Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Baulamycins A and B, Broad-Spectrum Antibiotics Identified as Inhibitors of Siderophore Biosynthesis in Staphylococcus aureus and Bacillus anthracis
My Activity

Figure 1Loading Img
    ADDITION/CORRECTION. This article has been corrected. View the notice.
    Article

    Baulamycins A and B, Broad-Spectrum Antibiotics Identified as Inhibitors of Siderophore Biosynthesis in Staphylococcus aureus and Bacillus anthracis
    Click to copy article linkArticle link copied!

    View Author Information
    Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, Michigan 48109, United States
    Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
    § Unidad Estrategica de Bioprospección, Instituto Nacional de Biodiversidad (INBio), Santo Domingo de Heredia, Costa Rica and CIPRONA, Escuela de Química, Universidad de Costa Rica, 2060 San Pedro, Costa Rica
    Departments of Medicinal Chemistry and Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2014, 136, 4, 1579–1586
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja4115924
    Published January 8, 2014
    Copyright © 2014 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Siderophores are high-affinity iron chelators produced by microorganisms and frequently contribute to the virulence of human pathogens. Targeted inhibition of the biosynthesis of siderophores staphyloferrin B of Staphylococcus aureus and petrobactin of Bacillus anthracis hold considerable potential as a single or combined treatment for methicillin-resistant S. aureus (MRSA) and anthrax infection, respectively. The biosynthetic pathways for both siderophores involve a nonribosomal peptide synthetase independent siderophore (NIS) synthetase, including SbnE in staphyloferrin B and AsbA in petrobactin. In this study, we developed a biochemical assay specific for NIS synthetases to screen for inhibitors of SbnE and AsbA against a library of marine microbial-derived natural product extracts (NPEs). Analysis of the NPE derived from Streptomyces tempisquensis led to the isolation of the novel antibiotics baulamycins A (BmcA, 6) and B (BmcB, 7). BmcA and BmcB displayed in vitro activity with IC50 values of 4.8 μM and 19 μM against SbnE and 180 μM and 200 μM against AsbA, respectively. Kinetic analysis showed that the compounds function as reversible competitive enzyme inhibitors. Liquid culture studies with S. aureus, B. anthracis, E. coli, and several other bacterial pathogens demonstrated the capacity of these natural products to penetrate bacterial barriers and inhibit growth of both Gram-positive and Gram-negative species. These studies provide proof-of-concept that natural product inhibitors targeting siderophore virulence factors can provide access to novel broad-spectrum antibiotics, which may serve as important leads for the development of potent anti-infective agents

    Copyright © 2014 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Experimental details, 1D and 2D NMR spectral data, MS fragmentation patterns, high-throughput screening campaigns, phylogenetic analysis, kinetic analysis, and bioactivity data of 6 and 7. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 75 publications.

    1. Tabbetha J. Bohac, Luting Fang, Victoria S. Banas, Daryl E. Giblin, Timothy A. Wencewicz. Synthetic Mimics of Native Siderophores Disrupt Iron Trafficking in Acinetobacter baumannii. ACS Infectious Diseases 2021, 7 (8) , 2138-2151. https://doi.org/10.1021/acsinfecdis.1c00119
    2. Jieyu Tang, Yingchen Ju, Jingwei Zhou, Junsong Guo, Qiong Gu, Jun Xu, Huihao Zhou. Structural and Biochemical Characterization of SbnC as a Representative Type B Siderophore Synthetase. ACS Chemical Biology 2020, 15 (10) , 2731-2740. https://doi.org/10.1021/acschembio.0c00523
    3. Katherine M. Hoffmann, Eliana S. Goncuian, Kimya L. Karimi, Caroline R. Amendola, Yasi Mojab, Kaitlin M. Wood, Gregory A. Prussia, Jay Nix, Margaret Yamamoto, Kiera Lathan, Iris W. Orion. Cofactor Complexes of DesD, a Model Enzyme in the Virulence-related NIS Synthetase Family. Biochemistry 2020, 59 (37) , 3427-3437. https://doi.org/10.1021/acs.biochem.9b00899
    4. Srinivas Abbina, Arshdeep Gill, Snehamol Mathew, Usama Abbasi, Jayachandran N. Kizhakkedathu. Polyglycerol-Based Macromolecular Iron Chelator Adjuvants for Antibiotics To Treat Drug-Resistant Bacteria. ACS Applied Materials & Interfaces 2020, 12 (34) , 37834-37844. https://doi.org/10.1021/acsami.0c06501
    5. Jonathan R. Thielman, David H. Sherman, Robert M. Williams. Stereoselective Synthesis of Baulamycin A. The Journal of Organic Chemistry 2020, 85 (5) , 3812-3823. https://doi.org/10.1021/acs.joc.9b03443
    6. Andrew D. Steele, Guillaume Ernouf, Young Eun Lee, and William M. Wuest . Diverted Total Synthesis of the Baulamycins and Analogues Reveals an Alternate Mechanism of Action. Organic Letters 2018, 20 (4) , 1126-1129. https://doi.org/10.1021/acs.orglett.8b00054
    7. Sandip Sengupta, Munhyung Bae, Dong-Chan Oh, Uttam Dash, Hak Joong Kim, Woon Young Song, Injae Shin, and Taebo Sim . Structural Revision of Baulamycin A and Structure–Activity Relationships of Baulamycin A Derivatives. The Journal of Organic Chemistry 2017, 82 (24) , 12947-12966. https://doi.org/10.1021/acs.joc.7b01719
    8. Paula Lorenzo, Craig P. Butts, Eddie L. Myers, and Varinder K. Aggarwal . The Story behind “Synergy of Synthesis, Computation, and NMR Reveals Correct Baulamycin Structures”. Biochemistry 2017, 56 (47) , 6177-6178. https://doi.org/10.1021/acs.biochem.7b00994
    9. Sandip Guchhait, Shamba Chatterjee, Ravi Sankar Ampapathi, and Rajib Kumar Goswami . Total Synthesis of Reported Structure of Baulamycin A and Its Congeners. The Journal of Organic Chemistry 2017, 82 (5) , 2414-2435. https://doi.org/10.1021/acs.joc.6b02838
    10. Julia S. Martín del Campo, Nancy Vogelaar, Karishma Tolani, Karina Kizjakina, Kim Harich, and Pablo Sobrado . Inhibition of the Flavin-Dependent Monooxygenase Siderophore A (SidA) Blocks Siderophore Biosynthesis and Aspergillus fumigatus Growth. ACS Chemical Biology 2016, 11 (11) , 3035-3042. https://doi.org/10.1021/acschembio.6b00666
    11. Tatsuya Nakamura, Kei Kubota, Takanori Ieki, and Seijiro Hosokawa . Stereoselective Alkylation of the Vinylketene Silyl N,O-Acetal and Its Application to the Synthesis of Mycocerosic Acid. Organic Letters 2016, 18 (1) , 132-135. https://doi.org/10.1021/acs.orglett.5b03422
    12. Julie L. H. Madsen, Timothy C. Johnstone, and Elizabeth M. Nolan . Chemical Synthesis of Staphyloferrin B Affords Insight into the Molecular Structure, Iron Chelation, and Biological Activity of a Polycarboxylate Siderophore Deployed by the Human Pathogen Staphylococcus aureus. Journal of the American Chemical Society 2015, 137 (28) , 9117-9127. https://doi.org/10.1021/jacs.5b04557
    13. Fangchao Cui, Rongsen Fan, Dangfeng Wang, Jianrong Li, Tingting Li. Research progress on iron uptake pathways and mechanisms of foodborne microorganisms and their application in the food sector. Critical Reviews in Food Science and Nutrition 2024, 64 (24) , 8892-8910. https://doi.org/10.1080/10408398.2023.2204491
    14. Stephen Dela Ahator, Kristin Hegstad, Christian S. Lentz, Mona Johannessen, . Deciphering Staphylococcus aureus– host dynamics using dual activity-based protein profiling of ATP-interacting proteins. mSystems 2024, 9 (5) https://doi.org/10.1128/msystems.00179-24
    15. Namkyoung Kim, Sandip Sengupta, Jiwon Lee, Uttam Dash, Soojeung Kim, Hak Joong Kim, Chiman Song, Taebo Sim. Synthesis and antibacterial activities of baulamycin A inspired derivatives. European Journal of Medicinal Chemistry 2023, 259 , 115592. https://doi.org/10.1016/j.ejmech.2023.115592
    16. Saurabh Gupta, Kamaldeep Paul. Membrane-active substituted triazines as antibacterial agents against Staphylococcus aureus with potential for low drug resistance and broad activity. European Journal of Medicinal Chemistry 2023, 258 , 115551. https://doi.org/10.1016/j.ejmech.2023.115551
    17. Jinhui Li, Viviana Monje-Galvan. In Vitro and In Silico Studies of Antimicrobial Saponins: A Review. Processes 2023, 11 (10) , 2856. https://doi.org/10.3390/pr11102856
    18. Kay Yeung, Varinder K. Aggarwal. Iterative Homologation of Boronic Esters: Assembly Line Synthesis. 2023, 549-574. https://doi.org/10.1002/9783527830237.ch14
    19. Pham Thanh Binh, Kieu Thi Phuong Linh, Vu Thanh Trung, Vu Thi Quyen, Nguyen Viet Phong, Nguyen Phuong Thao, Do Cong Thung, Nguyen Hung Huy, Nguyen Hoai Nam, Nguyen Van Thanh. Structural elucidation of two new polypropionates from the marine slug Paromoionchis tumidus by spectroscopic analyses and DFT calculations. Journal of Molecular Structure 2023, 1277 , 134841. https://doi.org/10.1016/j.molstruc.2022.134841
    20. Thach N. Tu, Manfred Scheer. A novel crystalline template for the structural determination of flexible chain compounds of nanoscale length. Chem 2023, 9 (1) , 227-241. https://doi.org/10.1016/j.chempr.2022.10.016
    21. Agnieszka Październiok‐Holewa, Sebastian Stecko. Saturated Heterocycles as Chiral Auxiliaries. 2022, 43-86. https://doi.org/10.1002/9783527834204.ch3
    22. Shou-Mao Shen, Giovanni Appendino, Yue-Wei Guo. Pitfalls in the structural elucidation of small molecules. A critical analysis of a decade of structural misassignments of marine natural products. Natural Product Reports 2022, 39 (9) , 1803-1832. https://doi.org/10.1039/D2NP00023G
    23. Kay Yeung, Rory C. Mykura, Varinder K. Aggarwal. Lithiation–borylation methodology in the total synthesis of natural products. Nature Synthesis 2022, 1 (2) , 117-126. https://doi.org/10.1038/s44160-021-00012-1
    24. Conxita Avila, Carlos Angulo-Preckler. A Minireview on Biodiscovery in Antarctic Marine Benthic Invertebrates. Frontiers in Marine Science 2021, 8 https://doi.org/10.3389/fmars.2021.686477
    25. Zhiteng Luo, Siting Luo, Yingchen Ju, Peng Ding, Jun Xu, Qiong Gu, Huihao Zhou. Structural insights into the ligand recognition and catalysis of the key aminobutanoyltransferase CntL in staphylopine biosynthesis. The FASEB Journal 2021, 35 (5) https://doi.org/10.1096/fj.202002287RR
    26. Debobrata Paul, Ashis Kundu, Sanu Saha, Rajib Kumar Goswami. Total synthesis: the structural confirmation of natural products. Chemical Communications 2021, 57 (27) , 3307-3322. https://doi.org/10.1039/D1CC00241D
    27. Xiao-Yan Wang, Jian-Yu Yang, Yi-Ting Wang, Hui-Chao Zhang, Ming-Li Chen, Ting Yang, Jian-Hua Wang. M13 phage-based nanoprobe for SERS detection and inactivation of Staphylococcus aureus. Talanta 2021, 221 , 121668. https://doi.org/10.1016/j.talanta.2020.121668
    28. Santosh Kumar Verma, Rameshwari Verma, Fan Xue, Piyush Kumar Thakur, Y.R. Girish, K.P. Rakesh. Antibacterial activities of sulfonyl or sulfonamide containing heterocyclic derivatives and its structure-activity relationships (SAR) studies: A critical review. Bioorganic Chemistry 2020, 105 , 104400. https://doi.org/10.1016/j.bioorg.2020.104400
    29. Adrian Demeritte, William M. Wuest. A look around the West Indies: The spices of life are secondary metabolites. Bioorganic & Medicinal Chemistry 2020, 28 (23) , 115792. https://doi.org/10.1016/j.bmc.2020.115792
    30. Francisco Javier Álvarez-Martínez, Enrique Barrajón-Catalán, Vicente Micol. Tackling Antibiotic Resistance with Compounds of Natural Origin: A Comprehensive Review. Biomedicines 2020, 8 (10) , 405. https://doi.org/10.3390/biomedicines8100405
    31. Brice A. P. Wilson, Christopher C. Thornburg, Curtis J. Henrich, Tanja Grkovic, Barry R. O'Keefe. Creating and screening natural product libraries. Natural Product Reports 2020, 37 (7) , 893-918. https://doi.org/10.1039/C9NP00068B
    32. Martin Dauner, Arne Skerra. Scavenging Bacterial Siderophores with Engineered Lipocalin Proteins as an Alternative Antimicrobial Strategy. ChemBioChem 2020, 21 (5) , 601-606. https://doi.org/10.1002/cbic.201900564
    33. Marialaura Marchetti, Omar De Bei, Stefano Bettati, Barbara Campanini, Sandra Kovachka, Eleonora Gianquinto, Francesca Spyrakis, Luca Ronda. Iron Metabolism at the Interface between Host and Pathogen: From Nutritional Immunity to Antibacterial Development. International Journal of Molecular Sciences 2020, 21 (6) , 2145. https://doi.org/10.3390/ijms21062145
    34. Hao Liu, Sihui Long, K.P. Rakesh, Gao-Feng Zha. Structure-activity relationships (SAR) of triazine derivatives: Promising antimicrobial agents. European Journal of Medicinal Chemistry 2020, 185 , 111804. https://doi.org/10.1016/j.ejmech.2019.111804
    35. Lyanne Gómez-Rodríguez, Pamela J. Schultz, Giselle Tamayo-Castillo, Garry D. Dotson, David H. Sherman, Ashootosh Tripathi. Adipostatins E-J, new potent antimicrobials identified as inhibitors of coenzyme-A biosynthesis. Tetrahedron Letters 2020, 61 (5) , 151469. https://doi.org/10.1016/j.tetlet.2019.151469
    36. Marta Ribeiro, Manuel Simões. Advances in the antimicrobial and therapeutic potential of siderophores. Environmental Chemistry Letters 2019, 17 (4) , 1485-1494. https://doi.org/10.1007/s10311-019-00887-9
    37. Jieyu Tang, Yingchen Ju, Qiong Gu, Jun Xu, Huihao Zhou. Structural Insights into Substrate Recognition and Activity Regulation of the Key Decarboxylase SbnH in Staphyloferrin B Biosynthesis. Journal of Molecular Biology 2019, 431 (24) , 4868-4881. https://doi.org/10.1016/j.jmb.2019.10.009
    38. Enhui Ji, Haiwen Meng, Yue Zheng, Velayudham Ramadoss, Yahui Wang. Copper‐Catalyzed Stereospecific Hydroboration of Internal Allylic Alcohols. European Journal of Organic Chemistry 2019, 2019 (44) , 7367-7371. https://doi.org/10.1002/ejoc.201901435
    39. Man Xu, Piye Wu, Fan Shen, Jiayou Ji, K.P. Rakesh. Chalcone derivatives and their antibacterial activities: Current development. Bioorganic Chemistry 2019, 91 , 103133. https://doi.org/10.1016/j.bioorg.2019.103133
    40. Brigid S. Conroy, Jason C. Grigg, Maxim Kolesnikov, L. Daniela Morales, Michael E. P. Murphy. Staphylococcus aureus heme and siderophore-iron acquisition pathways. BioMetals 2019, 32 (3) , 409-424. https://doi.org/10.1007/s10534-019-00188-2
    41. Marta Ribeiro, Manuel Simões. Siderophores: A Novel Approach to Fight Antimicrobial Resistance. 2019, 99-120. https://doi.org/10.1007/978-3-030-04675-0_5
    42. Akio Makishima. Protein and Enzyme-Related Topics. 2019, 131-137. https://doi.org/10.1016/B978-0-12-817054-0.00011-4
    43. Maarten L. De Mol, Nico Snoeck, Sofie L. De Maeseneire, Wim K. Soetaert. Hidden antibiotics: Where to uncover?. Biotechnology Advances 2018, 36 (8) , 2201-2218. https://doi.org/10.1016/j.biotechadv.2018.10.008
    44. Catarina Dias, João P. Pais, Rafael Nunes, Maria-Teresa Blázquez-Sánchez, Joaquim T. Marquês, Andreia F. Almeida, Patrícia Serra, Nuno M. Xavier, Diogo Vila-Viçosa, Miguel Machuqueiro, Ana S. Viana, Alice Martins, Maria S. Santos, Ana Pelerito, Ricardo Dias, Rogério Tenreiro, Maria C. Oliveira, Marialessandra Contino, Nicola A. Colabufo, Rodrigo F. M. de Almeida, Amélia P. Rauter. Sugar-based bactericides targeting phosphatidylethanolamine-enriched membranes. Nature Communications 2018, 9 (1) https://doi.org/10.1038/s41467-018-06488-4
    45. Daniel C. Bailey, Brian P. Buckley, Mikhail V. Chernov, Andrew M. Gulick. Development of a High-Throughput Biochemical Assay to Screen for Inhibitors of Aerobactin Synthetase IucA. SLAS Discovery 2018, 23 (10) , 1070-1082. https://doi.org/10.1177/2472555218787140
    46. Yasser Hussein Eissa Mohammed, H.M. Manukumar, K.P. Rakesh, C.S. Karthik, P. Mallu, Hua-Li Qin. Vision for medicine: Staphylococcus aureus biofilm war and unlocking key's for anti-biofilm drug development. Microbial Pathogenesis 2018, 123 , 339-347. https://doi.org/10.1016/j.micpath.2018.07.002
    47. Cassandra S. Carroll, Margo M. Moore. Ironing out siderophore biosynthesis: a review of non-ribosomal peptide synthetase (NRPS)-independent siderophore synthetases. Critical Reviews in Biochemistry and Molecular Biology 2018, 53 (4) , 356-381. https://doi.org/10.1080/10409238.2018.1476449
    48. Akriti Srivastava, Kirana D. Veeranna, Sundarababu Baskaran. Heterocyclic Chiral Auxiliaries in Total Synthesis of Natural Products. 2018, 253-310. https://doi.org/10.1007/7081_2018_26
    49. Lara Rajeev. Antibiotic Discovery. Materials and Methods 2018, 8 https://doi.org/10.13070/mm.en.8.2671
    50. Ursula Bilitewski, Joshua A. V. Blodgett, Anne‐Kathrin Duhme‐Klair, Sabrina Dallavalle, Sabine Laschat, Anne Routledge, Rainer Schobert. Chemische und biologische Aspekte von “Nutritional Immunity” – Perspektiven für neue Antiinfektiva mit Fokus auf bakterielle Eisenaufnahmesysteme. Angewandte Chemie 2017, 129 (46) , 14552-14575. https://doi.org/10.1002/ange.201701586
    51. Ursula Bilitewski, Joshua A. V. Blodgett, Anne‐Kathrin Duhme‐Klair, Sabrina Dallavalle, Sabine Laschat, Anne Routledge, Rainer Schobert. Chemical and Biological Aspects of Nutritional Immunity—Perspectives for New Anti‐Infectives that Target Iron Uptake Systems. Angewandte Chemie International Edition 2017, 56 (46) , 14360-14382. https://doi.org/10.1002/anie.201701586
    52. A. K. Hagan, A. Tripathi, D. Berger, D. H. Sherman, P. C. Hanna, . Petrobactin Is Exported from Bacillus anthracis by the RND-Type Exporter ApeX. mBio 2017, 8 (5) https://doi.org/10.1128/mBio.01238-17
    53. Srinu Paladugu, Prathama S. Mainkar, Srivari Chandrasekhar. Synthesis of complete carbon framework of baulamycin A. Tetrahedron Letters 2017, 58 (28) , 2784-2787. https://doi.org/10.1016/j.tetlet.2017.06.011
    54. Severin K. Thompson, Thomas R. Hoye. Molecular structure assignment simplified. Nature 2017, 547 (7664) , 410-411. https://doi.org/10.1038/547410a
    55. Jingjing Wu, Paula Lorenzo, Siying Zhong, Muhammad Ali, Craig P. Butts, Eddie L. Myers, Varinder K. Aggarwal. Synergy of synthesis, computation and NMR reveals correct baulamycin structures. Nature 2017, 547 (7664) , 436-440. https://doi.org/10.1038/nature23265
    56. Timothy A. Wencewicz, Marvin J. Miller. Sideromycins as Pathogen-Targeted Antibiotics. 2017, 151-183. https://doi.org/10.1007/7355_2017_19
    57. Timothy A. Wencewicz. New antibiotics from Nature’s chemical inventory. Bioorganic & Medicinal Chemistry 2016, 24 (24) , 6227-6252. https://doi.org/10.1016/j.bmc.2016.09.014
    58. Briana R. Wilson, Alexander R. Bogdan, Masaki Miyazawa, Kazunori Hashimoto, Yoshiaki Tsuji. Siderophores in Iron Metabolism: From Mechanism to Therapy Potential. Trends in Molecular Medicine 2016, 22 (12) , 1077-1090. https://doi.org/10.1016/j.molmed.2016.10.005
    59. Breanne M. Head, Ethan Rubinstein, Adrienne F. A. Meyers. Alternative pre-approved and novel therapies for the treatment of anthrax. BMC Infectious Diseases 2016, 16 (1) https://doi.org/10.1186/s12879-016-1951-y
    60. A.K. Hagan, P.E. Carlson, P.C. Hanna. Flying under the radar: The non‐canonical biochemistry and molecular biology of petrobactin from Bacillus anthracis. Molecular Microbiology 2016, 102 (2) , 196-206. https://doi.org/10.1111/mmi.13465
    61. Ashootosh Tripathi, Si-Sun Choi, David H Sherman, Eung-Soo Kim. Thioesterase domain swapping of a linear polyketide tautomycetin with a macrocyclic polyketide pikromycin in Streptomyces sp. CK4412. Journal of Industrial Microbiology and Biotechnology 2016, 43 (8) , 1189-1193. https://doi.org/10.1007/s10295-016-1790-2
    62. Mark G. Moloney. Natural Products as a Source for Novel Antibiotics. Trends in Pharmacological Sciences 2016, 37 (8) , 689-701. https://doi.org/10.1016/j.tips.2016.05.001
    63. Andrea Gualandi, Luca Mengozzi, Elisabetta Manoni, Pier Giorgio Cozzi. From QCA (Quantum Cellular Automata) to Organocatalytic Reactions with Stabilized Carbenium Ions. The Chemical Record 2016, 16 (3) , 1228-1243. https://doi.org/10.1002/tcr.201500299
    64. Sung Ryeol Park, Ashootosh Tripathi, Jianfeng Wu, Pamela J. Schultz, Isaiah Yim, Thomas J. McQuade, Fengan Yu, Carl-Johan Arevang, Abraham Y. Mensah, Giselle Tamayo-Castillo, Chuanwu Xi, David H. Sherman. Discovery of cahuitamycins as biofilm inhibitors derived from a convergent biosynthetic pathway. Nature Communications 2016, 7 (1) https://doi.org/10.1038/ncomms10710
    65. Jean Tyrrell, Máire Callaghan. Iron acquisition in the cystic fibrosis lung and potential for novel therapeutic strategies. Microbiology 2016, 162 (2) , 191-205. https://doi.org/10.1099/mic.0.000220
    66. Tomáš Pluháček, Karel Lemr, Dipankar Ghosh, David Milde, Jiří Novák, Vladimír Havlíček. Characterization of microbial siderophores by mass spectrometry. Mass Spectrometry Reviews 2016, 35 (1) , 35-47. https://doi.org/10.1002/mas.21461
    67. Maya A. Farha, Eric D. Brown. Strategies for target identification of antimicrobial natural products. Natural Product Reports 2016, 33 (5) , 668-680. https://doi.org/10.1039/C5NP00127G
    68. John W. Blunt, Brent R. Copp, Robert A. Keyzers, Murray H. G. Munro, Michèle R. Prinsep. Marine natural products. Natural Product Reports 2016, 33 (3) , 382-431. https://doi.org/10.1039/C5NP00156K
    69. . References. 2015, 421-454. https://doi.org/10.1128/9781555819316.refs
    70. Andrew N. Lowell, Nicholas Santoro, Steven M. Swaney, Thomas J. McQuade, Pamela J. Schultz, Martha J. Larsen, David H. Sherman. Microscale Adaptation of In Vitro Transcription/Translation for High‐Throughput Screening of Natural Product Extract Libraries. Chemical Biology & Drug Design 2015, 86 (6) , 1331-1338. https://doi.org/10.1111/cbdd.12614
    71. Micheal L. Tuntland, Nina M. Wolf, Leslie W.-M. Fung. Differences in the purification and solution properties of PurC gene products from Streptococcus pneumoniae and Bacillus anthracis. Protein Expression and Purification 2015, 114 , 143-148. https://doi.org/10.1016/j.pep.2015.05.016
    72. Audrey L. Lamb. Breaking a pathogen's iron will: Inhibiting siderophore production as an antimicrobial strategy. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2015, 1854 (8) , 1054-1070. https://doi.org/10.1016/j.bbapap.2015.05.001
    73. Jessica R. Sheldon, David E. Heinrichs, . Recent developments in understanding the iron acquisition strategies of gram positive pathogens. FEMS Microbiology Reviews 2015, 39 (4) , 592-630. https://doi.org/10.1093/femsre/fuv009
    74. F. Reen, José Gutiérrez-Barranquero, Alan Dobson, Claire Adams, Fergal O'Gara. Emerging Concepts Promising New Horizons for Marine Biodiscovery and Synthetic Biology. Marine Drugs 2015, 13 (5) , 2924-2954. https://doi.org/10.3390/md13052924
    75. Gerard D. Wright. Something old, something new: revisiting natural products in antibiotic drug discovery. Canadian Journal of Microbiology 2014, 60 (3) , 147-154. https://doi.org/10.1139/cjm-2014-0063

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2014, 136, 4, 1579–1586
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja4115924
    Published January 8, 2014
    Copyright © 2014 American Chemical Society

    Article Views

    5490

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.