , 1323-1463. https://doi.org/10.1021/acs.chemrev.3c00121
    5. Wenjing Yang, Xiaomiao Li, Sheng-Yong Li, Qingshuang Li, Hongjian Sun, Xiaoyan Li. Synthesis of Bis(silylene) Iron Chlorides and Their Catalytic Activity for Dinitrogen Silylation. Inorganic Chemistry 2023, 62 (51) , 21014-21024. https://doi.org/10.1021/acs.inorgchem.3c02445
    6. Avra Tzaguy, Albert Masip-Sánchez, Liat Avram, Albert Solé-Daura, Xavier López, Josep M. Poblet, Ronny Neumann. Electrocatalytic Reduction of Dinitrogen to Ammonia with Water as Proton and Electron Donor Catalyzed by a Combination of a Tri-ironoxotungstate and an Alkali Metal Cation. Journal of the American Chemical Society 2023, 145 (36) , 19912-19924. https://doi.org/10.1021/jacs.3c06167
    7. Yoshiaki Kokubo, Kazuki Tsuzuki, Hikari Sugiura, Shunsuke Yomura, Yuko Wasada-Tsutsui, Tomohiro Ozawa, Sachiko Yanagisawa, Minoru Kubo, Tomoyuki Takeyama, Takahide Yamaguchi, Yuichi Shimazaki, Shinichi Kugimiya, Hideki Masuda, Yuji Kajita. Syntheses, Characterizations, Crystal Structures, and Protonation Reactions of Dinitrogen Chromium Complexes Supported with Triamidoamine Ligands. Inorganic Chemistry 2023, 62 (14) , 5320-5333. https://doi.org/10.1021/acs.inorgchem.2c01561
    8. Omar J. García-de-Jesus, Alexander Mondragón-Díaz, Bruno Donnadieu, Miguel-Ángel Muñoz-Hernández. Tuning of Cu–Al Interactions in Complexes Derived from Tris(pyridonyl-6-methyl)aluminum Metalloligands. Inorganic Chemistry 2023, 62 (6) , 2518-2529. https://doi.org/10.1021/acs.inorgchem.2c02273
    9. Sivathmeehan Yogendra, Daniel W. N. Wilson, Anselm W. Hahn, Thomas Weyhermüller, Casey Van Stappen, Patrick Holland, Serena DeBeer. Sulfur-Ligated [2Fe-2C] Clusters as Synthetic Model Systems for Nitrogenase. Inorganic Chemistry 2023, 62 (6) , 2663-2671. https://doi.org/10.1021/acs.inorgchem.2c03693
    10. Wenshuang Huang, Ling-Ya Peng, Jiayu Zhang, Chenrui Liu, Guoyong Song, Ji-Hu Su, Wei-Hai Fang, Ganglong Cui, Shaowei Hu. Vanadium-Catalyzed Dinitrogen Reduction to Ammonia via a [V]═NNH2 Intermediate. Journal of the American Chemical Society 2023, 145 (2) , 811-821. https://doi.org/10.1021/jacs.2c08000
    11. Alex McSkimming, Niklas B. Thompson. Four-Coordinate Fe N2 and Imido Complexes Supported by a Hemilabile NNC Heteroscorpionate Ligand. Inorganic Chemistry 2022, 61 (31) , 12318-12326. https://doi.org/10.1021/acs.inorgchem.2c01656
    12. Joseph Kfoury, Zsolt Benedek, Tibor Szilvási, Julianna Oláh. H2 and N2 Binding Affinities Are Coupled in Synthetic Fe Nitrogenases Limiting N2 Fixation. Organometallics 2022, 41 (10) , 1134-1146. https://doi.org/10.1021/acs.organomet.1c00681
    13. Sai Manoj N. V. T. Gorantla, Kartik Chandra Mondal. EDA–NOCV Calculation for Efficient N2 Binding to the Reduced Ni3S8 Complex: Estimation of Ni–N2 Intrinsic Interaction Energies. ACS Omega 2021, 6 (49) , 33389-33397. https://doi.org/10.1021/acsomega.1c03715
    14. Sai Manoj N. V. T. Gorantla, Kartik Chandra Mondal. Estimations of Fe–N2 Intrinsic Interaction Energies of Iron–Sulfur/Nitrogen–Carbon Sites: A Deeper Bonding Insight by EDA-NOCV Analysis of a Model Complex of the Nitrogenase Cofactor. ACS Omega 2021, 6 (49) , 33932-33942. https://doi.org/10.1021/acsomega.1c05238
    15. Tiansi Xin, Xinrui Wang, Kexin Yang, Jiefeng Liang, Wenliang Huang. Rare Earth Metal Complexes Supported by a Tripodal Tris(amido) Ligand System Featuring an Arene Anchor. Inorganic Chemistry 2021, 60 (20) , 15321-15329. https://doi.org/10.1021/acs.inorgchem.1c01922
    16. Dae Young Bae, Gunhee Lee, Eunsung Lee. Fixation of Dinitrogen at an Asymmetric Binuclear Titanium Complex. Inorganic Chemistry 2021, 60 (17) , 12813-12822. https://doi.org/10.1021/acs.inorgchem.1c01050
    17. Tingshuai Li, Jiaojiao Xia, Qiru Chen, Ke Xu, Yang Gu, Qian Liu, Yonglan Luo, Haoran Guo, Enrico Traversa. Monodisperse Cu Cluster-Loaded Defective ZrO2 Nanofibers for Ambient N2 Fixation to NH3. ACS Applied Materials & Interfaces 2021, 13 (34) , 40724-40730. https://doi.org/10.1021/acsami.1c12279
    18. Javier Fajardo, Jr., Jonas C. Peters. Tripodal P3XFe–N2 Complexes (X = B, Al, Ga): Effect of the Apical Atom on Bonding, Electronic Structure, and Catalytic N2-to-NH3 Conversion. Inorganic Chemistry 2021, 60 (2) , 1220-1227. https://doi.org/10.1021/acs.inorgchem.0c03354
    19. Zeyun Zhang, Xuefei Xu. Efficient Heteronuclear Diatom Electrocatalyst for Nitrogen Reduction Reaction: Pd–Nb Diatom Supported on Black Phosphorus. ACS Applied Materials & Interfaces 2020, 12 (51) , 56987-56994. https://doi.org/10.1021/acsami.0c16362
    20. Zsolt Benedek, Marcell Papp, Julianna Oláh, Tibor Szilvási. Demonstrating the Direct Relationship between Hydrogen Evolution Reaction and Catalyst Deactivation in Synthetic Fe Nitrogenases. ACS Catalysis 2020, 10 (21) , 12555-12568. https://doi.org/10.1021/acscatal.0c02315
    21. Charles H. Arnett, Isabel Bogacz, Ruchira Chatterjee, Junko Yano, Paul H. Oyala, Theodor Agapie. Mixed-Valent Diiron μ-Carbyne, μ-Hydride Complexes: Implications for Nitrogenase. Journal of the American Chemical Society 2020, 142 (44) , 18795-18813. https://doi.org/10.1021/jacs.0c05920
    22. Quinton J. Bruch, Gannon P. Connor, Noah D. McMillion, Alan S. Goldman, Faraj Hasanayn, Patrick L. Holland, Alexander J. M. Miller. Considering Electrocatalytic Ammonia Synthesis via Bimetallic Dinitrogen Cleavage. ACS Catalysis 2020, 10 (19) , 10826-10846. https://doi.org/10.1021/acscatal.0c02606
    23. Chaonan Cui, Yuhan Jia, Hanyu Zhang, Lijun Geng, Zhixun Luo. Plasma-Assisted Chain Reactions of Rh3+ Clusters with Dinitrogen: N≡N Bond Dissociation. The Journal of Physical Chemistry Letters 2020, 11 (19) , 8222-8230. https://doi.org/10.1021/acs.jpclett.0c02218
    24. Ting Deng, Chao Cen, Hujun Shen, Shuyi Wang, Jingdong Guo, Shaohong Cai, Mingsen Deng. Atom-Pair Catalysts Supported by N-Doped Graphene for the Nitrogen Reduction Reaction: d-Band Center-Based Descriptor. The Journal of Physical Chemistry Letters 2020, 11 (15) , 6320-6329. https://doi.org/10.1021/acs.jpclett.0c01450
    25. Devender Singh, William R. Buratto, Juan F. Torres, Leslie J. Murray. Activation of Dinitrogen by Polynuclear Metal Complexes. Chemical Reviews 2020, 120 (12) , 5517-5581. https://doi.org/10.1021/acs.chemrev.0c00042
    26. Matthew J. Chalkley, Marcus W. Drover, Jonas C. Peters. Catalytic N2-to-NH3 (or -N2H4) Conversion by Well-Defined Molecular Coordination Complexes. Chemical Reviews 2020, 120 (12) , 5582-5636. https://doi.org/10.1021/acs.chemrev.9b00638
    27. Sangmin Kim, Florian Loose, Paul J. Chirik. Beyond Ammonia: Nitrogen–Element Bond Forming Reactions with Coordinated Dinitrogen. Chemical Reviews 2020, 120 (12) , 5637-5681. https://doi.org/10.1021/acs.chemrev.9b00705
    28. Charles H. Arnett, Theodor Agapie. Activation of an Open Shell, Carbyne-Bridged Diiron Complex Toward Binding of Dinitrogen. Journal of the American Chemical Society 2020, 142 (22) , 10059-10068. https://doi.org/10.1021/jacs.0c01896
    29. Takanori Shima, Jimin Yang, Gen Luo, Yi Luo, Zhaomin Hou. Dinitrogen Activation and Hydrogenation by C5Me4SiMe3-Ligated Di- and Trinuclear Chromium Hydride Complexes. Journal of the American Chemical Society 2020, 142 (19) , 9007-9016. https://doi.org/10.1021/jacs.0c02939
    30. Shengyong Li, Yajie Wang, Wenjing Yang, Kai Li, Hongjian Sun, Xiaoyan Li, Olaf Fuhr, Dieter Fenske. N2 Silylation Catalyzed by a Bis(silylene)-Based [SiCSi] Pincer Hydrido Iron(II) Dinitrogen Complex. Organometallics 2020, 39 (5) , 757-766. https://doi.org/10.1021/acs.organomet.0c00025
    31. K. Cory MacLeod, Ida M. DiMucci, Edward P. Zovinka, Sean F. McWilliams, Brandon Q. Mercado, Kyle M. Lancaster, Patrick L. Holland. Masked Radicals: Iron Complexes of Trityl, Benzophenone, and Phenylacetylene. Organometallics 2019, 38 (21) , 4224-4232. https://doi.org/10.1021/acs.organomet.9b00534
    32. Jeremy McGale, George E. Cutsail III, Chris Joseph, Michael J. Rose, Serena DeBeer. Spectroscopic X-ray and Mössbauer Characterization of M6 and M5 Iron(Molybdenum)-Carbonyl Carbide Clusters: High Carbide-Iron Covalency Enhances Local Iron Site Electron Density Despite Cluster Oxidation. Inorganic Chemistry 2019, 58 (19) , 12918-12932. https://doi.org/10.1021/acs.inorgchem.9b01870
    33. Lei Hu, Damien Mahaut, Nikolay Tumanov, Johan Wouters, Raphaël Robiette, Guillaume Berionni. Complementary Synthetic Approaches toward 9-Phosphatriptycene and Structure–Reactivity Investigations of Its Association with Sterically Hindered Lewis Acids. The Journal of Organic Chemistry 2019, 84 (17) , 11268-11274. https://doi.org/10.1021/acs.joc.9b01570
    34. Amy L. Speelman, Ilija Čorić, Casey Van Stappen, Serena DeBeer, Brandon Q. Mercado, Patrick L. Holland. Nitrogenase-Relevant Reactivity of a Synthetic Iron–Sulfur–Carbon Site. Journal of the American Chemical Society 2019, 141 (33) , 13148-13157. https://doi.org/10.1021/jacs.9b05353
    35. Chunjin Ren, Yongli Zhang, Yanli Li, Yongfan Zhang, Shuping Huang, Wei Lin, Kaining Ding. Whether Corrugated or Planar Vacancy Graphene-like Carbon Nitride (g-C3N4) Is More Effective for Nitrogen Reduction Reaction?. The Journal of Physical Chemistry C 2019, 123 (28) , 17296-17305. https://doi.org/10.1021/acs.jpcc.9b03511
    36. Sivathmeehan Yogendra, Thomas Weyhermüller, Anselm W. Hahn, Serena DeBeer. From Ylides to Doubly Yldiide-Bridged Iron(II) High Spin Dimers via Self-Protolysis. Inorganic Chemistry 2019, 58 (14) , 9358-9367. https://doi.org/10.1021/acs.inorgchem.9b01086
    37. Liang Liu, Thomas B. Rauchfuss, Toby J. Woods. Iron Carbide–Sulfide Carbonyl Clusters. Inorganic Chemistry 2019, 58 (13) , 8271-8274. https://doi.org/10.1021/acs.inorgchem.9b01231
    38. Zsolt Benedek, Marcell Papp, Julianna Oláh, Tibor Szilvási. Exploring Hydrogen Evolution Accompanying Nitrogen Reduction on Biomimetic Nitrogenase Analogs: Can Fe–NxHyIntermediates Be Active Under Turnover Conditions?. Inorganic Chemistry 2019, 58 (12) , 7969-7977. https://doi.org/10.1021/acs.inorgchem.9b00719
    39. Jun-Bo Lu, Xue-Lu Ma, Jia-Qi Wang, Ya-Fei Jiang, Yong Li, Han-Shi Hu, Hai Xiao, Jun Li. The df–d Dative Bonding in a Uranium–Cobalt Heterobimetallic Complex for Efficient Nitrogen Fixation. Inorganic Chemistry 2019, 58 (11) , 7433-7439. https://doi.org/10.1021/acs.inorgchem.9b00598
    40. James P. Shanahan, Nathaniel K. Szymczak. Hydrogen Bonding to a Dinitrogen Complex at Room Temperature: Impacts on N2 Activation. Journal of the American Chemical Society 2019, 141 (21) , 8550-8556. https://doi.org/10.1021/jacs.9b02288
    41. Mark A. Nesbit, Paul H. Oyala, Jonas C. Peters. Characterization of the Earliest Intermediate of Fe-N2 Protonation: CW and Pulse EPR Detection of an Fe-NNH Species and Its Evolution to Fe-NNH2+. Journal of the American Chemical Society 2019, 141 (20) , 8116-8127. https://doi.org/10.1021/jacs.8b12082
    42. Dirk J. Schild, Jonas C. Peters. Light Enhanced Fe-Mediated Nitrogen Fixation: Mechanistic Insights Regarding H2 Elimination, HER, and NH3 Generation. ACS Catalysis 2019, 9 (5) , 4286-4295. https://doi.org/10.1021/acscatal.9b00523
    43. Jianhao Yin, Jiapeng Li, Gao-Xiang Wang, Zhu-Bao Yin, Wen-Xiong Zhang, Zhenfeng Xi. Dinitrogen Functionalization Affording Chromium Hydrazido Complex. Journal of the American Chemical Society 2019, 141 (10) , 4241-4247. https://doi.org/10.1021/jacs.9b00822
    44. Kristian E. Dalle, Julien Warnan, Jane J. Leung, Bertrand Reuillard, Isabell S. Karmel, Erwin Reisner. Electro- and Solar-Driven Fuel Synthesis with First Row Transition Metal Complexes. Chemical Reviews 2019, 119 (4) , 2752-2875. https://doi.org/10.1021/acs.chemrev.8b00392
    45. Takanori Shima, Gen Luo, Shaowei Hu, Yi Luo, Zhaomin Hou. Experimental and Computational Studies of Dinitrogen Activation and Hydrogenation at a Tetranuclear Titanium Imide/Hydride Framework. Journal of the American Chemical Society 2019, 141 (6) , 2713-2720. https://doi.org/10.1021/jacs.8b13341
    46. Leslie D. Field, Hsiu L. Li, P. Manohari Abeysinghe, Mohan Bhadbhade, Scott J. Dalgarno, Ruaraidh D. McIntosh. Reduction of Dinitrogen to Ammonia and Hydrazine on Low-Valent Ruthenium Complexes. Inorganic Chemistry 2019, 58 (3) , 1929-1934. https://doi.org/10.1021/acs.inorgchem.8b02850
    47. Solène Bouchard, Maurizio Bruschi, Luca De Gioia, Christine Le Roy, François Y. Pétillon, Philippe Schollhammer, Jean Talarmin. FeMo Heterobimetallic Dithiolate Complexes: Investigation of Their Electron Transfer Chemistry and Reactivity toward Acids, a Density Functional Theory Rationalization. Inorganic Chemistry 2019, 58 (1) , 679-694. https://doi.org/10.1021/acs.inorgchem.8b02861
    48. Zsolt Benedek, Marcell Papp, Julianna Oláh, Tibor Szilvási. Identifying the Rate-Limiting Elementary Steps of Nitrogen Fixation with Single-Site Fe Model Complexes. Inorganic Chemistry 2018, 57 (14) , 8499-8508. https://doi.org/10.1021/acs.inorgchem.8b01183
    49. Sean F. McWilliams, Eckhard Bill, Gudrun Lukat-Rodgers, Kenton R. Rodgers, Brandon Q. Mercado, Patrick L. Holland. Effects of N2 Binding Mode on Iron-Based Functionalization of Dinitrogen to Form an Iron(III) Hydrazido Complex. Journal of the American Chemical Society 2018, 140 (27) , 8586-8598. https://doi.org/10.1021/jacs.8b04828
    50. Serge Ruccolo, Michael Rauch, Gerard Parkin. Synthesis and Structural Characterization of Tris(isopropylbenzimidazol-2-ylthio)methyl Zinc Complexes, [TitmPriBenz]ZnX: Modulation of Transannular Zn–C Interactions. Organometallics 2018, 37 (11) , 1708-1718. https://doi.org/10.1021/acs.organomet.8b00158
    51. Jun-Bo Lu, Xue-Lu Ma, Jia-Qi Wang, Jin-Cheng Liu, Hai Xiao, Jun Li. Efficient Nitrogen Fixation via a Redox-Flexible Single-Iron Site with Reverse-Dative Iron → Boron σ Bonding. The Journal of Physical Chemistry A 2018, 122 (18) , 4530-4537. https://doi.org/10.1021/acs.jpca.8b02089
    52. Ilya Kisets and Dmitri Gelman . Carbometalated Complexes Possessing Tripodal Pseudo-C3-Symmetric Triptycene-Based Ligands. Organometallics 2018, 37 (4) , 526-529. https://doi.org/10.1021/acs.organomet.7b00907
    53. Alexander J. Kendall, Samantha I. Johnson, R. Morris Bullock, and Michael T. Mock . Catalytic Silylation of N2 and Synthesis of NH3 and N2H4 by Net Hydrogen Atom Transfer Reactions Using a Chromium P4 Macrocycle. Journal of the American Chemical Society 2018, 140 (7) , 2528-2536. https://doi.org/10.1021/jacs.7b11132
    54. Benjamin D. Matson and Jonas C. Peters . Fe-Mediated HER vs N2RR: Exploring Factors That Contribute to Selectivity in P3EFe(N2) (E = B, Si, C) Catalyst Model Systems. ACS Catalysis 2018, 8 (2) , 1448-1455. https://doi.org/10.1021/acscatal.7b03068
    55. Javier Fajardo, Jr. and Jonas C. Peters . Catalytic Nitrogen-to-Ammonia Conversion by Osmium and Ruthenium Complexes. Journal of the American Chemical Society 2017, 139 (45) , 16105-16108. https://doi.org/10.1021/jacs.7b10204
    56. Christopher J. Reed and Theodor Agapie . Tetranuclear Fe Clusters with a Varied Interstitial Ligand: Effects on the Structure, Redox Properties, and Nitric Oxide Activation. Inorganic Chemistry 2017, 56 (21) , 13360-13367. https://doi.org/10.1021/acs.inorgchem.7b02114
    57. Tamara Husch and Markus Reiher . Mechanistic Consequences of Chelate Ligand Stabilization on Nitrogen Fixation by Yandulov–Schrock-Type Complexes. ACS Sustainable Chemistry & Engineering 2017, 5 (11) , 10527-10537. https://doi.org/10.1021/acssuschemeng.7b02518
    58. Renjith S. Pillai, Ji Woong Yoon, Seung-Joon Lee, Young Kyu Hwang, Youn-Sang Bae, Jong-San Chang, and Guillaume Maurin . N2 Capture Performances of the Hybrid Porous MIL-101(Cr): From Prediction toward Experimental Testing. The Journal of Physical Chemistry C 2017, 121 (40) , 22130-22138. https://doi.org/10.1021/acs.jpcc.7b07029
    59. Jingxiang Zhao and Zhongfang Chen . Single Mo Atom Supported on Defective Boron Nitride Monolayer as an Efficient Electrocatalyst for Nitrogen Fixation: A Computational Study. Journal of the American Chemical Society 2017, 139 (36) , 12480-12487. https://doi.org/10.1021/jacs.7b05213
    60. Demyan E. Prokopchuk, Eric S. Wiedner, Eric D. Walter, Codrina V. Popescu, Nicholas A. Piro, W. Scott Kassel, R. Morris Bullock, and Michael T. Mock . Catalytic N2 Reduction to Silylamines and Thermodynamics of N2 Binding at Square Planar Fe. Journal of the American Chemical Society 2017, 139 (27) , 9291-9301. https://doi.org/10.1021/jacs.7b04552
    61. Subramaniam Kuppuswamy, Joshua D. Wofford, Chris Joseph, Zhu-Lin Xie, Azim K. Ali, Vincent M. Lynch, Paul A. Lindahl, and Michael J. Rose . Structures, Interconversions, and Spectroscopy of Iron Carbonyl Clusters with an Interstitial Carbide: Localized Metal Center Reduction by Overall Cluster Oxidation. Inorganic Chemistry 2017, 56 (10) , 5998-6012. https://doi.org/10.1021/acs.inorgchem.7b00741
    62. Ryoichi Araake, Kazuki Sakadani, Mizuki Tada, Yoichi Sakai, and Yasuhiro Ohki . [Fe4] and [Fe6] Hydride Clusters Supported by Phosphines: Synthesis, Characterization, and Application in N2 Reduction. Journal of the American Chemical Society 2017, 139 (15) , 5596-5606. https://doi.org/10.1021/jacs.7b01965
    63. Matthew J. Chalkley, Trevor J. Del Castillo, Benjamin D. Matson, Joseph P. Roddy, and Jonas C. Peters . Catalytic N2-to-NH3 Conversion by Fe at Lower Driving Force: A Proposed Role for Metallocene-Mediated PCET. ACS Central Science 2017, 3 (3) , 217-223. https://doi.org/10.1021/acscentsci.7b00014
    64. Chris P. Schaller, Kate J. Graham, and Henry V. Jakubowski . Reactivity III: An Advanced Course in Integrated Organic, Inorganic, and Biochemistry. Journal of Chemical Education 2017, 94 (3) , 289-295. https://doi.org/10.1021/acs.jchemed.6b00503
    65. Jonathan Rittle and Jonas C. Peters . N–H Bond Dissociation Enthalpies and Facile H Atom Transfers for Early Intermediates of Fe–N2 and Fe–CN Reductions. Journal of the American Chemical Society 2017, 139 (8) , 3161-3170. https://doi.org/10.1021/jacs.6b12861
    66. Benjamin Burcher, Kevin J. Sanders, Ladislav Benda, Guido Pintacuda, Erwann Jeanneau, Andreas A. Danopoulos, Pierre Braunstein, Hélène Olivier-Bourbigou, and Pierre-Alain R. Breuil . Straightforward Access to Stable, 16-Valence-Electron Phosphine-Stabilized Fe0 Olefin Complexes and Their Reactivity. Organometallics 2017, 36 (3) , 605-613. https://doi.org/10.1021/acs.organomet.6b00803
    67. Tomohiro Iwai, Ryotaro Tanaka, and Masaya Sawamura . Synthesis, Coordination Properties, and Catalytic Application of Triarylmethane-Monophosphines. Organometallics 2016, 35 (23) , 3959-3969. https://doi.org/10.1021/acs.organomet.6b00752
    68. Neena Chakrabarti, Serge Ruccolo, and Gerard Parkin . Cadmium Compounds with an [N3C] Atrane Motif: Evidence for the Generation of a Cadmium Hydride Species. Inorganic Chemistry 2016, 55 (23) , 12105-12109. https://doi.org/10.1021/acs.inorgchem.6b02196
    69. Anitha S. Gowda, Andreas Baur, Carl A. Scaggs, Jeffrey L. Petersen, and Jessica M. Hoover . Formation of Di-tert-butylurea from a Mononuclear Iron Tris(isocyanide) Complex. Organometallics 2016, 35 (21) , 3720-3727. https://doi.org/10.1021/acs.organomet.6b00687
    70. Serge Ruccolo, Wesley Sattler, Yi Rong, and Gerard Parkin . Modulation of Zn–C Bond Lengths Induced by Ligand Architecture in Zinc Carbatrane Compounds. Journal of the American Chemical Society 2016, 138 (44) , 14542-14545. https://doi.org/10.1021/jacs.6b09250
    71. Iraklis Pappas and Paul J. Chirik . Catalytic Proton Coupled Electron Transfer from Metal Hydrides to Titanocene Amides, Hydrazides and Imides: Determination of Thermodynamic Parameters Relevant to Nitrogen Fixation. Journal of the American Chemical Society 2016, 138 (40) , 13379-13389. https://doi.org/10.1021/jacs.6b08009
    72. Xiao-Fei Li, Qin-Kun Li, Jin Cheng, Lingling Liu, Qing Yan, Yingchao Wu, Xiang-Hua Zhang, Zhi-Yong Wang, Qi Qiu, and Yi Luo . Conversion of Dinitrogen to Ammonia by FeN3-Embedded Graphene. Journal of the American Chemical Society 2016, 138 (28) , 8706-8709. https://doi.org/10.1021/jacs.6b04778
    73. Preston M. Miura-Akagi, Mika L. Nakashige, Caitlin K. Maile, Shelly M. Oshiro, Joshua R. Gurr, Wesley Y. Yoshida, A. Timothy Royappa, Colleen E. Krause, Arnold L. Rheingold, Russell P. Hughes, and Matthew F. Cain . Synthesis of a Tris(phosphaalkene)phosphine Ligand and Fundamental Organometallic Reactions on Its Sterically Shielded Metal Complexes. Organometallics 2016, 35 (13) , 2224-2231. https://doi.org/10.1021/acs.organomet.6b00250
    74. Ilija Čorić and Patrick L. Holland . Insight into the Iron–Molybdenum Cofactor of Nitrogenase from Synthetic Iron Complexes with Sulfur, Carbon, and Hydride Ligands. Journal of the American Chemical Society 2016, 138 (23) , 7200-7211. https://doi.org/10.1021/jacs.6b00747
    75. Bhaskar Mondal, Frank Neese, and Shengfa Ye . Toward Rational Design of 3d Transition Metal Catalysts for CO2 Hydrogenation Based on Insights into Hydricity-Controlled Rate-Determining Steps. Inorganic Chemistry 2016, 55 (11) , 5438-5444. https://doi.org/10.1021/acs.inorgchem.6b00471
    76. Yasuhiro Ohki, Ryoko Hoshino, and Kazuyuki Tatsumi . N-Heterocyclic Carbene Complexes of Three- and Four-Coordinate Fe(I). Organometallics 2016, 35 (10) , 1368-1375. https://doi.org/10.1021/acs.organomet.5b01025
    77. Trevor J. Del Castillo, Niklas B. Thompson, and Jonas C. Peters . A Synthetic Single-Site Fe Nitrogenase: High Turnover, Freeze-Quench 57Fe Mössbauer Data, and a Hydride Resting State. Journal of the American Chemical Society 2016, 138 (16) , 5341-5350. https://doi.org/10.1021/jacs.6b01706
    78. Fanjun Zhang, Jiong Jia, Shuli Dong, Wenguang Wang, and Chen-Ho Tung . Hydride Transfer from Iron(II) Hydride Compounds to NAD(P)+ Analogues. Organometallics 2016, 35 (8) , 1151-1159. https://doi.org/10.1021/acs.organomet.6b00179
    79. Shengfa Ye, Eckhard Bill, and Frank Neese . Electronic Structures of the [Fe(N2)(SiPiPr3)]+1/0/–1 Electron Transfer Series: A Counterintuitive Correlation between Isomer Shifts and Oxidation States. Inorganic Chemistry 2016, 55 (7) , 3468-3474. https://doi.org/10.1021/acs.inorgchem.5b02908
    80. Jonathan Rittle and Jonas C. Peters . An Fe-N2 Complex That Generates Hydrazine and Ammonia via Fe═NNH2: Demonstrating a Hybrid Distal-to-Alternating Pathway for N2 Reduction. Journal of the American Chemical Society 2016, 138 (12) , 4243-4248. https://doi.org/10.1021/jacs.6b01230
    81. Sean F. McWilliams, Kenton R. Rodgers, Gudrun Lukat-Rodgers, Brandon Q. Mercado, Katarzyna Grubel, and Patrick L. Holland . Alkali Metal Variation and Twisting of the FeNNFe Core in Bridging Diiron Dinitrogen Complexes. Inorganic Chemistry 2016, 55 (6) , 2960-2968. https://doi.org/10.1021/acs.inorgchem.5b02841
    82. Li Rao, Xin Xu, and Carlo Adamo . Theoretical Investigation on the Role of the Central Carbon Atom and Close Protein Environment on the Nitrogen Reduction in Mo Nitrogenase. ACS Catalysis 2016, 6 (3) , 1567-1577. https://doi.org/10.1021/acscatal.5b02577
    83. Graham de Ruiter, Niklas B. Thompson, Davide Lionetti, and Theodor Agapie . Nitric Oxide Activation by Distal Redox Modulation in Tetranuclear Iron Nitrosyl Complexes. Journal of the American Chemical Society 2015, 137 (44) , 14094-14106. https://doi.org/10.1021/jacs.5b07397
    84. Qian Liao, Nathalie Saffon-Merceron, and Nicolas Mézailles . N2 Reduction into Silylamine at Tridentate Phosphine/Mo Center: Catalysis and Mechanistic Study. ACS Catalysis 2015, 5 (11) , 6902-6906. https://doi.org/10.1021/acscatal.5b01626
    85. Tatsuya Suzuki, Yuko Wasada-Tsutsui, Takahiko Ogawa, Tomohiko Inomata, Tomohiro Ozawa, Yoichi Sakai, Michael D. Fryzuk, and Hideki Masuda . N2 Activation by an Iron Complex with a Strong Electron-Donating Iminophosphorane Ligand. Inorganic Chemistry 2015, 54 (19) , 9271-9281. https://doi.org/10.1021/acs.inorgchem.5b00536
    86. Trevor J. Del Castillo, Niklas B. Thompson, Daniel L. M. Suess, Gaël Ung, and Jonas C. Peters . Evaluating Molecular Cobalt Complexes for the Conversion of N2 to NH3. Inorganic Chemistry 2015, 54 (19) , 9256-9262. https://doi.org/10.1021/acs.inorgchem.5b00645
    87. Yoshiaki Nishibayashi . Recent Progress in Transition-Metal-Catalyzed Reduction of Molecular Dinitrogen under Ambient Reaction Conditions. Inorganic Chemistry 2015, 54 (19) , 9234-9247. https://doi.org/10.1021/acs.inorgchem.5b00881
    88. Nicolai Lehnert and Jonas C. Peters . Preface for Small-Molecule Activation: From Biological Principles to Energy Applications. Part 2: Small Molecules Related to the Global Nitrogen Cycle. Inorganic Chemistry 2015, 54 (19) , 9229-9233. https://doi.org/10.1021/acs.inorgchem.5b02124
    89. Chun-Guang Liu, Shuang Liu, and Ting Zheng . Computational Study of Metal–Dinitrogen Keggin-Type Polyoxometalate Complexes [PW11O39MIIN2)]5– (M = Ru, Os, Re, Ir): Bonding Nature and Dinitrogen Splitting. Inorganic Chemistry 2015, 54 (16) , 7929-7935. https://doi.org/10.1021/acs.inorgchem.5b01002
    90. Alex McSkimming and W. Hill Harman . A Terminal N2 Complex of High-Spin Iron(I) in a Weak, Trigonal Ligand Field. Journal of the American Chemical Society 2015, 137 (28) , 8940-8943. https://doi.org/10.1021/jacs.5b06337
    91. Sean F. McWilliams and Patrick L. Holland . Dinitrogen Binding and Cleavage by Multinuclear Iron Complexes. Accounts of Chemical Research 2015, 48 (7) , 2059-2065. https://doi.org/10.1021/acs.accounts.5b00213
    92. Dominic C. Babbini and Vlad M. Iluc . Iridium PCsp3P-type Complexes with a Hemilabile Anisole Tether. Organometallics 2015, 34 (13) , 3141-3151. https://doi.org/10.1021/acs.organomet.5b00165
    93. John S. Anderson, George E. Cutsail, III, Jonathan Rittle, Bridget A. Connor, William A. Gunderson, Limei Zhang, Brian M. Hoffman, and Jonas C. Peters . Characterization of an Fe≡N–NH2 Intermediate Relevant to Catalytic N2 Reduction to NH3. Journal of the American Chemical Society 2015, 137 (24) , 7803-7809. https://doi.org/10.1021/jacs.5b03432
    94. Henry Fong and Jonas C. Peters . Hydricity of an Fe–H Species and Catalytic CO2 Hydrogenation. Inorganic Chemistry 2015, 54 (11) , 5124-5135. https://doi.org/10.1021/ic502508p
    95. Leslie D. Field, Nilay Hazari, and Hsiu L. Li . Nitrogen Fixation Revisited on Iron(0) Dinitrogen Phosphine Complexes. Inorganic Chemistry 2015, 54 (10) , 4768-4776. https://doi.org/10.1021/acs.inorgchem.5b00211
    96. Kazuya Arashiba, Eriko Kinoshita, Shogo Kuriyama, Aya Eizawa, Kazunari Nakajima, Hiromasa Tanaka, Kazunari Yoshizawa, and Yoshiaki Nishibayashi . Catalytic Reduction of Dinitrogen to Ammonia by Use of Molybdenum–Nitride Complexes Bearing a Tridentate Triphosphine as Catalysts. Journal of the American Chemical Society 2015, 137 (17) , 5666-5669. https://doi.org/10.1021/jacs.5b02579
    97. Katarzyna Grubel, William W. Brennessel, Brandon Q. Mercado, and Patrick L. Holland . Alkali Metal Control over N–N Cleavage in Iron Complexes. Journal of the American Chemical Society 2014, 136 (48) , 16807-16816. https://doi.org/10.1021/ja507442b
    98. Ryan Gilbert-Wilson, Leslie D. Field, and Mohan Bhadbhade . Ruthenium Hydrides Containing the Superhindered Polydentate Polyphosphine Ligand P(CH2CH2PtBu2)3. Inorganic Chemistry 2014, 53 (23) , 12469-12479. https://doi.org/10.1021/ic501895s
    99. Aubrey D. Scott, Vladimir Pelmenschikov, Yisong Guo, Lifen Yan, Hongxin Wang, Simon J. George, Christie H. Dapper, William E. Newton, Yoshitaka Yoda, Yoshihito Tanaka, and Stephen P. Cramer . Structural Characterization of CO-Inhibited Mo-Nitrogenase by Combined Application of Nuclear Resonance Vibrational Spectroscopy, Extended X-ray Absorption Fine Structure, and Density Functional Theory: New Insights into the Effects of CO Binding and the Role of the Interstitial Atom. Journal of the American Chemical Society 2014, 136 (45) , 15942-15954. https://doi.org/10.1021/ja505720m
    100. Jonathan Rittle, Charles C. L. McCrory, and Jonas C. Peters . A 106-Fold Enhancement in N2-Binding Affinity of an Fe2(μ-H)2 Core upon Reduction to a Mixed-Valence FeIIFeI State. Journal of the American Chemical Society 2014, 136 (39) , 13853-13862. https://doi.org/10.1021/ja507217v
    Load more citations

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2014, 136, 3, 1105–1115
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja4114962
    Published December 18, 2013
    Copyright © 2013 American Chemical Society

    Article Views

    12k

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.