Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Rapid Heteronuclear Single Quantum Correlation NMR Spectra at Natural Abundance
My Activity

Figure 1Loading Img
    Communication

    Rapid Heteronuclear Single Quantum Correlation NMR Spectra at Natural Abundance
    Click to copy article linkArticle link copied!

    View Author Information
    Institut für Organische Chemie and Institut für Biologische Grenzflächen, Karlsruher Institut für Technologie (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
    Other Access Options

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2014, 136, 4, 1242–1245
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja411588d
    Published January 13, 2014
    Copyright © 2014 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    A novel NMR experiment, the so-called ASAP-HSQC, is introduced that allows the detection of heteronuclear one-bond correlations in less than 30 s on small molecules at natural abundance without compromises in sweep width, resolution or spectral quality. Equally, the experiment allows a significant increase in digital resolution or a moderate senstitivity enhancement in the same overall experiment time compared to a conventional HSQC. The gain is a consequence of keeping all unused proton magnetization along z during acquisition, so that the previously reported ASAP and ALSOFAST approaches can be transferred from HMQC to HSQC-type experiments. Next to basic and broadband pulse sequences, a characterization of the sequence with respect to minimum measurement time, sensitivity gain, and advantages in resolution compared to state-of-the-art experiments is given.

    Copyright © 2014 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 90 publications.

    1. Ben. J. Tickner, Kawarpal Singh, Vladimir V. Zhivonitko, Ville-Veikko Telkki. Ultrafast Nuclear Magnetic Resonance as a Tool to Detect Rapid Chemical Change in Solution. ACS Physical Chemistry Au 2024, 4 (5) , 453-463. https://doi.org/10.1021/acsphyschemau.4c00042
    2. Mihajlo Novakovic, Jihyun Kim, Xun-Cheng Su, E̅riks Kupče, Lucio Frydman. Relaxation-Assisted Magnetization Transfer Phenomena for a Sensitivity-Enhanced 2D NMR. Analytical Chemistry 2023, 95 (49) , 18091-18098. https://doi.org/10.1021/acs.analchem.3c03149
    3. Carolina Fontana, Göran Widmalm. Primary Structure of Glycans by NMR Spectroscopy. Chemical Reviews 2023, 123 (3) , 1040-1102. https://doi.org/10.1021/acs.chemrev.2c00580
    4. Jonathan R. J. Yong, E̅riks Kupče, Tim D. W. Claridge. Modular Pulse Program Generation for NMR Supersequences. Analytical Chemistry 2022, 94 (4) , 2271-2278. https://doi.org/10.1021/acs.analchem.1c04964
    5. Jonathan R. J. Yong, Mohammadali Foroozandeh. On-the-Fly, Sample-Tailored Optimization of NMR Experiments. Analytical Chemistry 2021, 93 (31) , 10735-10739. https://doi.org/10.1021/acs.analchem.1c01767
    6. Alexandar L. Hansen, E̅riks Kupče, Da-Wei Li, Lei Bruschweiler-Li, Cheng Wang, Rafael Brüschweiler. 2D NMR-Based Metabolomics with HSQC/TOCSY NOAH Supersequences. Analytical Chemistry 2021, 93 (15) , 6112-6119. https://doi.org/10.1021/acs.analchem.0c05205
    7. Brian J. Esselman, Heike Hofstetter, Aubrey J. Ellison, Charles G. Fry, Nicholas J. Hill. SN1, E1, and E2 Reactions of tert-Amyl Compounds: Improved Analysis Using Computational Chemistry and ASAP-HSQC NMR Spectroscopy. Journal of Chemical Education 2020, 97 (8) , 2280-2285. https://doi.org/10.1021/acs.jchemed.0c00071
    8. Raphael Reher, Hyun Woo Kim, Chen Zhang, Huanru Henry Mao, Mingxun Wang, Louis-Félix Nothias, Andres Mauricio Caraballo-Rodriguez, Evgenia Glukhov, Bahar Teke, Tiago Leao, Kelsey L. Alexander, Brendan M. Duggan, Ezra L. Van Everbroeck, Pieter C. Dorrestein, Garrison W. Cottrell, William H. Gerwick. A Convolutional Neural Network-Based Approach for the Rapid Annotation of Molecularly Diverse Natural Products. Journal of the American Chemical Society 2020, 142 (9) , 4114-4120. https://doi.org/10.1021/jacs.9b13786
    9. Simon Glanzer and Klaus Zangger . Visualizing Unresolved Scalar Couplings by Real-Time J-Upscaled NMR. Journal of the American Chemical Society 2015, 137 (15) , 5163-5169. https://doi.org/10.1021/jacs.5b01687
    10. Mette Skau Mikkelsen, Sofia Bolvig Cornali, Morten G. Jensen, Mathias Nilsson, Sophie R. Beeren, and Sebastian Meier . Probing Interactions between β-Glucan and Bile Salts at Atomic Detail by 1H–13C NMR Assays. Journal of Agricultural and Food Chemistry 2014, 62 (47) , 11472-11478. https://doi.org/10.1021/jf504352w
    11. Adrien Le Guennec, Patrick Giraudeau, and Stefano Caldarelli . Evaluation of Fast 2D NMR for Metabolomics. Analytical Chemistry 2014, 86 (12) , 5946-5954. https://doi.org/10.1021/ac500966e
    12. Kerem Bingol, Lei Bruschweiler-Li, Da-Wei Li, and Rafael Brüschweiler . Customized Metabolomics Database for the Analysis of NMR 1H–1H TOCSY and 13C–1H HSQC-TOCSY Spectra of Complex Mixtures. Analytical Chemistry 2014, 86 (11) , 5494-5501. https://doi.org/10.1021/ac500979g
    13. Jonathan R.J. Yong, Ēriks Kupče, Tim D.W. Claridge. The NOAH HSQC-COSY module revisited: A theoretical and practical comparison of pulse sequences. Journal of Magnetic Resonance 2024, 99 , 107759. https://doi.org/10.1016/j.jmr.2024.107759
    14. Richard C. C. Dorow, Phil Liebing, Helmar Görls, Matthias Westerhausen. Coordination chemistry of alkali metal dimesityl-thio- and dimesityl-selenophosphinites [(L) 2 A-EPMes 2 ] 2 (A = Li, Na, K; E = S, Se; L = THF, THP) and [(18C6)K-SPMes 2 ]. Dalton Transactions 2024, 53 (12) , 5711-5720. https://doi.org/10.1039/D4DT00264D
    15. William W. Wolff, Jacob Pellizzari, Ronald Soong, Daniel H. Lysak, Katrina Steiner, Kiera Ronda, Peter Costa, Katelyn Downey, Vincent Moxley‐Paquette, Chris Suszczynski, Steven Boehmer, Jacob R. Prat, Andre J. Simpson. 13 C‐depleted algae as food: Permitting background free in‐vivo nuclear magnetic resonance of Daphnia magna at natural abundance. Magnetic Resonance in Chemistry 2024, 62 (1) , 11-18. https://doi.org/10.1002/mrc.5409
    16. Jonathan Yong. POISE. 2024, 95-165. https://doi.org/10.1007/978-3-031-46684-7_3
    17. Jonathan Yong. NOAH. 2024, 167-273. https://doi.org/10.1007/978-3-031-46684-7_4
    18. Margherita Bazzoni, Rituraj Mishra, Jean‐Nicolas Dumez. Single‐Scan Ultraselective NMR Experiments with Preserved Sensitivity. Angewandte Chemie International Edition 2023, 62 (50) https://doi.org/10.1002/anie.202314598
    19. Margherita Bazzoni, Rituraj Mishra, Jean‐Nicolas Dumez. Single‐Scan Ultraselective NMR Experiments with Preserved Sensitivity. Angewandte Chemie 2023, 135 (50) https://doi.org/10.1002/ange.202314598
    20. Teodor Parella. The Role of Pulsed-field Gradients in Modern NMR Pulse Sequence Design. 2023, 1-41. https://doi.org/10.1039/BK9781839168062-00001
    21. Burkhard Luy. Fast Pulsing 2D NMR Methods. 2023, 60-83. https://doi.org/10.1039/BK9781839168062-00060
    22. J. R. J. Yong, Ēriks Kupče, T. D. W. Claridge. Multi-FID Detected 2D NMR. 2023, 84-114. https://doi.org/10.1039/BK9781839168062-00084
    23. K. A. Farley, R. Horst, M. R. M. Koos, G. S. Walker. Application of Fast 2D NMR Methods in the Pharmaceutical Industry. 2023, 311-346. https://doi.org/10.1039/BK9781839168062-00311
    24. Clément Praud, Marine P. M. Letertre, Arnab Dey, Jean-Nicolas Dumez, Patrick Giraudeau. Fast 2D NMR for Metabolomics. 2023, 377-414. https://doi.org/10.1039/BK9781839168062-00377
    25. Philippe Lesot, Olivier Lafon. Combining Fast 2D NMR Methods and Oriented Media. 2023, 441-475. https://doi.org/10.1039/BK9781839168062-00441
    26. Simon Sengupta, Philipp Schüler, Phil Liebing, Matthias Westerhausen. Synthesis of Sterically Encumbered Alkaline‐Earth Metal Amides Applying the In Situ Grignard Reagent Formation. Chemistry – A European Journal 2023, 29 (23) https://doi.org/10.1002/chem.202300035
    27. Benjamin E. Fener, Philipp Schüler, Helmar Görls, Phil Liebing, Matthias Westerhausen. Alkaline‐earth metal dimesitylphosphinites and their ether adducts – A structural study in solution and in the crystalline state. Zeitschrift für anorganische und allgemeine Chemie 2023, 649 (6-7) https://doi.org/10.1002/zaac.202200359
    28. Robert Stankey, Don Johnson, Brendan Duggan, David Mead, James La Clair. A Survey of Didemnin Depsipeptide Production in Tistrella. Marine Drugs 2023, 21 (2) , 56. https://doi.org/10.3390/md21020056
    29. Jonathan Farjon. Intrinsically quantitative 2D HSQC NMR: A tool for deciphering complex mixtures. 2023, 1-27. https://doi.org/10.1016/bs.arnmr.2023.08.002
    30. Jean-Nicolas Dumez. NMR methods for the analysis of mixtures. Chemical Communications 2022, 58 (100) , 13855-13872. https://doi.org/10.1039/D2CC05053F
    31. Simon Sengupta, Philipp Schüler, Helmar Görls, Phil Liebing, Sven Krieck, Matthias Westerhausen. In Situ Grignard Metalation Method for the Synthesis of Hauser Bases. Chemistry – A European Journal 2022, 28 (50) https://doi.org/10.1002/chem.202201359
    32. Steve Zaubitzer, Saustin Dongmo, Philipp Schüler, Sven Krieck, Florian Fiesinger, Daniel Gaissmaier, Matthias van den Borg, Timo Jacob, Matthias Westerhausen, Margret Wohlfahrt-Mehrens, Mario Marinaro. A Novel and Highly Efficient Indolyl‐Based Electrolyte for Mg Batteries. Energy Technology 2022, 10 (8) https://doi.org/10.1002/ente.202200440
    33. Philipp Schüler, Simon Sengupta, Steve Zaubitzer, Florian Fiesinger, Saustin Dongmo, Helmar Görls, Margret Wohlfahrt‐Mehrens, Matthias van den Borg, Daniel Gaissmaier, Sven Krieck, Mario Marinaro, Timo Jacob, Matthias Westerhausen. Suitability of Carbazolyl Hauser and Turbo‐Hauser Bases as Magnesium‐Based Electrolytes. European Journal of Inorganic Chemistry 2022, 2022 (17) https://doi.org/10.1002/ejic.202200149
    34. Célia Lhoste, Benjamin Lorandel, Clément Praud, Achille Marchand, Rituraj Mishra, Arnab Dey, Aurélie Bernard, Jean-Nicolas Dumez, Patrick Giraudeau. Ultrafast 2D NMR for the analysis of complex mixtures. Progress in Nuclear Magnetic Resonance Spectroscopy 2022, 130-131 , 1-46. https://doi.org/10.1016/j.pnmrs.2022.01.002
    35. Philipp Schüler, Sven Krieck, Helmar Görls, Phil Liebing, Matthias Westerhausen. Sterically shielded primary anilides of the alkaline-earth metals of the type (thf) n Ae(NH-Ar*) 2 (Ae = Mg, Ca, Sr, and Ba; Ar* = bulky aryl). Dalton Transactions 2022, 51 (21) , 8461-8471. https://doi.org/10.1039/D2DT01121B
    36. Yael Ben-Tal, Patrick J. Boaler, Harvey J.A. Dale, Ruth E. Dooley, Nicole A. Fohn, Yuan Gao, Andrés García-Domínguez, Katie M. Grant, Andrew M.R. Hall, Hannah L.D. Hayes, Maciej M. Kucharski, Ran Wei, Guy C. Lloyd-Jones. Mechanistic analysis by NMR spectroscopy: A users guide. Progress in Nuclear Magnetic Resonance Spectroscopy 2022, 129 , 28-106. https://doi.org/10.1016/j.pnmrs.2022.01.001
    37. Miles J. Mandel, Christoph Müller, Helmar Görls, Sven Krieck, Matthias Westerhausen. Metalation of Aryl‐bis(3‐alkyl‐5‐methylpyrazol‐1‐yl)‐ methane (Alkyl=Me, Ad; Aryl=Ph, C 6 H 4 ‐2−OH) with NaN(SiMe 3 ) 2 , KN(SiMe 3 ) 2 , and Ca{N(SiMe 3 ) 2 } 2. European Journal of Inorganic Chemistry 2022, 2022 (8) https://doi.org/10.1002/ejic.202101051
    38. Jens D. Haller, David L. Goodwin, Burkhard Luy. SORDOR pulses: expansion of the Böhlen–Bodenhausen scheme for low-power broadband magnetic resonance. Magnetic Resonance 2022, 3 (1) , 53-63. https://doi.org/10.5194/mr-3-53-2022
    39. Ēriks Kupče, Lucio Frydman, Andrew G. Webb, Jonathan R. J. Yong, Tim D. W. Claridge. Parallel nuclear magnetic resonance spectroscopy. Nature Reviews Methods Primers 2021, 1 (1) https://doi.org/10.1038/s43586-021-00024-3
    40. Fabian H. Sobotta, Maren T. Kuchenbrod, Franka V. Gruschwitz, Grit Festag, Peter Bellstedt, Stephanie Hoeppener, Johannes C. Brendel. Kontrollierbare Zeitverzögerung beim Aufplatzen von oxidationsempfindlichen, mittels PISA synthetisierten Polymersomen. Angewandte Chemie 2021, 133 (46) , 24921-24929. https://doi.org/10.1002/ange.202108928
    41. Fabian H. Sobotta, Maren T. Kuchenbrod, Franka V. Gruschwitz, Grit Festag, Peter Bellstedt, Stephanie Hoeppener, Johannes C. Brendel. Tuneable Time Delay in the Burst Release from Oxidation‐Sensitive Polymersomes Made by PISA. Angewandte Chemie International Edition 2021, 60 (46) , 24716-24723. https://doi.org/10.1002/anie.202108928
    42. Philipp Schüler, Helmar Görls, Sven Krieck, Matthias Westerhausen. One‐Step Synthesis and Schlenk‐Type Equilibrium of Cyclopentadienylmagnesium Bromides. Chemistry – A European Journal 2021, 27 (62) , 15508-15515. https://doi.org/10.1002/chem.202102636
    43. Jonathan R.J. Yong, Alexandar L. Hansen, Ēriks Kupče, Tim D.W. Claridge. Increasing sensitivity and versatility in NMR supersequences with new HSQC-based modules. Journal of Magnetic Resonance 2021, 329 , 107027. https://doi.org/10.1016/j.jmr.2021.107027
    44. Tamás Milán Nagy, Katalin E. Kövér, Ole W. Sørensen. NORD: NO Relaxation Delay NMR Spectroscopy. Angewandte Chemie 2021, 133 (24) , 13699-13702. https://doi.org/10.1002/ange.202102487
    45. Tamás Milán Nagy, Katalin E. Kövér, Ole W. Sørensen. NORD: NO Relaxation Delay NMR Spectroscopy. Angewandte Chemie International Edition 2021, 60 (24) , 13587-13590. https://doi.org/10.1002/anie.202102487
    46. Dariusz Gołowicz, Magdalena Kaźmierczak, Krzysztof Kazimierczuk. Benefits of time‐resolved nonuniform sampling in reaction monitoring: The case of aza‐Michael addition of benzylamine and acrylamide. Magnetic Resonance in Chemistry 2021, 59 (3) , 213-220. https://doi.org/10.1002/mrc.5105
    47. Karel Kouřil, Michel Gramberg, Michael Jurkutat, Hana Kouřilová, Benno Meier. A cryogen-free, semi-automated apparatus for bullet-dynamic nuclear polarization with improved resolution. Magnetic Resonance 2021, 2 (2) , 815-825. https://doi.org/10.5194/mr-2-815-2021
    48. Stephanie Watermann, Caroline Schmitt, Tobias Schneider, Thomas Hackl. Comparison of Regular, Pure Shift, and Fast 2D NMR Experiments for Determination of the Geographical Origin of Walnuts. Metabolites 2021, 11 (1) , 39. https://doi.org/10.3390/metabo11010039
    49. Mihajlo Novakovic, Ēriks Kupče, Andreas Oxenfarth, Marcos D. Battistel, Darón I. Freedberg, Harald Schwalbe, Lucio Frydman. Sensitivity enhancement of homonuclear multidimensional NMR correlations for labile sites in proteins, polysaccharides, and nucleic acids. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-19108-x
    50. Dariusz Gołowicz, Paweł Kasprzak, Vladislav Orekhov, Krzysztof Kazimierczuk. Fast time-resolved NMR with non-uniform sampling. Progress in Nuclear Magnetic Resonance Spectroscopy 2020, 116 , 40-55. https://doi.org/10.1016/j.pnmrs.2019.09.003
    51. Tim D.W. Claridge, Maksim Mayzel, Ēriks Kupče. Triplet NOAH supersequences optimised for small molecule structure characterisation. Magnetic Resonance in Chemistry 2019, 57 (11) , 946-952. https://doi.org/10.1002/mrc.4887
    52. Darcy C. Burns, Eugene P. Mazzola, William F. Reynolds. The role of computer-assisted structure elucidation (CASE) programs in the structure elucidation of complex natural products. Natural Product Reports 2019, 36 (6) , 919-933. https://doi.org/10.1039/C9NP00007K
    53. Martin R.M. Koos, Burkhard Luy. Polarization recovery during ASAP and SOFAST/ALSOFAST-type experiments. Journal of Magnetic Resonance 2019, 300 , 61-75. https://doi.org/10.1016/j.jmr.2018.12.014
    54. Johanna Becker, Martin R.M. Koos, David Schulze-Sünninghausen, Burkhard Luy. ASAP-HSQC-TOCSY for fast spin system identification and extraction of long-range couplings. Journal of Magnetic Resonance 2019, 300 , 76-83. https://doi.org/10.1016/j.jmr.2018.12.021
    55. James B. McAlpine, Shao-Nong Chen, Andrei Kutateladze, John B. MacMillan, Giovanni Appendino, Andersson Barison, Mehdi A. Beniddir, Maique W. Biavatti, Stefan Bluml, Asmaa Boufridi, Mark S. Butler, Robert J. Capon, Young H. Choi, David Coppage, Phillip Crews, Michael T. Crimmins, Marie Csete, Pradeep Dewapriya, Joseph M. Egan, Mary J. Garson, Grégory Genta-Jouve, William H. Gerwick, Harald Gross, Mary Kay Harper, Precilia Hermanto, James M. Hook, Luke Hunter, Damien Jeannerat, Nai-Yun Ji, Tyler A. Johnson, David G. I. Kingston, Hiroyuki Koshino, Hsiau-Wei Lee, Guy Lewin, Jie Li, Roger G. Linington, Miaomiao Liu, Kerry L. McPhail, Tadeusz F. Molinski, Bradley S. Moore, Joo-Won Nam, Ram P. Neupane, Matthias Niemitz, Jean-Marc Nuzillard, Nicholas H. Oberlies, Fernanda M. M. Ocampos, Guohui Pan, Ronald J. Quinn, D. Sai Reddy, Jean-Hugues Renault, José Rivera-Chávez, Wolfgang Robien, Carla M. Saunders, Thomas J. Schmidt, Christoph Seger, Ben Shen, Christoph Steinbeck, Hermann Stuppner, Sonja Sturm, Orazio Taglialatela-Scafati, Dean J. Tantillo, Robert Verpoorte, Bin-Gui Wang, Craig M. Williams, Philip G. Williams, Julien Wist, Jian-Min Yue, Chen Zhang, Zhengren Xu, Charlotte Simmler, David C. Lankin, Jonathan Bisson, Guido F. Pauli. The value of universally available raw NMR data for transparency, reproducibility, and integrity in natural product research. Natural Product Reports 2019, 36 (1) , 35-107. https://doi.org/10.1039/C7NP00064B
    56. Sandeep Kumar Mishra, N. Suryaprakash. Orchestrated approaches using pure shift NMR: Extraction of spectral parameters, ultra‐high resolution, and sensitivity enhancement. Magnetic Resonance in Chemistry 2018, 56 (10) , 893-909. https://doi.org/10.1002/mrc.4696
    57. Benjamin Görling, Wolfgang Bermel, Stefan Bräse, Burkhard Luy. Homonuclear decoupling by projection reconstruction. Magnetic Resonance in Chemistry 2018, 56 (10) , 1006-1020. https://doi.org/10.1002/mrc.4784
    58. Stefan Berger. A quarter of a century of SERF: The progress of an NMR pulse sequence and its application. Progress in Nuclear Magnetic Resonance Spectroscopy 2018, 108 , 74-114. https://doi.org/10.1016/j.pnmrs.2018.10.001
    59. Martina Palomino Schätzlein, Johanna Becker, David Schulze-Sünninghausen, Antonio Pineda-Lucena, José Raul Herance, Burkhard Luy. Rapid two-dimensional ALSOFAST-HSQC experiment for metabolomics and fluxomics studies: application to a 13C-enriched cancer cell model treated with gold nanoparticles. Analytical and Bioanalytical Chemistry 2018, 410 (11) , 2793-2804. https://doi.org/10.1007/s00216-018-0961-6
    60. Walter Becker, Nina Gubensäk, Klaus Zangger. Pure-Shift NMR. 2018, 1271-1288. https://doi.org/10.1007/978-3-319-28388-3_145
    61. Teodor Parella. NMR Spectroscopy, Applications, Small Molecule Structuring Strategies. 2018https://doi.org/10.1016/B978-0-12-409547-2.14257-X
    62. Ēriks Kupče, Tim D. W. Claridge. Molecular structure from a single NMR supersequence. Chemical Communications 2018, 54 (52) , 7139-7142. https://doi.org/10.1039/C8CC03296C
    63. Soumita Ghosh, Arjun Sengupta, Kousik Chandra. SOFAST-HMQC—an efficient tool for metabolomics. Analytical and Bioanalytical Chemistry 2017, 409 (29) , 6731-6738. https://doi.org/10.1007/s00216-017-0676-0
    64. Jonathan Farjon. How to face the low intrinsic sensitivity of 2D heteronuclear NMR with fast repetition techniques: go faster to go higher!. Magnetic Resonance in Chemistry 2017, 55 (10) , 883-892. https://doi.org/10.1002/mrc.4596
    65. Laetitia Rouger, Serge Akoka, Patrick Giraudeau. Optimized decoupling schemes in ultrafast HSQC experiments. Journal of Magnetic Resonance 2017, 283 , 89-95. https://doi.org/10.1016/j.jmr.2017.08.015
    66. Malin Reller, Svenja Wesp, Martin R. M. Koos, Michael Reggelin, Burkhard Luy. Biphasic Liquid Crystal and the Simultaneous Measurement of Isotropic and Anisotropic Parameters by Spatially Resolved NMR Spectroscopy. Chemistry – A European Journal 2017, 23 (54) , 13351-13359. https://doi.org/10.1002/chem.201702126
    67. Martin R. M. Koos, Hannes Feyrer, Burkhard Luy. Broadband RF‐amplitude‐dependent flip angle pulses with linear phase slope. Magnetic Resonance in Chemistry 2017, 55 (9) , 797-803. https://doi.org/10.1002/mrc.4593
    68. Matthias Findeisen, Hans Ullrich Siehl, Stefan Berger. COSY‐ und HSQC‐NMR‐Spektroskopie. Chemie in unserer Zeit 2017, 51 (4) , 264-271. https://doi.org/10.1002/ciuz.201700769
    69. David Schulze-Sünninghausen, Johanna Becker, Martin R.M. Koos, Burkhard Luy. Improvements, extensions, and practical aspects of rapid ASAP-HSQC and ALSOFAST-HSQC pulse sequences for studying small molecules at natural abundance. Journal of Magnetic Resonance 2017, 281 , 151-161. https://doi.org/10.1016/j.jmr.2017.05.012
    70. Walter Becker, Nina Gubensäk, Klaus Zangger. Pure-Shift NMR. 2017, 1-18. https://doi.org/10.1007/978-3-319-28275-6_145-1
    71. Toshihiko Sugiki, Naohiro Kobayashi, Toshimichi Fujiwara. Modern Technologies of Solution Nuclear Magnetic Resonance Spectroscopy for Three-dimensional Structure Determination of Proteins Open Avenues for Life Scientists. Computational and Structural Biotechnology Journal 2017, 15 , 328-339. https://doi.org/10.1016/j.csbj.2017.04.001
    72. Rakesh Sharma, Navdeep Gogna, Harpreet Singh, Kavita Dorai. Fast profiling of metabolite mixtures using chemometric analysis of a speeded-up 2D heteronuclear correlation NMR experiment. RSC Advances 2017, 7 (47) , 29860-29870. https://doi.org/10.1039/C7RA04032F
    73. André Fredi, Pau Nolis, Carlos Cobas, Gary E. Martin, Teodor Parella. Exploring the use of Generalized Indirect Covariance to reconstruct pure shift NMR spectra: Current Pros and Cons. Journal of Magnetic Resonance 2016, 266 , 16-22. https://doi.org/10.1016/j.jmr.2016.03.003
    74. Yulan Lin, Adonis Lupulescu, Lucio Frydman. Multidimensional J-driven NMR correlations by single-scan offset-encoded recoupling. Journal of Magnetic Resonance 2016, 265 , 33-44. https://doi.org/10.1016/j.jmr.2015.11.018
    75. S. Buda, M. Nawój, J. Mlynarski. Recent Advances in NMR Studies of Carbohydrates. 2016, 185-223. https://doi.org/10.1016/bs.arnmr.2016.04.002
    76. Jonas Kind, Lukas Kaltschnee, Martin Leyendecker, Christina M. Thiele. Distinction of trans–cis photoisomers with comparable optical properties in multiple-state photochromic systems – examining a molecule with three azobenzenes via in situ irradiation NMR spectroscopy. Chemical Communications 2016, 52 (84) , 12506-12509. https://doi.org/10.1039/C6CC06771A
    77. I. E. Ndukwe, A. Shchukina, K. Kazimierczuk, C. P. Butts. Rapid and safe ASAP acquisition with EXACT NMR. Chemical Communications 2016, 52 (86) , 12769-12772. https://doi.org/10.1039/C6CC07140F
    78. Steffen J. Glaser, Ugo Boscain, Tommaso Calarco, Christiane P. Koch, Walter Köckenberger, Ronnie Kosloff, Ilya Kuprov, Burkhard Luy, Sophie Schirmer, Thomas Schulte-Herbrüggen, Dominique Sugny, Frank K. Wilhelm. Training Schrödinger’s cat: quantum optimal control. The European Physical Journal D 2015, 69 (12) https://doi.org/10.1140/epjd/e2015-60464-1
    79. Serge Akoka, Patrick Giraudeau. Fast hybrid multi‐dimensional NMR methods based on ultrafast 2D NMR. Magnetic Resonance in Chemistry 2015, 53 (11) , 986-994. https://doi.org/10.1002/mrc.4237
    80. Adrien Le Guennec, Jean‐Nicolas Dumez, Patrick Giraudeau, Stefano Caldarelli. Resolution‐enhanced 2D NMR of complex mixtures by non‐uniform sampling. Magnetic Resonance in Chemistry 2015, 53 (11) , 913-920. https://doi.org/10.1002/mrc.4258
    81. Johanna Becker, Burkhard Luy. CLIP–ASAP‐HSQC for fast and accurate extraction of one‐bond couplings from isotropic and partially aligned molecules. Magnetic Resonance in Chemistry 2015, 53 (11) , 878-885. https://doi.org/10.1002/mrc.4276
    82. Patrick Giraudeau. MRC special issue on fast multi‐dimensional NMR methods. Magnetic Resonance in Chemistry 2015, 53 (11) , 877-877. https://doi.org/10.1002/mrc.4309
    83. J. Kind, C.M. Thiele. Still shimming or already measuring? – Quantitative reaction monitoring for small molecules on the sub minute timescale by NMR. Journal of Magnetic Resonance 2015, 260 , 109-115. https://doi.org/10.1016/j.jmr.2015.09.008
    84. Simon Glanzer, Klaus Zangger. Uniform Reduction of Scalar Coupling by Real‐Time Homonuclear J‐Downscaled NMR. ChemPhysChem 2015, 16 (15) , 3313-3317. https://doi.org/10.1002/cphc.201500640
    85. Tangi Jézéquel, Catherine Deborde, Mickaël Maucourt, Vanessa Zhendre, Annick Moing, Patrick Giraudeau. Absolute quantification of metabolites in tomato fruit extracts by fast 2D NMR. Metabolomics 2015, 11 (5) , 1231-1242. https://doi.org/10.1007/s11306-015-0780-0
    86. Johannes Mauhart, Simon Glanzer, Peyman Sakhaii, Wolfgang Bermel, Klaus Zangger. Faster and cleaner real-time pure shift NMR experiments. Journal of Magnetic Resonance 2015, 259 , 207-215. https://doi.org/10.1016/j.jmr.2015.08.011
    87. Klaus Zangger. Pure shift NMR. Progress in Nuclear Magnetic Resonance Spectroscopy 2015, 86-87 , 1-20. https://doi.org/10.1016/j.pnmrs.2015.02.002
    88. . Organische Chemie 2014. Nachrichten aus der Chemie 2015, 266-305. https://doi.org/10.1002/nadc.201590092
    89. Laura Castañar, Teodor Parella. Recent Advances in Small Molecule NMR: Improved HSQC and HSQMBC Experiments. 2015, 163-232. https://doi.org/10.1016/bs.arnmr.2014.10.004
    90. Lokesh Lokesh, N. Suryaprakash. Sensitivity enhancement in slice-selective NMR experiments through polarization sharing. Chem. Commun. 2014, 50 (62) , 8550-8553. https://doi.org/10.1039/C4CC02978J

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2014, 136, 4, 1242–1245
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja411588d
    Published January 13, 2014
    Copyright © 2014 American Chemical Society

    Article Views

    3953

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.