ACS Publications. Most Trusted. Most Cited. Most Read
The Major G-Quadruplex Formed in the Human BCL-2 Proximal Promoter Adopts a Parallel Structure with a 13-nt Loop in K+ Solution
My Activity

Figure 1Loading Img
  • Open Access
Communication

The Major G-Quadruplex Formed in the Human BCL-2 Proximal Promoter Adopts a Parallel Structure with a 13-nt Loop in K+ Solution
Click to copy article linkArticle link copied!

View Author Information
‡ § ∥ † Department of Pharmacology and Toxicology, College of Pharmacy, Department of Chemistry, §BIO5 Institute, The Arizona Cancer Center, University of Arizona, 1703 East Mabel Street, Tucson, Arizona 85721, United States
Open PDFSupporting Information (1)

Journal of the American Chemical Society

Cite this: J. Am. Chem. Soc. 2014, 136, 5, 1750–1753
Click to copy citationCitation copied!
https://doi.org/10.1021/ja4118945
Published January 22, 2014

Copyright © 2014 American Chemical Society. This publication is licensed under these Terms of Use.

Abstract

Click to copy section linkSection link copied!

The human BCL-2 gene contains a 39-bp GC-rich region upstream of the P1 promoter that has been shown to be critically involved in the regulation of BCL-2 gene expression. Inhibition of BCL-2 expression can decrease cellular proliferation and enhance the efficacy of chemotherapy. Here we report the major G-quadruplex formed in the Pu39 G-rich strand in this BCL-2 promoter region. The 1245G4 quadruplex adopts a parallel structure with one 13-nt and two 1-nt chain-reversal loops. The 1245G4 quadruplex involves four nonsuccessive G-runs, I, II, IV, V, unlike the previously reported bcl2 MidG4 quadruplex formed on the central four G-runs. The parallel 1245G4 quadruplex with the 13-nt loop, unexpectedly, appears to be more stable than the mixed parallel/antiparallel MidG4. Parallel-stranded structures with two 1-nt loops and one variable-length middle loop are found to be prevalent in the promoter G-quadruplexes; the variable middle loop is suggested to determine the specific overall structure and potential ligand recognition site. A limit of 7 nt in loop length is used in all quadruplex-predicting software. Thus, the formation and high stability of the 1245G4 quadruplex with a 13-nt loop is significant. The presence of two distinct interchangeable G-quadruplexes in the overlapping region of the BCL-2 promoter is intriguing, suggesting a novel mechanism for gene transcriptional regulation and ligand modulation.

Copyright © 2014 American Chemical Society

The BCL-2 (B-cell CLL/lymphoma 2) gene product is a mitochondrial membrane protein that plays an essential role in cell survival; it functions as an inhibitor of programmed cell death, or apoptosis. (1-3) BCL-2 has been found to be aberrantly overexpressed in a wide range of human tumors. (4-9) Elevation of BCL-2 levels has also been associated with poor prognosis and has been found to interfere with the traditional cancer therapeutics. (10, 11) Inhibition of BCL-2 expression by small molecules, (12, 13) peptidomimetics, (14) or antisense oligonucleotides (15, 16) has been shown to reduce cellular proliferation and to enhance chemotherapy efficacy. It has been shown that gene amplification or translocation can be equally common mechanisms causing BCL-2 overexpression in human cancer cells; (17) thus, effective modulation of BCL-2 expression offers promise for cancer therapeutics.

The human BCL-2 gene has two promoters, P1 and P2. The major promoter, P1, is located 1386–1423 base pairs upstream of the translation start site. (18) This is a TATA-less, GC-rich promoter that contains multiple transcriptional start sites and is positioned within a nuclease hypersensitive site. The 5′-end of the P1 promoter has been implicated in playing a major role in the regulation of BCL-2 transcription, (19) including a 39-bp GC-rich element that is located 57–19 base pairs upstream of the P1 promoter. Multiple transcription factors have been reported to bind to or regulate BCL-2 gene expression through this region, such as Sp1, (18) WT1, (20) E2F, (21) and NGF. (22) We have shown that the guanine-rich strand of the DNA in this region can form G-quadruplex structures, which can be stabilized by G-quadruplex-interactive agents. (23, 24) A second G-quadruplex-forming sequence has been found in the BCL-2 P1 promoter region; however, its stability appears to be much lower. (25) The 39-mer G-rich strand of this GC-rich element in the BCL-2 promoter region contains six runs of 3–5 consecutive guanines (Pu 39, Figure 1A) and has the potential to form 15 intramolecular G-quadruplex structures, using different combinations of four G-tracts. Our previous studies have shown that, on the three segments comprising the four successive runs of guanines of Pu39, i.e., I–IV (1234), II–V (2345), and III–VI (3456), the G-quadruplex formed on the central four G-runs (MidG4) appears to be the most stable in K+. (24) We have determined the folding pattern and molecular structure of MidG4, which forms a three-tetrad mixed parallel/antiparallel G-quadruplex with three loops of 1, 7, and 3 nt. (23, 26)

Figure 1

Figure 1. (A) The promoter sequence of the BCL-2 gene and its modifications. The top sequence is the 39-mer wild-type G-rich sequence (Pu39). The six G-runs with three or more guanines are underlined and numbered. Pu30 is the wild-type 30-mer G-rich sequence containing the I–V G-runs; the numbering used in this study is shown for Pu30. The guanine residues that are involved in the tetrad formation of the major BCL-2 G-quadruplex 1245G4 are shown in red. The mutations are shown in cyan. (B) DMS footprinting of the wild-type Pu39 with densitometric scans (left) and Pu30 (right). (C) Imino regions of 1D 1H NMR spectra of BCL-2 promoter sequences at 25 °C in 45 mM K+, pH 7.0. (D) CD spectra of Pu30 sequences in 95 mM K+.

However, when we carried out dimethyl sulfate (DMS) footprinting on the full-length Pu39 in the presence of K+, we found that the G-run III, which is required for the MidG4 structure, is cleaved by DMS (Figure 1B left). In contrast, the G-runs I, II, IV, V are clearly protected from DMS cleavage (Figure 1B left). DMS footprinting can probe the formation of G-quadruplexes as the guanine residues involved in the G-tetrad formation are protected from the DMS cleavage. (27) Thus, it is indicated that the major G-quadruplex formed in K+ in the full-length Pu39 involves the four nonsuccessive G-runs, i.e., I, II, IV, and V, which we named 1245G4. We then carried out DMS footprinting of the wild-type Pu30 sequence comprising the 5′ five G-runs. The results showed that, consistent with the full-length Pu39 data, the major G-quadruplex formed in Pu30 did not involve the G-run III for the tetrad formation, or the 5′ two guanines of the G-run IV (Figure 1B right). Therefore, we prepared Pu30 sequences with modifications at G-runs III and IV (Figure 1A), including Pu30_3T with G-to-T mutations at G-run III, Pu30_4AA with G-to-A mutations at the first two guanines (G21 and G22) of G-run IV, and Pu30_3T4AA with mutations at both G-runs III and IV. The 1D 1H NMR spectra of the Pu30 sequences in K+ solution are shown in Figure 1C. Importantly, the imino proton regions at 10–12 ppm, characteristic of the formation of G-quadruplex structures, (26, 28) were very similar for all Pu30 sequences (Figure 1C), indicating that the same G-quadruplex is formed, and that G-run III and G21 and G22 of G-run IV were not involved in the tetrad formation. We have also carried out CD study of the wild-type and mutant Pu30 sequences, which were almost identical (Figure 1D). Therefore, the NMR and CD results were in good agreement with the DMS footprinting data (Figure 1B), that the G-run III and first two guanines of G-run IV are not involved in the G-tetrad formation of the major G-quadruplex (1245G4) formed in the BCL-2 promoter. We have also recorded 1D 1H NMR spectra of Pu39 and Pu30 (Figure S1), which showed that the imino protons of Pu30 could be detected in the major well-defined conformation in Pu39, although the NMR spectrum of Pu39 is not as well-resolved and appears to have higher-order structures co-present.

Pu30_3T4AA showed the best NMR spectral quality (Figure 1C), and was chosen for NMR structural analysis. For other sequences, however, the well-resolved spectrum can only be observed for the fresh sample at low DNA concentration; at higher concentration or with longer time, higher-order structures appeared to form as indicated by clearly elevated baseline (Figure S2). We prepared Pu30_3T4AA oligonucleotides with 6% incorporation of 15N-labeled guanine at each guanine position. The H1 proton of guanine is one-bond connected to N1, the guanine H8 proton is two-bond connected to N7 (Figure 2A); they are both readily detected for the site-specific labeled guanine by 1D 15N-edited NMR experiments. With such experiments, the H1 protons (Figure 2B left) and H8 protons (Figure 2B right) of each guanine were unambiguously assigned. Pu30_3T4AA contains 16 guanines (Figure 1A); only 12 imino peaks are observed in the 10.5–12 ppm region (Figure 2B left), indicating the formation of a three-tetrad G-quadruplex. G2 of G-run I, G11, G17, and G18 are not involved in the tetrad formation, consistent with the DMS footprinting data (Figure 1B right).

Figure 2

Figure 2. (A) A G-tetrad with detectable H1–H1 and H1–H8 NOE connectivity. (B) Imino H1 and aromatic H8 proton assignments of Pu30_3T4AA by 1D 15N-filtered experiments using site-specific labeled oligonucleotides at 25 °C. (C) Schematic drawing of the folding topology of the major G-quadruplex 1245G4 formed in the BCL-2 promoter sequence Pu30 (G = red, A = green, C = yellow). (D) H1–H1 region and (E) H1–H8 region of the 2D-NOESY spectrum of Pu30_3T4AA in H2O at 5 °C with a mixing time of 200 ms. The proton assignments are shown on the sides. Intratetrad NOEs are in red, intertetrad NOEs in blue, sequential intertetrad NOEs in black, and NOEs with flanking bases in green. Conditions: 25 mM K-phosphate, 70 mM KCl, pH 7.0.

The assignment of the imino H1 and base H8 protons of guanines led to the direct determination of the folding topology of 1245G4 in the BCL-2 promoter (Figure 2C). A G-tetrad plane is connected with Hoogsteen H-bonds; the imino H1 protons of adjacent guanines, as well as the imino H1 and one adjacent guanine H8 protons, are in close spatial vicinity and detectable by NOE connections (Figure 2A). The arrangement and topology of a G-tetrad plane can thus be determined by guanine H1–H1 and H1–H8 NOEs (Figure 2C). For example, the NOE interactions between G3H1/G7H1, G7H1/G23H1, G23H1/G27H1, and G27H1/G3H1 (Figure 2D), and G7H8/G3H1, G23H8/G7H1, G27H8/G23H1, and G3H8/G27H1 (Figure 2E) defined a G-tetrad plane of G3-G7-G23-G27 (Figure 2C). The other two G-tetrad planes, i.e., G4-G8-G24-G28 and G5-G9-G25-G29 (Figure 2C), can be similarly defined. The G-quadruplex folding is further supported by intertetrad NOEs. These NOEs, such as G3H8/G28H1, G7H8/G4H1, G23H8/G8H1, and G27H8/G24H1 (Figure 2E), connect the top and middle G-tetrad planes (Figure 2C), while G4H8/G29H1, G8H8/G5H1, G24H8/G9H1, and G28H8/G25H1 (Figure 2E) connect the middle and bottom planes (Figure 2C), and reflect the right-handed twist of the DNA backbone. Our NMR results thus showed that the 1245G4 of the BCL-2 promoter is a 3-tetrad, parallel-stranded, intramolecular G-quadruplex structure, with three chain-reversal loops of 1, 13, and 1 nt, respectively (Figure 2C). All the tetrad-guanines are in anti glycosidic configuration, as shown by the medium intensities of intraresidue H8–H1′ NOEs (Figure S3). The CD spectra of Pu30 sequences showed a positive maximum at 264 nm and a negative minimum at 240 nm (Figure 1D), which are characteristic of parallel G-quadruplex structures, (29) supporting the parallel-stranded folding of the 1245G4. The melting temperature of Pu30_3T4AA was determined to be 71 °C as measured by the CD melting experiments at 264 nm (Figure S4) and NMR variable temperature study (Figure S5). The G-quadruplex formed by Pu30_3T4AA appeared to be of unimolecular nature as indicated by the concentration-independent melting temperature measured by CD and NMR.

The presence of a 13-nt loop in the major G-quadruplex 1245G4 formed in the BCL-2 promoter is unexpected and remarkable. DNA G-quadruplex secondary structures have been found to be overpresented in the human gene promoter regions as transcriptional regulators and are considered as a novel class of molecular targets for cancer therapeutics. (30) Intriguingly, parallel-stranded structures are found to be prevalent in the promoter G-quadruplexes, including those of c-MYC, (31-33) VEGF, (28) c-KIT21, (34) HIF-1α, (35) RET, (36) and hTERT (37, 38) (Figure 3). It has been shown that the chain-reversal loops in parallel G-quadruplexes greatly favor the short loop lengths, such as the G3NG3 motif with 1-nt loop. (39-42) The G3NG3 forms a robust parallel-stranded structural motif with 1-nt loop, which was first shown in the major c-MYC promoter quadruplex structure, (31) and is present in all other loop isomers formed in the c-MYC promoter. (29, 43) Indeed, most parallel-stranded promoter G-quadruplexes contain three tetrads and three chain-reversal loops, including two 1-nt loops and a variable-length middle loop (Figure 3). In the major c-MYC promoter G-quadruplex, a parallel structure with two 1-nt loops and one 2-nt middle loop, the 2-nt middle loop stays entirely in the groove. (31) In our recent study of the major human VEGF promoter G-quadruplex, a parallel structure with two 1-nt loops and a 4-nt middle loop (Figure 3), the 4-nt middle loop was found to stretch over the 5′ tetrad forming a unique capping structure with the 5′ flanking segment. (28) It is thus suggested that each parallel G-quadruplex adopts unique capping and loop structures by its specific middle loop and flanking segments, which likely determine the specific recognition sites of proteins or small molecules. By having two 1-nt loops, it appears that a stable parallel G-quadruplex can contain a more extended middle loop. However, the longest loop that has been reported to-date in a parallel G-quadruplex structure formed on naturally occurring sequences is 6 nt long. (33) In fact, in all the available G-quadruplex-predicting software, a limit of 7 nt is used for loop lengths. (44, 45) The formation and high stability of the 1245G4 G-quadruplex with a 13-nt chain-reversal loop in the BCL-2 promoter sequence is thus significant and would expand the current knowledge of DNA G-quadruplexes.

Figure 3

Figure 3. G-quadruplex-forming promoter sequences.

It is highly intriguing that the two stable intramolecular structures formed in the BCL-2 promoter, i.e., 1245G4 and MidG4, adopt completely different folding structures. The presence of two distinct interchangeable G-quadruplexes in the overlapping region of the BCL-2 promoter could be important for the precise regulation of gene transcription, as each G-quadruplex is likely to be recognized by different proteins leading to different gene modulation. While thermodynamically the 1245G4 quadruplex is slightly more stable than MidG4 (Tm of 66 °C), the MidG4 quadruplex could be kinetically more favored due to its shorter loop-lengths. In addition, the two interchangeable G-quadruplexes may be recognized by different small molecules and proteins, which could differentially modulate BCL-2 gene transcription.

Supporting Information

Click to copy section linkSection link copied!

Materials and methods, 1D 1H NMR spectra of Pu39 and Pu30 sequences, and H8/H6–H1′ region of the nonexchangeable 2D-NOESY, CD melting and NMR VT studies, of Pu30_3T4AA. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

Click to copy section linkSection link copied!

  • Corresponding Author
    • Danzhou Yang - ‡Department of Pharmacology and Toxicology, College of Pharmacy, †Department of Chemistry, §BIO5 Institute, ∥The Arizona Cancer Center, University of Arizona, 1703 East Mabel Street, Tucson, Arizona 85721, United States
  • Authors
    • Prashansa Agrawal - ‡Department of Pharmacology and Toxicology, College of Pharmacy, †Department of Chemistry, §BIO5 Institute, ∥The Arizona Cancer Center, University of Arizona, 1703 East Mabel Street, Tucson, Arizona 85721, United States
    • Clement Lin - ‡Department of Pharmacology and Toxicology, College of Pharmacy, †Department of Chemistry, §BIO5 Institute, ∥The Arizona Cancer Center, University of Arizona, 1703 East Mabel Street, Tucson, Arizona 85721, United States
    • Raveendra I. Mathad - ‡Department of Pharmacology and Toxicology, College of Pharmacy, †Department of Chemistry, §BIO5 Institute, ∥The Arizona Cancer Center, University of Arizona, 1703 East Mabel Street, Tucson, Arizona 85721, United States
    • Megan Carver - ‡Department of Pharmacology and Toxicology, College of Pharmacy, †Department of Chemistry, §BIO5 Institute, ∥The Arizona Cancer Center, University of Arizona, 1703 East Mabel Street, Tucson, Arizona 85721, United States
  • Notes
    The authors declare no competing financial interest.

Acknowledgment

Click to copy section linkSection link copied!

This research is supported by the National Institutes of Health (CA122952 and GM083117 to D.Y.).

References

Click to copy section linkSection link copied!

This article references 45 other publications.

  1. 1
    Hockenbery, D.; Nunez, G.; Milliman, C.; Schreiber, R. D.; Korsmeyer, S. J. Nature 1990, 348, 334 336
  2. 2
    Vaux, D. L.; Cory, S.; Adams, J. M. Nature 1988, 335, 440 442
  3. 3
    Yunis, J. J. Science 1983, 221, 227 236
  4. 4
    Akagi, T.; Kondo, E.; Yoshino, T. Leuk. Lymphoma 1994, 13, 81 87
  5. 5
    Joensuu, H.; Pylkkanen, L.; Toikkanen, S. Am. J. Pathol. 1994, 145, 1191 1198
  6. 6
    Tjalma, W.; De Cuyper, E.; Weyler, J.; Van Marck, E.; De Pooter, C.; Albertyn, G.; van Dam, P. Am. J. Obstet. Gynecol. 1998, 178, 113 117
  7. 7
    Pezzella, F.; Turley, H.; Kuzu, I.; Tungekar, M. F.; Dunnill, M. S. N. Engl. J. Med. 1993, 329, 690 694
  8. 8
    McDonnell, T. J.; Troncoso, P.; Brisbay, S. M.; Logothetis, C.; Chung, L. W. Cancer Res. 1992, 52, 6940 6944
  9. 9
    Baretton, G. B.; Diebold, J.; Christoforis, G.; Vogt, M.; Muller, C. Cancer 1996, 77, 255 264
  10. 10
    Desoize, B. Anticancer Res. 1994, 14, 2291 2294
  11. 11
    Reed, J. C.; Kitada, S.; Takayama, S.; Miyashita, T. Ann. Oncol. 1994, 5 (Suppl 1) 61 65
  12. 12
    Oltersdorf, T.; Elmore, S. W.; Shoemaker, A. R.; Armstrong, R. C.; Augeri, D. J. Nature 2005, 435, 677 681
  13. 13
    Enyedy, I. J.; Ling, Y.; Nacro, K.; Tomita, Y.; Wu, X. J. Med. Chem. 2001, 44, 4313 4324
  14. 14
    Tzung, S. P.; Kim, K. M.; Basanez, G.; Giedt, C. D.; Simon, J. Nat. Cell Biol. 2001, 3, 183 191
  15. 15
    Marshall, J.; Chen, H.; Yang, D.; Figueira, M.; Bouker, K. B. Ann. Oncol. 2004, 15, 1274 1283
  16. 16
    Klasa, R. J.; Gillum, A. M.; Klem, R. E.; Frankel, S. R. Antisense Nucleic Acid Drug Dev. 2002, 12, 193 213
  17. 17
    Rantanen, S.; Monni, O.; Joensuu, H.; Franssila, K.; Knuutila, S. Leuk. Lymphoma 2001, 42, 1089 1098
  18. 18
    Seto, M.; Jaeger, U.; Hockett, R. D.; Graninger, W.; Bennett, S.; Goldman, P.; Korsmeyer, S. J. EMBO J. 1988, 7, 123 131
  19. 19
    Young, R. L.; Korsmeyer, S. J. Mol. Cell. Biol. 1993, 13, 3686 3697
  20. 20
    Heckman, C.; Mochon, E.; Arcinas, M.; Boxer, L. M. J. Biol. Chem. 1997, 272, 19609 19614
  21. 21
    Gomez-Manzano, C.; Mitlianga, P.; Fueyo, J.; Lee, H. Y.; Hu, M. Cancer Res. 2001, 61, 6693 6697
  22. 22
    Liu, Y. Z.; Boxer, L. M.; Latchman, D. S. Nucleic Acids Res. 1999, 27, 2086 2090
  23. 23
    Dai, J.; Dexheimer, T. S.; Chen, D.; Carver, M.; Ambrus, A.; Jones, R. A.; Yang, D. Z. J. Am. Chem. Soc. 2006, 128, 1096 1098
  24. 24
    Dexheimer, T. S.; Sun, D.; Hurley, L. H. J. Am. Chem. Soc. 2006, 128, 5404 5415
  25. 25
    Onyshchenko, M. I.; Gaynutdinov, T. I.; Englund, E. A.; Appella, D. H.; Neumann, R. D.; Panyutin, I. G. Nucleic Acids Res. 2009, 37, 7570 7580
  26. 26
    Dai, J.; Chen, D.; Jones, R. A.; Hurley, L. H.; Yang, D. Z. Nucleic Acids Res. 2006, 34, 5133 5144
  27. 27
    Siddiqui-Jain, A.; Grand, C. L.; Bearss, D. J.; Hurley, L. H. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 11593 11598
  28. 28
    Agrawal, P.; Hatzakis, E.; Guo, K.; Carver, M.; Yang, D. Nucleic Acids Res. 2013, 41, 10584 10592
  29. 29
    Hatzakis, E.; Okamoto, K.; Yang, D. Z. Biochemistry 2010, 49, 9152 9160
  30. 30
    Balasubramanian, S.; Hurley, L. H.; Neidle, S. Nat. Rev. Drug Discovery 2011, 10, 261 275
  31. 31
    Ambrus, A.; Chen, D.; Dai, J.; Jones, R. A.; Yang, D. Z. Biochemistry 2005, 44, 2048 2058
  32. 32
    Seenisamy, J.; Rezler, E. M.; Powell, T. J.; Tye, D.; Gokhale, V.; Joshi, C. S.; Siddiqui-Jain, A.; Hurley, L. H. J. Am. Chem. Soc. 2004, 126, 8702 8709
  33. 33
    Phan, A. T.; Modi, Y. S.; Patel, D. J. J. Am. Chem. Soc. 2004, 126, 8710 8716
  34. 34
    Hsu, S. T.; Varnai, P.; Bugaut, A.; Reszka, A. P.; Neidle, S.; Balasubramanian, S. J. Am. Chem. Soc. 2009, 131, 13399 13409
  35. 35
    De Armond, R.; Wood, S.; Sun, D. Y.; Hurley, L. H.; Ebbinghaus, S. W. Biochemistry 2005, 44, 16341 16350
  36. 36
    Guo, K.; Pourpak, A.; Beetz-Rogers, K.; Gokhale, V.; Sun, D.; Hurley, L. H. J. Am. Chem. Soc. 2007, 129, 10220 10228
  37. 37
    Palumbo, S. L.; Ebbinghaus, S. W.; Hurley, L. H. J. Am. Chem. Soc. 2009, 131, 10878 10891
  38. 38
    Lim, K. W.; Lacroix, L.; Yue, D. J. E.; Lim, J. K. C.; Lim, J. M. W.; Phan, A. T. J. Am. Chem. Soc. 2010, 132, 12331 12342
  39. 39
    Chen, Y.; Yang, D. Z. Curr. Protoc. Nucleic Acid Chem. 2012, 50, 17.15.11 17.15.17
  40. 40
    Rachwal, P. A.; Brown, T.; Fox, K. R. FEBS Lett. 2007, 581, 1657 1660
  41. 41
    Todd, A. K.; Johnston, M.; Neidle, S. Nucleic Acids Res. 2005, 33, 2901 2907
  42. 42
    Bugaut, A.; Balasubramanian, S. Biochemistry 2008, 47, 689 697
  43. 43
    Mathad, R. I.; Hatzakis, E.; Dai, J.; Yang, D. Z. Nucleic Acids Res. 2011, 39, 9023 9033
  44. 44
    Huppert, J. L.; Balasubramanian, S. Nucleic Acids Res. 2005, 33, 2908 2916
  45. 45
    Guédin, A.; Gros, J.; Alberti, P.; Mergny, J.-L. Nucleic Acids Res. 2010, 38, 7858 7868

Cited By

Click to copy section linkSection link copied!
Citation Statements
Explore this article's citation statements on scite.ai

This article is cited by 159 publications.

  1. Ines Burkhart, Vivien Rose McKenney, Julia Wirmer-Bartoschek, J. Tassilo Grün, Alexander Heckel, Harald Schwalbe. Structural Insights into Spare-Tire DNA G-Quadruplex from the Human VEGF Promoter. ACS Chemical Biology 2025, 20 (6) , 1417-1425. https://doi.org/10.1021/acschembio.5c00226
  2. Minori Nakata, Naoki Kosaka, Keiko Kawauchi, Daisuke Miyoshi. Quantitative Effects of the Loop Region on Topology, Thermodynamics, and Cation Binding of DNA G-quadruplexes. ACS Omega 2024, 9 (32) , 35028-35036. https://doi.org/10.1021/acsomega.4c05008
  3. Satendra Kumar, Annyesha Biswas, Sruthi Sudhakar, Divya Kumari, Pushpangadan Indira Pradeepkumar. Estrone-Based Derivatives Stabilize the c-MYC and c-KIT G-Quadruplex DNA Structures. ACS Omega 2024, 9 (6) , 6616-6626. https://doi.org/10.1021/acsomega.3c07574
  4. Yushuang Liu, Jinzhu Li, Yongqiang Zhang, Yingying Wang, Juannan Chen, Yuting Bian, Yuanzheng Xia, Ming-Hua Yang, Kewei Zheng, Kai-Bo Wang, Ling-Yi Kong. Structure of the Major G-Quadruplex in the Human EGFR Oncogene Promoter Adopts a Unique Folding Topology with a Distinctive Snap-Back Loop. Journal of the American Chemical Society 2023, 145 (29) , 16228-16237. https://doi.org/10.1021/jacs.3c05214
  5. Mao-Lin Li, Jing-Mei Yuan, Hao Yuan, Bi-Han Wu, Shi-Liang Huang, Qing-Jiang Li, Tian-Miao Ou, Hong-Gen Wang, Jia-Heng Tan, Ding Li, Shuo-Bin Chen, Zhi-Shu Huang. Design, Synthesis, and Evaluation of New Sugar-Substituted Imidazole Derivatives as Selective c-MYC Transcription Repressors Targeting the Promoter G-Quadruplex. Journal of Medicinal Chemistry 2022, 65 (19) , 12675-12700. https://doi.org/10.1021/acs.jmedchem.2c00467
  6. Luying Chen, Jonathan Dickerhoff, Saburo Sakai, Danzhou Yang. DNA G-Quadruplex in Human Telomeres and Oncogene Promoters: Structures, Functions, and Small Molecule Targeting. Accounts of Chemical Research 2022, 55 (18) , 2628-2646. https://doi.org/10.1021/acs.accounts.2c00337
  7. Satendra Kumar, Rajesh Kumar Reddy Sannapureddi, Chaitra S. Todankar, R. Ramanathan, Annyesha Biswas, Bharathwaj Sathyamoorthy, P. I. Pradeepkumar. Bisindolylmaleimide Ligands Stabilize c-MYC G-Quadruplex DNA Structure and Downregulate Gene Expression. Biochemistry 2022, 61 (11) , 1064-1076. https://doi.org/10.1021/acs.biochem.2c00116
  8. Yelisetty Venkata Suseela, Pallabi Sengupta, Tanaya Roychowdhury, Suman Panda, Sangita Talukdar, Samit Chattopadhyay, Subhrangsu Chatterjee, Thimmaiah Govindaraju. Targeting Oncogene Promoters and Ribosomal RNA Biogenesis by G-Quadruplex Binding Ligands Translate to Anticancer Activity. ACS Bio & Med Chem Au 2022, 2 (2) , 125-139. https://doi.org/10.1021/acsbiomedchemau.1c00039
  9. Javier Ramos-Soriano, M Carmen Galan. Photoresponsive Control of G-Quadruplex DNA Systems. JACS Au 2021, 1 (10) , 1516-1526. https://doi.org/10.1021/jacsau.1c00283
  10. Soma Roy, Asfa Ali, Santanu Bhattacharya. Theoretical Insight into the Library Screening Approach for Binding of Intermolecular G-Quadruplex RNA and Small Molecules through Docking and Molecular Dynamics Simulation Studies. The Journal of Physical Chemistry B 2021, 125 (21) , 5489-5501. https://doi.org/10.1021/acs.jpcb.0c10991
  11. J. Tassilo Grün, Anja Blümler, Ines Burkhart, Julia Wirmer-Bartoschek, Alexander Heckel, Harald Schwalbe. Unraveling the Kinetics of Spare-Tire DNA G-Quadruplex Folding. Journal of the American Chemical Society 2021, 143 (16) , 6185-6193. https://doi.org/10.1021/jacs.1c01089
  12. Alexa M. Salsbury, Tanner J. Dean, Justin A. Lemkul. Polarizable Molecular Dynamics Simulations of Two c-kit Oncogene Promoter G-Quadruplexes: Effect of Primary and Secondary Structure on Loop and Ion Sampling. Journal of Chemical Theory and Computation 2020, 16 (5) , 3430-3444. https://doi.org/10.1021/acs.jctc.0c00191
  13. Sveva Pelliccia, Jussara Amato, Domenica Capasso, Sonia Di Gaetano, Alberto Massarotti, Marialuisa Piccolo, Carlo Irace, Gian Cesare Tron, Bruno Pagano, Antonio Randazzo, Ettore Novellino, Mariateresa Giustiniano. Bio-Inspired Dual-Selective BCL-2/c-MYC G-Quadruplex Binders: Design, Synthesis, and Anticancer Activity of Drug-like Imidazo[2,1-i]purine Derivatives. Journal of Medicinal Chemistry 2020, 63 (5) , 2035-2050. https://doi.org/10.1021/acs.jmedchem.9b00262
  14. V. Dhamodharan, P. I. Pradeepkumar. Specific Recognition of Promoter G-Quadruplex DNAs by Small Molecule Ligands and Light-up Probes. ACS Chemical Biology 2019, 14 (10) , 2102-2114. https://doi.org/10.1021/acschembio.9b00475
  15. Cosimo Ducani, Giulio Bernardinelli, Björn Högberg, Bernhard K. Keppler, Alessio Terenzi. Interplay of Three G-Quadruplex Units in the KIT Promoter. Journal of the American Chemical Society 2019, 141 (26) , 10205-10213. https://doi.org/10.1021/jacs.8b12753
  16. Deepanjan Panda, Puja Saha, Ritapa Chaudhuri, Thumpati Prasanth, Velayutham Ravichandiran, Jyotirmayee Dash. A Competitive Pull-Down Assay Using G-quadruplex DNA Linked Magnetic Nanoparticles To Determine Specificity of G-quadruplex Ligands. Analytical Chemistry 2019, 91 (12) , 7705-7711. https://doi.org/10.1021/acs.analchem.9b00889
  17. Clinton G. Mikek, Savannah J. West, J. Cole Gwin, Neetu Dayal, Herman O. Sintim, Edwin A. Lewis. Berenil Binds Tightly to Parallel and Mixed Parallel/Antiparallel G-Quadruplex Motifs with Varied Thermodynamic Signatures. ACS Omega 2018, 3 (9) , 11582-11591. https://doi.org/10.1021/acsomega.8b01621
  18. Nanjie Deng, Lauren Wickstrom, Piotr Cieplak, Clement Lin, and Danzhou Yang . Resolving the Ligand-Binding Specificity in c-MYC G-Quadruplex DNA: Absolute Binding Free Energy Calculations and SPR Experiment. The Journal of Physical Chemistry B 2017, 121 (46) , 10484-10497. https://doi.org/10.1021/acs.jpcb.7b09406
  19. Robert V. Brown, Ting Wang, Venkateshwar Reddy Chappeta, Guanhui Wu, Buket Onel, Reena Chawla, Hector Quijada, Sara M. Camp, Eddie T. Chiang, Quinea R. Lassiter, Carmen Lee, Shivani Phanse, Megan A. Turnidge, Ping Zhao, Joe G. N. Garcia, Vijay Gokhale, Danzhou Yang, and Laurence H. Hurley . The Consequences of Overlapping G-Quadruplexes and i-Motifs in the Platelet-Derived Growth Factor Receptor β Core Promoter Nuclease Hypersensitive Element Can Explain the Unexpected Effects of Mutations and Provide Opportunities for Selective Targeting of Both Structures by Small Molecules To Downregulate Gene Expression. Journal of the American Chemical Society 2017, 139 (22) , 7456-7475. https://doi.org/10.1021/jacs.6b10028
  20. Nohad Gresh, Sehr Naseem-Khan, Louis Lagardère, Jean-Philip Piquemal, Judit E. Sponer, and Jiri Sponer . Channeling through Two Stacked Guanine Quartets of One and Two Alkali Cations in the Li+, Na+, K+, and Rb+ Series. Assessment of the Accuracy of the SIBFA Anisotropic Polarizable Molecular Mechanics Potential. The Journal of Physical Chemistry B 2017, 121 (16) , 3997-4014. https://doi.org/10.1021/acs.jpcb.7b01836
  21. Kai-Bo Wang, Da-Hong Li, Ping Hu, Wen-Jing Wang, Clement Lin, Jian Wang, Bin Lin, Jiao Bai, Yue-Hu Pei, Yong-Kui Jing, Zhan-Lin Li, Danzhou Yang, and Hui-Ming Hua . A Series of β-Carboline Alkaloids from the Seeds of Peganum harmala Show G-Quadruplex Interactions. Organic Letters 2016, 18 (14) , 3398-3401. https://doi.org/10.1021/acs.orglett.6b01560
  22. Stephen Neidle . Quadruplex Nucleic Acids as Novel Therapeutic Targets. Journal of Medicinal Chemistry 2016, 59 (13) , 5987-6011. https://doi.org/10.1021/acs.jmedchem.5b01835
  23. Shang Gao, Yanwei Cao, Yuting Yan, and Xinhua Guo . Sequence Effect on the Topology of 3 + 1 Interlocked Bimolecular DNA G-Quadruplexes. Biochemistry 2016, 55 (19) , 2694-2703. https://doi.org/10.1021/acs.biochem.5b01190
  24. Buket Onel, Megan Carver, Guanhui Wu, Daria Timonina, Salil Kalarn, Marti Larriva, and Danzhou Yang . A New G-Quadruplex with Hairpin Loop Immediately Upstream of the Human BCL2 P1 Promoter Modulates Transcription. Journal of the American Chemical Society 2016, 138 (8) , 2563-2570. https://doi.org/10.1021/jacs.5b08596
  25. Samir Amrane, Abdelaziz Kerkour, Amina Bedrat, Brune Vialet, Marie-Line Andreola, and Jean-Louis Mergny . Topology of a DNA G-Quadruplex Structure Formed in the HIV-1 Promoter: A Potential Target for Anti-HIV Drug Development. Journal of the American Chemical Society 2014, 136 (14) , 5249-5252. https://doi.org/10.1021/ja501500c
  26. Simon Kroos, Marian Hebenbrock, Alexander Hepp, Marcus Layh, Joschua Lüke, Ali R. Tonkul, Cristian A. Strassert, Jens Müller. Water-soluble luminescent platinum( ii ) complexes for guanine quadruplex binding. Dalton Transactions 2025, 54 (13) , 5367-5390. https://doi.org/10.1039/D4DT03067B
  27. Carolina Roxo, Anna Pasternak. Switching off cancer – An overview of G-quadruplex and i-motif functional role in oncogene expression. Bioorganic & Medicinal Chemistry Letters 2025, 116 , 130038. https://doi.org/10.1016/j.bmcl.2024.130038
  28. Victoria Sanchez-Martin, Dusan Ruzic, Maria J. Tello-Lopez, Andrea Ortiz-Morales, Javier Murciano-Calles, Miguel Soriano, Katarina Nikolic, Jose Antonio Garcia-Salcedo. The histone deacetylase inhibitor Scriptaid targets G-quadruplexes. Open Biology 2025, 15 (2) https://doi.org/10.1098/rsob.240183
  29. Ryo Ishikawa, Kazuki Yanagita, Sayuri Shimada, Shogo Sasaki, Takatsugu Hirokawa, Yue Ma, Kazuo Nagasawa, Masayuki Tera. Topology-selective photo-crosslinking of G-quadruplexes via dual G-quartet and groove recognition. Chemical Communications 2024, 60 (92) , 13550-13553. https://doi.org/10.1039/D4CC04804K
  30. Sophie L Granger, Richa Sharma, Vikas Kaushik, Mortezaali Razzaghi, Masayoshi Honda, Paras Gaur, Divya S Bhat, Sabryn M Labenz, Jenna E Heinen, Blaine A Williams, S M Ali Tabei, Marcin W Wlodarski, Edwin Antony, Maria Spies. Human hnRNPA1 reorganizes telomere-bound replication protein A. Nucleic Acids Research 2024, 52 (20) , 12422-12437. https://doi.org/10.1093/nar/gkae834
  31. Beatrice Tosoni, Matteo Nadai, Alessio Maria Caramiello, Filippo Doria, Mauro Freccero, Sara N. Richter. The versatile NDI-based compounds: emerging anticancer and antimicrobial agents. Medicinal Chemistry Research 2024, 33 (11) , 2030-2049. https://doi.org/10.1007/s00044-024-03329-6
  32. Agata Głuszyńska, Joanna Kosman, Shang Shiuan Chuah, Marcin Hoffmann, Shozeb Haider. Carbazole Derivatives Binding to Bcl-2 Promoter Sequence G-quadruplex. Pharmaceuticals 2024, 17 (7) , 912. https://doi.org/10.3390/ph17070912
  33. Wenhao Liu, Xinglin He, Yance Zhu, Yaqin Li, Zhihao Wang, Pengfei Li, Jiajia Pan, Jiang Wang, Beibei Chu, Guoyu Yang, Mengjia Zhang, Qigai He, Yongtao Li, Wentao Li, Chao Zhang. Identification of a conserved G-quadruplex within the E165R of African swine fever virus (ASFV) as a potential antiviral target. Journal of Biological Chemistry 2024, 300 (7) , 107453. https://doi.org/10.1016/j.jbc.2024.107453
  34. Marina Juribašić Kulcsár, Valérie Gabelica, Janez Plavec. Solution‐State Structure of a Long‐Loop G‐Quadruplex Formed Within Promoters of Plasmodium falciparum B var Genes. Chemistry – A European Journal 2024, 30 (36) https://doi.org/10.1002/chem.202401190
  35. Awadesh Kumar Dwivedi, Niki Sweta Jha. Probing the binding and interaction of curcumin-tryptophan conjugate to G-quadruplex motif via spectroscopic and molecular docking approach. Journal of Molecular Structure 2024, 1306 , 137844. https://doi.org/10.1016/j.molstruc.2024.137844
  36. Nicholas J. Paradis, Austin Clark, Achismita Dutta, Hunter Gogoj, Timothy D. Vaden, Chun Wu. Elucidating the stabilization mechanism of a K+-depleted c-MYC DNA G-quadruplex in hydrophobic imidazolium-based ionic liquids using spectroscopy coupled with molecular dynamics simulations. Journal of Molecular Liquids 2024, 399 , 124407. https://doi.org/10.1016/j.molliq.2024.124407
  37. Emilia Puig LOMBARDI. G‐quadruplexes. 2023, 239-271. https://doi.org/10.1002/9781394264902.ch6
  38. Aishwarya Shukla, Soni Kumari, Muniappan Sankar, Maya S. Nair. Insights into the mechanism of binding of doxorubicin and a chlorin compound with 22-mer c-Myc G quadruplex. Biochimica et Biophysica Acta (BBA) - General Subjects 2023, 1867 (12) , 130482. https://doi.org/10.1016/j.bbagen.2023.130482
  39. Joana Figueiredo, Mojgan Djavaheri-Mergny, Lucille Ferret, Jean-Louis Mergny, Carla Cruz. Harnessing G-quadruplex ligands for lung cancer treatment: A comprehensive overview. Drug Discovery Today 2023, 28 (12) , 103808. https://doi.org/10.1016/j.drudis.2023.103808
  40. Francesca Romano, Anna Di Porzio, Nunzia Iaccarino, Gelsomina Riccardi, Ritamaria Di Lorenzo, Sonia Laneri, Bruno Pagano, Jussara Amato, Antonio Randazzo. G-quadruplexes in cancer-related gene promoters: from identification to therapeutic targeting. Expert Opinion on Therapeutic Patents 2023, 33 (11) , 745-773. https://doi.org/10.1080/13543776.2023.2271168
  41. Paras Gaur, Fletcher E. Bain, Masayoshi Honda, Sophie L. Granger, Maria Spies. Single-Molecule Analysis of the Improved Variants of the G-Quadruplex Recognition Protein G4P. International Journal of Molecular Sciences 2023, 24 (12) , 10274. https://doi.org/10.3390/ijms241210274
  42. Enrico Cadoni, Lessandro De Paepe, Gertjan Colpaert, Ruben Tack, Dries Waegeman, Alex Manicardi, Annemieke Madder. A red light-triggered chemical tool for sequence-specific alkylation of G-quadruplex and I-motif DNA. Nucleic Acids Research 2023, 51 (9) , 4112-4125. https://doi.org/10.1093/nar/gkad189
  43. Csaba Papp, Vineeth T Mukundan, Piroon Jenjaroenpun, Fernaldo Richtia Winnerdy, Ghim Siong Ow, Anh Tuân Phan, Vladimir A Kuznetsov. Stable bulged G-quadruplexes in the human genome: identification, experimental validation and functionalization. Nucleic Acids Research 2023, 51 (9) , 4148-4177. https://doi.org/10.1093/nar/gkad252
  44. Haidong Wu, Weilong Zhong, Ronghua Zhang, Yuping Ding, Chunhua Qu, Keguan Lai, Zheng Pang, Shan Yin, Guangling Zhang, Shuang Chen. G‐quadruplex‐enhanced circular single‐stranded DNA ( G4‐CSSD ) adsorption of miRNA to inhibit colon cancer progression. Cancer Medicine 2023, 12 (8) , 9774-9787. https://doi.org/10.1002/cam4.5721
  45. Aryan Neupane, Julia H. Chariker, Eric C. Rouchka. Structural and Functional Classification of G-Quadruplex Families within the Human Genome. Genes 2023, 14 (3) , 645. https://doi.org/10.3390/genes14030645
  46. Busra Uyar, Nezahat Gokce Ozsamur, Fatma Secer Celik, Ilkyaz Ozbayram, Sundus Erbas-Cakmak. Downregulation of gene expression in hypoxic cancer cells by an activatable G-quadruplex stabiliser. Chemical Communications 2023, 59 (16) , 2247-2250. https://doi.org/10.1039/D2CC06347F
  47. Woo-Chang Chung, Subramaniyam Ravichandran, Daegyu Park, Gwang Myeong Lee, Young-Eui Kim, Youngju Choi, Moon Jung Song, Kyeong Kyu Kim, Jin-Hyun Ahn, . G-quadruplexes formed by Varicella-Zoster virus reiteration sequences suppress expression of glycoprotein C and regulate viral cell-to-cell spread. PLOS Pathogens 2023, 19 (1) , e1011095. https://doi.org/10.1371/journal.ppat.1011095
  48. Yichen Han, Jonathan Dickerhoff, Danzhou Yang. Structures of G-Quadruplexes and Their Drug Interactions. 2023, 1-30. https://doi.org/10.1007/978-981-16-1313-5_10-1
  49. Yichen Han, Jonathan Dickerhoff, Danzhou Yang. Structures of G-Quadruplexes and Their Drug Interactions. 2023, 243-272. https://doi.org/10.1007/978-981-19-9776-1_10
  50. Shivani Kumar, Chitteti Ramamurthy, Divya Choudhary, Aashika Sekar, Anupam Patra, Neel Sarovar Bhavesh, Perumal Vivekanandan. Contrasting roles for G-quadruplexes in regulating human Bcl-2 and virus homologues KSHV KS-Bcl-2 and EBV BHRF1. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-08161-9
  51. Christopher Hennecker, Lynn Yamout, Chuyang Zhang, Chenzhi Zhao, David Hiraki, Nicolas Moitessier, Anthony Mittermaier. Structural Polymorphism of Guanine Quadruplex-Containing Regions in Human Promoters. International Journal of Molecular Sciences 2022, 23 (24) , 16020. https://doi.org/10.3390/ijms232416020
  52. Nicholas J. Paradis, Austin Clark, Hunter Gogoj, Phillip M. Lakernick, Timothy D. Vaden, Chun Wu. To probe the binding of TMPyP4 to c-MYC G-quadruplex with in water and in imidazolium-based ionic liquids using spectroscopy coupled with molecular dynamics simulations. Journal of Molecular Liquids 2022, 365 , 120097. https://doi.org/10.1016/j.molliq.2022.120097
  53. Mamta Singh, Rajat Gupta, Lucia Comez, Alessandro Paciaroni, Reshma Rani, Vinit Kumar. BCL2 G quadruplex-binding small molecules: Current status and prospects for the development of next-generation anticancer therapeutics. Drug Discovery Today 2022, 27 (9) , 2551-2561. https://doi.org/10.1016/j.drudis.2022.06.002
  54. Xiao Wang, Mi Zhang, Xu-Qiong Xiong, Hao Yang, Panpan Wang, Koutian Zhang, Annoor Awadasseid, Suresh Narva, Yan-Ling Wu, Wen Zhang. Design, synthesis and bioactivity of novel naphthalimide-benzotriazole conjugates against A549 cells via targeting BCL2 G-quadruplex and inducing autophagy. Life Sciences 2022, 302 , 120651. https://doi.org/10.1016/j.lfs.2022.120651
  55. Marco Caterino, Katrin Paeschke. Action and function of helicases on RNA G-quadruplexes. Methods 2022, 204 , 110-125. https://doi.org/10.1016/j.ymeth.2021.09.003
  56. Roman G. Zenkov, Kirill I. Kirsanov, Anna M. Ogloblina, Olga A. Vlasova, Denis S. Naberezhnov, Natalia Y. Karpechenko, Timur I. Fetisov, Ekaterina A. Lesovaya, Gennady A. Belitsky, Nina G. Dolinnaya, Marianna G. Yakubovskaya. Effects of G-Quadruplex-Binding Plant Secondary Metabolites on c-MYC Expression. International Journal of Molecular Sciences 2022, 23 (16) , 9209. https://doi.org/10.3390/ijms23169209
  57. Jagannath Jana, Yoanes Maria Vianney, Nina Schröder, Klaus Weisz. Guiding the folding of G-quadruplexes through loop residue interactions. Nucleic Acids Research 2022, 50 (12) , 7161-7175. https://doi.org/10.1093/nar/gkac549
  58. Xinxin Wang, Huashuo Chu, Xiuyuan Xu, Jingjing Tian, Yifan Wu, Wentao Xu, Hongtao Tian, Longjiao Zhu. Rapid label-free colorimetric dual-functional aptasensor for β-lactoglobulin detection based on a rational tailoring strategy. Biosensors and Bioelectronics 2022, 208 , 114223. https://doi.org/10.1016/j.bios.2022.114223
  59. Victoria Sanchez-Martin, María del Carmen Plaza-Calonge, Ana Soriano-Lerma, Matilde Ortiz-Gonzalez, Angel Linde-Rodriguez, Virginia Perez-Carrasco, Inmaculada Ramirez-Macias, Marta Cuadros, Jose Gutierrez-Fernandez, Javier Murciano-Calles, Juan Carlos Rodríguez-Manzaneque, Miguel Soriano, Jose Antonio Garcia-Salcedo. Gallic Acid: A Natural Phenolic Compound Exerting Antitumoral Activities in Colorectal Cancer via Interaction with G-Quadruplexes. Cancers 2022, 14 (11) , 2648. https://doi.org/10.3390/cancers14112648
  60. Jia-Hao Yuan, Jia-Li Tu, Guo-Cai Liu, Xiu-Cai Chen, Zhi-Shu Huang, Shuo-Bin Chen, Jia-Heng Tan. Visualization of ligand-induced c-MYC duplex–quadruplex transition and direct exploration of the altered c-MYC DNA-protein interactions in cells. Nucleic Acids Research 2022, 50 (8) , 4246-4257. https://doi.org/10.1093/nar/gkac245
  61. Ilias Georgakopoulos-Soares, Jesus Victorino, Guillermo E. Parada, Vikram Agarwal, Jingjing Zhao, Hei Yuen Wong, Mubarak Ishaq Umar, Orry Elor, Allan Muhwezi, Joon-Yong An, Stephan J. Sanders, Chun Kit Kwok, Fumitaka Inoue, Martin Hemberg, Nadav Ahituv. High-throughput characterization of the role of non-B DNA motifs on promoter function. Cell Genomics 2022, 2 (4) , 100111. https://doi.org/10.1016/j.xgen.2022.100111
  62. Nikita Kundu, Taniya Sharma, Sarvpreet Kaur, Mamta Singh, Vinit Kumar, Uttam Sharma, Aklank Jain, Jadala Shankaraswamy, Daisuke Miyoshi, Sarika Saxena. Significant structural change in human c-Myc promoter G-quadruplex upon peptide binding in potassium. RSC Advances 2022, 12 (13) , 7594-7604. https://doi.org/10.1039/D2RA00535B
  63. David A. Price, Poornima Wedamulla, Tayler D. Hill, Taylor M. Loth, Sean D. Moran. The polarization dependence of 2D IR cross-peaks distinguishes parallel-stranded and antiparallel-stranded DNA G-quadruplexes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2022, 267 , 120596. https://doi.org/10.1016/j.saa.2021.120596
  64. J. Tassilo Grün, Harald Schwalbe. Folding dynamics of polymorphic G‐quadruplex structures. Biopolymers 2022, 113 (1) https://doi.org/10.1002/bip.23477
  65. Xinxin Wang, Huashuo Chu, Xiuyuan Xu, Jingjing Tian, Yifan Wu, Hongtao Tian, Longjiao Zhu, Wentao Xu. Rapid Label-Free Colorimetric Dual-Functional Aptasensor for Β-Lactoglobulin Detection Based on a Rational Tailoring Strategy. SSRN Electronic Journal 2022, 136 https://doi.org/10.2139/ssrn.4003115
  66. Jia Li, Haiping Wu, Yurong Yan, Taixian Yuan, Yue Shu, Xin Gao, Lu Zhang, Siqiao Li, Shijia Ding, Wei Cheng. Zippered G-quadruplex/hemin DNAzyme: exceptional catalyst for universal bioanalytical applications. Nucleic Acids Research 2021, 49 (22) , 13031-13044. https://doi.org/10.1093/nar/gkab1178
  67. Ilaria Frasson, Paola Soldà, Matteo Nadai, Sara Lago, Sara N. Richter. Parallel G-quadruplexes recruit the HSV-1 transcription factor ICP4 to promote viral transcription in herpes virus-infected human cells. Communications Biology 2021, 4 (1) https://doi.org/10.1038/s42003-021-02035-y
  68. Yang Liu, Xinting Zhu, Kejia Wang, Bo Zhang, Shuyi Qiu. The Cellular Functions and Molecular Mechanisms of G-Quadruplex Unwinding Helicases in Humans. Frontiers in Molecular Biosciences 2021, 8 https://doi.org/10.3389/fmolb.2021.783889
  69. Yelisetty Venkata Suseela, Pardhasaradhi Satha, Thimmaiah Govindaraju. Mitochondria‐Specific Recognition of G‐Quadruplexes by a Flavylium‐Based Turn‐On Near‐Infrared Rotor Probe. Analysis & Sensing 2021, 1 (4) , 180-187. https://doi.org/10.1002/anse.202100020
  70. Subramaniyam Ravichandran, Maria Razzaq, Nazia Parveen, Ambarnil Ghosh, Kyeong Kyu Kim. The effect of hairpin loop on the structure and gene expression activity of the long-loop G-quadruplex. Nucleic Acids Research 2021, 49 (18) , 10689-10706. https://doi.org/10.1093/nar/gkab739
  71. Jessica A Kretzmann, Kelly L Irving, Nicole M Smith, Cameron W Evans. Modulating gene expression in breast cancer via DNA secondary structure and the CRISPR toolbox. NAR Cancer 2021, 3 (4) https://doi.org/10.1093/narcan/zcab048
  72. Joanna Nowak-Karnowska, Agata Głuszyńska, Joanna Kosman, Grażyna Neunert, Anna Dembska. Interaction of 9-Methoxyluminarine with Different G-Quadruplex Topologies: Fluorescence and Circular Dichroism Studies. International Journal of Molecular Sciences 2021, 22 (19) , 10399. https://doi.org/10.3390/ijms221910399
  73. Nuanfei Zhu, Xuesong Li, Ye Liu, Jingfu Liu, Yawei Wang, Xiangyang Wu, Zhen Zhang. Dual amplified ratiometric fluorescence ELISA based on G-quadruplex/hemin DNAzyme using tetrahedral DNA nanostructure as scaffold for ultrasensitive detection of dibutyl phthalate in aquatic system. Science of The Total Environment 2021, 784 , 147212. https://doi.org/10.1016/j.scitotenv.2021.147212
  74. Yashuo Zhang, Yuanlei Cheng, Juannan Chen, Kewei Zheng, Huijuan You. Mechanical diversity and folding intermediates of parallel-stranded G-quadruplexes with a bulge. Nucleic Acids Research 2021, 49 (12) , 7179-7188. https://doi.org/10.1093/nar/gkab531
  75. Chiara Platella, Stefania Mazzini, Ettore Napolitano, Luce M. Mattio, Giovanni Luca Beretta, Nadia Zaffaroni, Andrea Pinto, Daniela Montesarchio, Sabrina Dallavalle. Plant‐Derived Stilbenoids as DNA‐Binding Agents: From Monomers to Dimers. Chemistry – A European Journal 2021, 27 (34) , 8832-8845. https://doi.org/10.1002/chem.202101229
  76. Saki Matsumoto, Naoki Sugimoto. New Insights into the Functions of Nucleic Acids Controlled by Cellular Microenvironments. Topics in Current Chemistry 2021, 379 (3) https://doi.org/10.1007/s41061-021-00329-7
  77. Sabrina Dallavalle, Luce M. Mattio, Roberto Artali, Loana Musso, Anna Aviñó, Carme Fàbrega, Ramon Eritja, Raimundo Gargallo, Stefania Mazzini. Exploring the Interaction of Curaxin CBL0137 with G-Quadruplex DNA Oligomers. International Journal of Molecular Sciences 2021, 22 (12) , 6476. https://doi.org/10.3390/ijms22126476
  78. Stasė Bielskutė, Janez Plavec, Peter Podbevšek. Oxidative lesions modulate G-quadruplex stability and structure in the human BCL2 promoter. Nucleic Acids Research 2021, 49 (4) , 2346-2356. https://doi.org/10.1093/nar/gkab057
  79. Saikat Pal, Sandip Paul. An in silico investigation of the binding modes and pathway of APTO-253 on c-KIT G-quadruplex DNA. Physical Chemistry Chemical Physics 2021, 23 (5) , 3361-3376. https://doi.org/10.1039/D0CP05210H
  80. Sara Lago, Matteo Nadai, Emanuela Ruggiero, Martina Tassinari, Maja Marušič, Beatrice Tosoni, Ilaria Frasson, Filippo M Cernilogar, Valentina Pirota, Filippo Doria, Janez Plavec, Gunnar Schotta, Sara N Richter. The MDM2 inducible promoter folds into four-tetrad antiparallel G-quadruplexes targetable to fight malignant liposarcoma. Nucleic Acids Research 2021, 49 (2) , 847-863. https://doi.org/10.1093/nar/gkaa1273
  81. Ecenaz Bilgen, Özgül Persil Çetinkol. Doxorubicin exhibits strong and selective association with VEGF Pu22 G-quadruplex. Biochimica et Biophysica Acta (BBA) - General Subjects 2020, 1864 (12) , 129720. https://doi.org/10.1016/j.bbagen.2020.129720
  82. Shivani Kumar, Divya Choudhary, Anupam Patra, Neel Sarovar Bhavesh, Perumal Vivekanandan. Analysis of G-quadruplexes upstream of herpesvirus miRNAs: evidence of G-quadruplex mediated regulation of KSHV miR-K12–1-9,11 cluster and HCMV miR-US33. BMC Molecular and Cell Biology 2020, 21 (1) https://doi.org/10.1186/s12860-020-00306-w
  83. Victoria Sanchez-Martin, Carmen Lopez-Pujante, Miguel Soriano-Rodriguez, Jose A. Garcia-Salcedo. An Updated Focus on Quadruplex Structures as Potential Therapeutic Targets in Cancer. International Journal of Molecular Sciences 2020, 21 (23) , 8900. https://doi.org/10.3390/ijms21238900
  84. Igor P. Smirnov, Natalia A. Kolganova, Sergei A. Surzhikov, Irina V. Grechishnikova, Roman A. Novikov, Edward N. Timofeev. Folding topology, structural polymorphism, and dimerization of intramolecular DNA G-quadruplexes with inverted polarity strands and non-natural loops. International Journal of Biological Macromolecules 2020, 162 , 1972-1981. https://doi.org/10.1016/j.ijbiomac.2020.08.097
  85. Thi Quynh Ngoc Nguyen, Kah Wai Lim, Anh Tuân Phan. Duplex formation in a G-quadruplex bulge. Nucleic Acids Research 2020, 48 (18) , 10567-10575. https://doi.org/10.1093/nar/gkaa738
  86. Tingting Liu, Zhongyu Wu, Yujing He, Yuliang Xiao, Chengcai Xia. Single and dual target inhibitors based on Bcl-2: Promising anti-tumor agents for cancer therapy. European Journal of Medicinal Chemistry 2020, 201 , 112446. https://doi.org/10.1016/j.ejmech.2020.112446
  87. Ecenaz Bilgen, Mehrdad Forough, Özgül Persil Çetinkol. A conjugated gold nanoparticle-azacyanine off-on-off fluorescence probe for sensitive and selective detection of G-quadruplexes. Talanta 2020, 217 , 121076. https://doi.org/10.1016/j.talanta.2020.121076
  88. Bagineni Prasad, Rabindra Nath Das, Jan Jamroskovic, Rajendra Kumar, Mattias Hedenström, Nasim Sabouri, Erik Chorell. The Relation Between Position and Chemical Composition of Bis‐Indole Substituents Determines Their Interactions with G‐Quadruplex DNA. Chemistry – A European Journal 2020, 26 (43) , 9561-9572. https://doi.org/10.1002/chem.202000579
  89. Guanhui Wu, Desiree Tillo, Sreejana Ray, Ta-Chau Chang, John S. Schneekloth, Charles Vinson, Danzhou Yang. Custom G4 Microarrays Reveal Selective G-Quadruplex Recognition of Small Molecule BMVC: A Large-Scale Assessment of Ligand Binding Selectivity. Molecules 2020, 25 (15) , 3465. https://doi.org/10.3390/molecules25153465
  90. Shrabasti Roychoudhury, Suravi Pramanik, Hannah L. Harris, Mason Tarpley, Aniruddha Sarkar, Gaelle Spagnol, Paul L. Sorgen, Dipanjan Chowdhury, Vimla Band, David Klinkebiel, Kishor K. Bhakat. Endogenous oxidized DNA bases and APE1 regulate the formation of G-quadruplex structures in the genome. Proceedings of the National Academy of Sciences 2020, 117 (21) , 11409-11420. https://doi.org/10.1073/pnas.1912355117
  91. Michael P. O'Hagan, Pablo Peñalver, Rosina S. L. Gibson, Juan C. Morales, M. Carmen Galan. Stiff‐Stilbene Ligands Target G‐Quadruplex DNA and Exhibit Selective Anticancer and Antiparasitic Activity. Chemistry – A European Journal 2020, 26 (28) , 6224-6233. https://doi.org/10.1002/chem.201905753
  92. Lukasz Ciszewski, Ngoc Lu-Nguyen, Alex Slater, Andrew Brennan, Huw E L Williams, George Dickson, Mark S Searle, Linda Popplewell. G-quadruplex ligands mediate downregulation of DUX4 expression. Nucleic Acids Research 2020, 48 (8) , 4179-4194. https://doi.org/10.1093/nar/gkaa146
  93. Shikhar Tyagi, Sarika Saxena, Priyansh Srivastava, Taniya Sharma, Nikita Kundu, Sarvpreet Kaur, Jadala Shankaraswamy. Screening the binding potential of quercetin with parallel, antiparallel and mixed G-quadruplexes of human telomere and cancer protooncogenes using molecular docking approach. SN Applied Sciences 2020, 2 (3) https://doi.org/10.1007/s42452-020-2280-8
  94. Efres Belmonte-Reche, Juan Carlos Morales. G4-iM Grinder: when size and frequency matter. G-Quadruplex, i-Motif and higher order structure search and analysis tool. NAR Genomics and Bioinformatics 2020, 2 (1) https://doi.org/10.1093/nargab/lqz005
  95. Antonio Maffia, Cecilia Ranise, Simone Sabbioneda. From R-Loops to G-Quadruplexes: Emerging New Threats for the Replication Fork. International Journal of Molecular Sciences 2020, 21 (4) , 1506. https://doi.org/10.3390/ijms21041506
  96. Ruby J Roach, Miguel Garavís, Carlos González, Geoffrey B Jameson, Vyacheslav V Filichev, Tracy K Hale. Heterochromatin protein 1α interacts with parallel RNA and DNA G-quadruplexes. Nucleic Acids Research 2020, 48 (2) , 682-693. https://doi.org/10.1093/nar/gkz1138
  97. Emilia Puig Lombardi, Arturo Londoño-Vallejo. A guide to computational methods for G-quadruplex prediction. Nucleic Acids Research 2020, 48 (1) , 1-15. https://doi.org/10.1093/nar/gkz1097
  98. Janez Plavec. Quadruplex targets in neurodegenerative diseases. 2020, 441-483. https://doi.org/10.1016/bs.armc.2020.05.003
  99. Xiaojie Cui, Han Chen, Qiang Zhang, Ming Xu, Gu Yuan, Jiang Zhou. Exploration of the Structure and Recognition of a G-quadruplex in the her2 Proto-oncogene Promoter and Its Transcriptional Regulation. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-39941-5
  100. Marta Recagni, Martina Tassinari, Filippo Doria, Graziella Cimino-Reale, Nadia Zaffaroni, Mauro Freccero, Marco Folini, Sara N. Richter. The Oncogenic Signaling Pathways in BRAF-Mutant Melanoma Cells Are Modulated by Naphthalene Diimide-Like G-Quadruplex Ligands. Cells 2019, 8 (10) , 1274. https://doi.org/10.3390/cells8101274
Load all citations

Journal of the American Chemical Society

Cite this: J. Am. Chem. Soc. 2014, 136, 5, 1750–1753
Click to copy citationCitation copied!
https://doi.org/10.1021/ja4118945
Published January 22, 2014

Copyright © 2014 American Chemical Society. This publication is licensed under these Terms of Use.

Article Views

4676

Altmetric

-

Citations

Learn about these metrics

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • Abstract

    Figure 1

    Figure 1. (A) The promoter sequence of the BCL-2 gene and its modifications. The top sequence is the 39-mer wild-type G-rich sequence (Pu39). The six G-runs with three or more guanines are underlined and numbered. Pu30 is the wild-type 30-mer G-rich sequence containing the I–V G-runs; the numbering used in this study is shown for Pu30. The guanine residues that are involved in the tetrad formation of the major BCL-2 G-quadruplex 1245G4 are shown in red. The mutations are shown in cyan. (B) DMS footprinting of the wild-type Pu39 with densitometric scans (left) and Pu30 (right). (C) Imino regions of 1D 1H NMR spectra of BCL-2 promoter sequences at 25 °C in 45 mM K+, pH 7.0. (D) CD spectra of Pu30 sequences in 95 mM K+.

    Figure 2

    Figure 2. (A) A G-tetrad with detectable H1–H1 and H1–H8 NOE connectivity. (B) Imino H1 and aromatic H8 proton assignments of Pu30_3T4AA by 1D 15N-filtered experiments using site-specific labeled oligonucleotides at 25 °C. (C) Schematic drawing of the folding topology of the major G-quadruplex 1245G4 formed in the BCL-2 promoter sequence Pu30 (G = red, A = green, C = yellow). (D) H1–H1 region and (E) H1–H8 region of the 2D-NOESY spectrum of Pu30_3T4AA in H2O at 5 °C with a mixing time of 200 ms. The proton assignments are shown on the sides. Intratetrad NOEs are in red, intertetrad NOEs in blue, sequential intertetrad NOEs in black, and NOEs with flanking bases in green. Conditions: 25 mM K-phosphate, 70 mM KCl, pH 7.0.

    Figure 3

    Figure 3. G-quadruplex-forming promoter sequences.

  • References


    This article references 45 other publications.

    1. 1
      Hockenbery, D.; Nunez, G.; Milliman, C.; Schreiber, R. D.; Korsmeyer, S. J. Nature 1990, 348, 334 336
    2. 2
      Vaux, D. L.; Cory, S.; Adams, J. M. Nature 1988, 335, 440 442
    3. 3
      Yunis, J. J. Science 1983, 221, 227 236
    4. 4
      Akagi, T.; Kondo, E.; Yoshino, T. Leuk. Lymphoma 1994, 13, 81 87
    5. 5
      Joensuu, H.; Pylkkanen, L.; Toikkanen, S. Am. J. Pathol. 1994, 145, 1191 1198
    6. 6
      Tjalma, W.; De Cuyper, E.; Weyler, J.; Van Marck, E.; De Pooter, C.; Albertyn, G.; van Dam, P. Am. J. Obstet. Gynecol. 1998, 178, 113 117
    7. 7
      Pezzella, F.; Turley, H.; Kuzu, I.; Tungekar, M. F.; Dunnill, M. S. N. Engl. J. Med. 1993, 329, 690 694
    8. 8
      McDonnell, T. J.; Troncoso, P.; Brisbay, S. M.; Logothetis, C.; Chung, L. W. Cancer Res. 1992, 52, 6940 6944
    9. 9
      Baretton, G. B.; Diebold, J.; Christoforis, G.; Vogt, M.; Muller, C. Cancer 1996, 77, 255 264
    10. 10
      Desoize, B. Anticancer Res. 1994, 14, 2291 2294
    11. 11
      Reed, J. C.; Kitada, S.; Takayama, S.; Miyashita, T. Ann. Oncol. 1994, 5 (Suppl 1) 61 65
    12. 12
      Oltersdorf, T.; Elmore, S. W.; Shoemaker, A. R.; Armstrong, R. C.; Augeri, D. J. Nature 2005, 435, 677 681
    13. 13
      Enyedy, I. J.; Ling, Y.; Nacro, K.; Tomita, Y.; Wu, X. J. Med. Chem. 2001, 44, 4313 4324
    14. 14
      Tzung, S. P.; Kim, K. M.; Basanez, G.; Giedt, C. D.; Simon, J. Nat. Cell Biol. 2001, 3, 183 191
    15. 15
      Marshall, J.; Chen, H.; Yang, D.; Figueira, M.; Bouker, K. B. Ann. Oncol. 2004, 15, 1274 1283
    16. 16
      Klasa, R. J.; Gillum, A. M.; Klem, R. E.; Frankel, S. R. Antisense Nucleic Acid Drug Dev. 2002, 12, 193 213
    17. 17
      Rantanen, S.; Monni, O.; Joensuu, H.; Franssila, K.; Knuutila, S. Leuk. Lymphoma 2001, 42, 1089 1098
    18. 18
      Seto, M.; Jaeger, U.; Hockett, R. D.; Graninger, W.; Bennett, S.; Goldman, P.; Korsmeyer, S. J. EMBO J. 1988, 7, 123 131
    19. 19
      Young, R. L.; Korsmeyer, S. J. Mol. Cell. Biol. 1993, 13, 3686 3697
    20. 20
      Heckman, C.; Mochon, E.; Arcinas, M.; Boxer, L. M. J. Biol. Chem. 1997, 272, 19609 19614
    21. 21
      Gomez-Manzano, C.; Mitlianga, P.; Fueyo, J.; Lee, H. Y.; Hu, M. Cancer Res. 2001, 61, 6693 6697
    22. 22
      Liu, Y. Z.; Boxer, L. M.; Latchman, D. S. Nucleic Acids Res. 1999, 27, 2086 2090
    23. 23
      Dai, J.; Dexheimer, T. S.; Chen, D.; Carver, M.; Ambrus, A.; Jones, R. A.; Yang, D. Z. J. Am. Chem. Soc. 2006, 128, 1096 1098
    24. 24
      Dexheimer, T. S.; Sun, D.; Hurley, L. H. J. Am. Chem. Soc. 2006, 128, 5404 5415
    25. 25
      Onyshchenko, M. I.; Gaynutdinov, T. I.; Englund, E. A.; Appella, D. H.; Neumann, R. D.; Panyutin, I. G. Nucleic Acids Res. 2009, 37, 7570 7580
    26. 26
      Dai, J.; Chen, D.; Jones, R. A.; Hurley, L. H.; Yang, D. Z. Nucleic Acids Res. 2006, 34, 5133 5144
    27. 27
      Siddiqui-Jain, A.; Grand, C. L.; Bearss, D. J.; Hurley, L. H. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 11593 11598
    28. 28
      Agrawal, P.; Hatzakis, E.; Guo, K.; Carver, M.; Yang, D. Nucleic Acids Res. 2013, 41, 10584 10592
    29. 29
      Hatzakis, E.; Okamoto, K.; Yang, D. Z. Biochemistry 2010, 49, 9152 9160
    30. 30
      Balasubramanian, S.; Hurley, L. H.; Neidle, S. Nat. Rev. Drug Discovery 2011, 10, 261 275
    31. 31
      Ambrus, A.; Chen, D.; Dai, J.; Jones, R. A.; Yang, D. Z. Biochemistry 2005, 44, 2048 2058
    32. 32
      Seenisamy, J.; Rezler, E. M.; Powell, T. J.; Tye, D.; Gokhale, V.; Joshi, C. S.; Siddiqui-Jain, A.; Hurley, L. H. J. Am. Chem. Soc. 2004, 126, 8702 8709
    33. 33
      Phan, A. T.; Modi, Y. S.; Patel, D. J. J. Am. Chem. Soc. 2004, 126, 8710 8716
    34. 34
      Hsu, S. T.; Varnai, P.; Bugaut, A.; Reszka, A. P.; Neidle, S.; Balasubramanian, S. J. Am. Chem. Soc. 2009, 131, 13399 13409
    35. 35
      De Armond, R.; Wood, S.; Sun, D. Y.; Hurley, L. H.; Ebbinghaus, S. W. Biochemistry 2005, 44, 16341 16350
    36. 36
      Guo, K.; Pourpak, A.; Beetz-Rogers, K.; Gokhale, V.; Sun, D.; Hurley, L. H. J. Am. Chem. Soc. 2007, 129, 10220 10228
    37. 37
      Palumbo, S. L.; Ebbinghaus, S. W.; Hurley, L. H. J. Am. Chem. Soc. 2009, 131, 10878 10891
    38. 38
      Lim, K. W.; Lacroix, L.; Yue, D. J. E.; Lim, J. K. C.; Lim, J. M. W.; Phan, A. T. J. Am. Chem. Soc. 2010, 132, 12331 12342
    39. 39
      Chen, Y.; Yang, D. Z. Curr. Protoc. Nucleic Acid Chem. 2012, 50, 17.15.11 17.15.17
    40. 40
      Rachwal, P. A.; Brown, T.; Fox, K. R. FEBS Lett. 2007, 581, 1657 1660
    41. 41
      Todd, A. K.; Johnston, M.; Neidle, S. Nucleic Acids Res. 2005, 33, 2901 2907
    42. 42
      Bugaut, A.; Balasubramanian, S. Biochemistry 2008, 47, 689 697
    43. 43
      Mathad, R. I.; Hatzakis, E.; Dai, J.; Yang, D. Z. Nucleic Acids Res. 2011, 39, 9023 9033
    44. 44
      Huppert, J. L.; Balasubramanian, S. Nucleic Acids Res. 2005, 33, 2908 2916
    45. 45
      Guédin, A.; Gros, J.; Alberti, P.; Mergny, J.-L. Nucleic Acids Res. 2010, 38, 7858 7868
  • Supporting Information

    Supporting Information


    Materials and methods, 1D 1H NMR spectra of Pu39 and Pu30 sequences, and H8/H6–H1′ region of the nonexchangeable 2D-NOESY, CD melting and NMR VT studies, of Pu30_3T4AA. This material is available free of charge via the Internet at http://pubs.acs.org.


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.