ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Titanium Nitride-Nickel Nanocomposite as Heterogeneous Catalyst for the Hydrogenolysis of Aryl Ethers

View Author Information
Max-Planck-Institute of Colloids and Interfaces, 14424 Potsdam, Germany
Cite this: J. Am. Chem. Soc. 2014, 136, 5, 1758–1761
Publication Date (Web):January 17, 2014
https://doi.org/10.1021/ja4119412
Copyright © 2014 American Chemical Society

    Article Views

    5877

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (2 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Lignin from biomass can become a sustainable source of aromatic compounds. Its depolymerization can be accomplished through hydrogenolysis, although the development of catalysts based on cheap and abundant metals is lacking. Herein, a sustainable composite based on titanium nitride and nickel is synthesized and employed as catalyst for the hydrogenolysis of aryl ethers as models for lignin. The catalytic activity of the new material during hydrogenation reactions is proven to be superior to that of either component alone. In particular, different aryl ethers could be efficiently converted under relatively mild conditions into aromatic compounds and cycloalkanes within minutes.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Additional experimental and characterization details. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 191 publications.

    1. Jin-Xuan Xie, Yun-Peng Zhao, Jing-Pei Cao, Qiang Li, Wei Jiang, Liang Zhao, Xiao-Yan Zhao, Le-Le Qiu. Catalytic Hydrolysis/Hydrogenolysis of Lignin-Derived Aryl Ethers over Bimetallic Pd-Ni Systems: The Directional Regulation of Reaction Pathways. ACS Sustainable Chemistry & Engineering 2023, 11 (34) , 12724-12738. https://doi.org/10.1021/acssuschemeng.3c02974
    2. Jin Xie, Yongjie Xi, Wensheng Gao, Hong Zhang, Yongkuan Wu, Ruihui Zhang, Hongfang Yang, Yong Peng, Fuwei Li, Zelong Li, Can Li. Hydrogenolysis of Lignin Model Compounds on Ni Nanoparticles Surrounding the Oxygen Vacancy of CeO2. ACS Catalysis 2023, 13 (14) , 9577-9587. https://doi.org/10.1021/acscatal.3c02303
    3. Chaofeng Zhang, Xiaojun Shen, Yongcan Jin, Jinlan Cheng, Cheng Cai, Feng Wang. Catalytic Strategies and Mechanism Analysis Orbiting the Center of Critical Intermediates in Lignin Depolymerization. Chemical Reviews 2023, 123 (8) , 4510-4601. https://doi.org/10.1021/acs.chemrev.2c00664
    4. Dong Xu, Shi-Nan Zhang, Jie-Sheng Chen, Xin-Hao Li. Design of the Synergistic Rectifying Interfaces in Mott–Schottky Catalysts. Chemical Reviews 2023, 123 (1) , 1-30. https://doi.org/10.1021/acs.chemrev.2c00426
    5. Jin-Xuan Xie, Jing-Pei Cao, Wei Jiang, Yun-Peng Zhao, Xiao-Yan Zhao, Chuang Zhang, Hou-Luo Cong, Hong-Cun Bai. Nickel Loaded on Porous Activated Carbons Derived from Waste Sugar Residue with Superior Catalytic Hydrogenolysis Performance. Industrial & Engineering Chemistry Research 2022, 61 (50) , 18297-18307. https://doi.org/10.1021/acs.iecr.2c02827
    6. Yosuke Hara, Rikuo Shigetake, Kazuki Nakanishi, Kazuyoshi Kanamori, Ken Sakaushi. Oxide-on-Oxide Porous Electrodes Revealing Superior Reversible Li+-Coupled Electron-Transfer Properties by Unconventional Heterojunction Effects. ACS Applied Materials & Interfaces 2022, 14 (31) , 35883-35893. https://doi.org/10.1021/acsami.2c06297
    7. Liang Jiang, Guangyue Xu, Yao Fu. Catalytic Cleavage of the C–O Bond in Lignin and Lignin-Derived Aryl Ethers over Ni/AlPyOx Catalysts. ACS Catalysis 2022, 12 (15) , 9473-9485. https://doi.org/10.1021/acscatal.2c01523
    8. Congcong Li, Yoshinao Nakagawa, Mizuho Yabushita, Akira Nakayama, Keiichi Tomishige. Guaiacol Hydrodeoxygenation over Iron–Ceria Catalysts with Platinum Single-Atom Alloy Clusters as a Promoter. ACS Catalysis 2021, 11 (20) , 12794-12814. https://doi.org/10.1021/acscatal.1c03539
    9. Zhe Liu, Yiming Huang, Gang Xiao, Peifeng Li, Haijia Su, Sarina Sarina, Huaiyong Zhu. Visible-Light-Driven Efficient Cleavage of β-O-4 Linkage in a Lignin Model Compound: Phenethyl Phenyl Ether Photocatalyzed by Titanium Nitride Nanoparticles. Energy & Fuels 2021, 35 (16) , 13315-13324. https://doi.org/10.1021/acs.energyfuels.1c01718
    10. Ryland C. Forsythe, Connor P. Cox, Madeleine K. Wilsey, Astrid M. Müller. Pulsed Laser in Liquids Made Nanomaterials for Catalysis. Chemical Reviews 2021, 121 (13) , 7568-7637. https://doi.org/10.1021/acs.chemrev.0c01069
    11. Neha Antil, Ajay Kumar, Naved Akhtar, Rajashree Newar, Wahida Begum, Ashutosh Dwivedi, Kuntal Manna. Aluminum Metal–Organic Framework-Ligated Single-Site Nickel(II)-Hydride for Heterogeneous Chemoselective Catalysis. ACS Catalysis 2021, 11 (7) , 3943-3957. https://doi.org/10.1021/acscatal.0c04379
    12. Atal Shivhare, Deshetti Jampaiah, Suresh K. Bhargava, Adam F. Lee, Rajendra Srivastava, Karen Wilson. Hydrogenolysis of Lignin-Derived Aromatic Ethers over Heterogeneous Catalysts. ACS Sustainable Chemistry & Engineering 2021, 9 (9) , 3379-3407. https://doi.org/10.1021/acssuschemeng.0c06715
    13. NanNan Han, ShiWen Luo, ChengWei Deng, Sheng Zhu, QunJie Xu, YuLin Min. Defect-Rich FeN0.023/Mo2C Heterostructure as a Highly Efficient Bifunctional Catalyst for Overall Water-Splitting. ACS Applied Materials & Interfaces 2021, 13 (7) , 8306-8314. https://doi.org/10.1021/acsami.0c19839
    14. Duoduo Zhang, Hao Cui, Chenyang Zhu, Kefan Lv, Haoran Zhang, Xiaofeng Liu, Jianrong Qiu. Nanoscale Engineering of Optical nonlinearity Based on a Metal Nitride/Oxide Heterostructure. ACS Applied Materials & Interfaces 2021, 13 (1) , 1253-1260. https://doi.org/10.1021/acsami.0c18431
    15. Minghao Zhou, Changzhou Chen, Peng Liu, Haihong Xia, Jing Li, Brajendra K. Sharma, Jianchun Jiang. Catalytic Hydrotreatment of β-O-4 Ether in Lignin: Cleavage of the C–O Bond and Hydrodeoxygenation of Lignin-Derived Phenols in One Pot. ACS Sustainable Chemistry & Engineering 2020, 8 (38) , 14511-14523. https://doi.org/10.1021/acssuschemeng.0c04941
    16. Yang Song, Xuanyu Feng, Justin S. Chen, Carter Brzezinski, Ziwan Xu, Wenbin Lin. Multistep Engineering of Synergistic Catalysts in a Metal–Organic Framework for Tandem C–O Bond Cleavage. Journal of the American Chemical Society 2020, 142 (10) , 4872-4882. https://doi.org/10.1021/jacs.0c00073
    17. Saskia Lange, Dario Formenti, Henrik Lund, Carsten Kreyenschulte, Giovanni Agostini, Stephan Bartling, Stephan Bachmann, Michelangelo Scalone, Kathrin Junge, Matthias Beller. Additive-Free Nickel-Catalyzed Debenzylation Reactions via Hydrogenative C–O and C–N Bond Cleavage. ACS Sustainable Chemistry & Engineering 2019, 7 (20) , 17107-17113. https://doi.org/10.1021/acssuschemeng.9b03354
    18. Aaron Garg, Danielle S. Gonçalves, Yusu Liu, Zhenshu Wang, Linxi Wang, Jong Suk Yoo, Alexie Kolpak, Robert M. Rioux, Daniela Zanchet, Yuriy Román-Leshkov. Impact of Transition Metal Carbide and Nitride Supports on the Electronic Structure of Thin Platinum Overlayers. ACS Catalysis 2019, 9 (8) , 7090-7098. https://doi.org/10.1021/acscatal.9b01272
    19. Tianjin Li, Hongfei Lin, Xinping Ouyang, Xueqing Qiu, Zechen Wan. In Situ Preparation of Ru@N-Doped Carbon Catalyst for the Hydrogenolysis of Lignin To Produce Aromatic Monomers. ACS Catalysis 2019, 9 (7) , 5828-5836. https://doi.org/10.1021/acscatal.9b01452
    20. Haifeng Liu, Leilei Zhu, Anne-Maria Wallraf, Christoph Räuber, Philipp M. Grande, Nico Anders, Christoph Gertler, Bernd Werner, Jürgen Klankermayer, Walter Leitner, Ulrich Schwaneberg. Depolymerization of Laccase-Oxidized Lignin in Aqueous Alkaline Solution at 37 °C. ACS Sustainable Chemistry & Engineering 2019, 7 (13) , 11150-11156. https://doi.org/10.1021/acssuschemeng.9b00204
    21. Yang Song, Zhe Li, Pengfei Ji, Michael Kaufmann, Xuanyu Feng, Justin S. Chen, Cheng Wang, Wenbin Lin. Metal–Organic Framework Nodes Support Single-Site Nickel(II) Hydride Catalysts for the Hydrogenolysis of Aryl Ethers. ACS Catalysis 2019, 9 (2) , 1578-1583. https://doi.org/10.1021/acscatal.8b04611
    22. Seokyoon Moon, Yunseok Lee, Soyoung Choi, Sujin Hong, Seungin Lee, Ah-Hyung A. Park, Youngjune Park. Spectroscopic Investigation of Thermochemical Depolymerization of Lignin Model Compounds in the Presence of Novel Liquidlike Nanoparticle Organic Hybrid Solvents for Efficient Biomass Valorization. Organic Process Research & Development 2018, 22 (12) , 1723-1732. https://doi.org/10.1021/acs.oprd.8b00282
    23. Miao Guo, Juan Peng, Qihua Yang, Can Li. Highly Active and Selective RuPd Bimetallic NPs for the Cleavage of the Diphenyl Ether C–O Bond. ACS Catalysis 2018, 8 (12) , 11174-11183. https://doi.org/10.1021/acscatal.8b03253
    24. Min Wang, Meijiang Liu, Hongji Li, Zhitong Zhao, Xiaochen Zhang, Feng Wang. Dealkylation of Lignin to Phenol via Oxidation–Hydrogenation Strategy. ACS Catalysis 2018, 8 (8) , 6837-6843. https://doi.org/10.1021/acscatal.8b00886
    25. Wei Liu, Li Zhu, Yao Jiang, Xiao-Qin Liu, Lin-Bing Sun. Direct Fabrication of Strong Basic Sites on Ordered Nanoporous Materials: Exploring the Possibility of Metal–Organic Frameworks. Chemistry of Materials 2018, 30 (5) , 1686-1694. https://doi.org/10.1021/acs.chemmater.7b05102
    26. Min Wang, Jiping Ma, Huifang Liu, Nengchao Luo, Zhitong Zhao, and Feng Wang . Sustainable Productions of Organic Acids and Their Derivatives from Biomass via Selective Oxidative Cleavage of C–C Bond. ACS Catalysis 2018, 8 (3) , 2129-2165. https://doi.org/10.1021/acscatal.7b03790
    27. Christopher M. Bernt, Hussaya Manesewan, Megan Chui, Mauricio Boscolo, and Peter C. Ford . Temperature Tuning the Catalytic Reactivity of Cu-Doped Porous Metal Oxides with Lignin Models. ACS Sustainable Chemistry & Engineering 2018, 6 (2) , 2510-2516. https://doi.org/10.1021/acssuschemeng.7b03969
    28. Min Wang, Xiaochen Zhang, Hongji Li, Jianmin Lu, Meijiang Liu, and Feng Wang . Carbon Modification of Nickel Catalyst for Depolymerization of Oxidized Lignin to Aromatics. ACS Catalysis 2018, 8 (2) , 1614-1620. https://doi.org/10.1021/acscatal.7b03475
    29. Samuel H. Gage, Chilan Ngo, Valerio Molinari, Mauro Causà, Ryan M. Richards, Francesco Silvio Gentile, Svitlana Pylypenko, and Davide Esposito . Strong Metal–Support Interactions of TiN– and TiO2–Nickel Nanocomposite Catalysts. The Journal of Physical Chemistry C 2018, 122 (1) , 339-348. https://doi.org/10.1021/acs.jpcc.7b08682
    30. Zhanrong Zhang, Jinliang Song, and Buxing Han . Catalytic Transformation of Lignocellulose into Chemicals and Fuel Products in Ionic Liquids. Chemical Reviews 2017, 117 (10) , 6834-6880. https://doi.org/10.1021/acs.chemrev.6b00457
    31. Shi-Chao Qi, Lu Zhang, Shinji Kudo, Koyo Norinaga, and Jun-ichiro Hayashi . Theoretical Study on Hydrogenolytic Cleavage of Intermonomer Linkages in Lignin. The Journal of Physical Chemistry A 2017, 121 (15) , 2868-2877. https://doi.org/10.1021/acs.jpca.7b00602
    32. Sandy M. G. Lama, Jonas Pampel, Tim-Patrick Fellinger, Vladimir P. Beškoski, Latinka Slavković-Beškoski, Markus Antonietti, and Valerio Molinari . Efficiency of Ni Nanoparticles Supported on Hierarchical Porous Nitrogen-Doped Carbon for Hydrogenolysis of Kraft Lignin in Flow and Batch Systems. ACS Sustainable Chemistry & Engineering 2017, 5 (3) , 2415-2420. https://doi.org/10.1021/acssuschemeng.6b02761
    33. Long Chen, R. Scott Smith, Bruce D. Kay, and Zdenek Dohnalek . Direct Deoxygenation of Phenylmethanol to Methylbenzene and Benzyl Radicals on Rutile TiO2(110). ACS Catalysis 2017, 7 (3) , 2002-2006. https://doi.org/10.1021/acscatal.6b03225
    34. Byung Gon Kim, Changshin Jo, Jaeho Shin, Yeongdong Mun, Jinwoo Lee, and Jang Wook Choi . Ordered Mesoporous Titanium Nitride as a Promising Carbon-Free Cathode for Aprotic Lithium-Oxygen Batteries. ACS Nano 2017, 11 (2) , 1736-1746. https://doi.org/10.1021/acsnano.6b07635
    35. Yuan-Ye Jiang, Ju-Long Jiang, and Yao Fu . Mechanism of Vanadium-Catalyzed Deoxydehydration of Vicinal Diols: Spin-Crossover-Involved Processes. Organometallics 2016, 35 (19) , 3388-3396. https://doi.org/10.1021/acs.organomet.6b00602
    36. Min Wang, Jianmin Lu, Xiaochen Zhang, Lihua Li, Hongji Li, Nengchao Luo, and Feng Wang . Two-Step, Catalytic C–C Bond Oxidative Cleavage Process Converts Lignin Models and Extracts to Aromatic Acids. ACS Catalysis 2016, 6 (9) , 6086-6090. https://doi.org/10.1021/acscatal.6b02049
    37. Andrew M. Ullman, Jonathan W. Brown, Michael E. Foster, François Léonard, Kirsty Leong, Vitalie Stavila, and Mark D. Allendorf . Transforming MOFs for Energy Applications Using the Guest@MOF Concept. Inorganic Chemistry 2016, 55 (15) , 7233-7249. https://doi.org/10.1021/acs.inorgchem.6b00909
    38. Jiayuan Li, Jing Li, Xuemei Zhou, Zhaoming Xia, Wei Gao, Yuanyuan Ma, and Yongquan Qu . Highly Efficient and Robust Nickel Phosphides as Bifunctional Electrocatalysts for Overall Water-Splitting. ACS Applied Materials & Interfaces 2016, 8 (17) , 10826-10834. https://doi.org/10.1021/acsami.6b00731
    39. Valerio Molinari, Guylhaine Clavel, Micaela Graglia, Markus Antonietti, and Davide Esposito . Mild Continuous Hydrogenolysis of Kraft Lignin over Titanium Nitride–Nickel Catalyst. ACS Catalysis 2016, 6 (3) , 1663-1670. https://doi.org/10.1021/acscatal.5b01926
    40. Brianna M. Upton and Andrea M. Kasko . Strategies for the Conversion of Lignin to High-Value Polymeric Materials: Review and Perspective. Chemical Reviews 2016, 116 (4) , 2275-2306. https://doi.org/10.1021/acs.chemrev.5b00345
    41. Vitalie Stavila, Ramakrishnan Parthasarathi, Ryan W. Davis, Farid El Gabaly, Kenneth L. Sale, Blake A. Simmons, Seema Singh, and Mark D. Allendorf . MOF-Based Catalysts for Selective Hydrogenolysis of Carbon–Oxygen Ether Bonds. ACS Catalysis 2016, 6 (1) , 55-59. https://doi.org/10.1021/acscatal.5b02061
    42. Changzhi Li, Xiaochen Zhao, Aiqin Wang, George W. Huber, and Tao Zhang . Catalytic Transformation of Lignin for the Production of Chemicals and Fuels. Chemical Reviews 2015, 115 (21) , 11559-11624. https://doi.org/10.1021/acs.chemrev.5b00155
    43. Tracy L. Lohr, Zhi Li, and Tobin J. Marks . Selective Ether/Ester C–O Cleavage of an Acetylated Lignin Model via Tandem Catalysis. ACS Catalysis 2015, 5 (11) , 7004-7007. https://doi.org/10.1021/acscatal.5b01972
    44. Nishantha Kalutharage and Chae S. Yi . Scope and Mechanistic Analysis for Chemoselective Hydrogenolysis of Carbonyl Compounds Catalyzed by a Cationic Ruthenium Hydride Complex with a Tunable Phenol Ligand. Journal of the American Chemical Society 2015, 137 (34) , 11105-11114. https://doi.org/10.1021/jacs.5b06097
    45. Muhammad Zaheer and Rhett Kempe . Catalytic Hydrogenolysis of Aryl Ethers: A Key Step in Lignin Valorization to Valuable Chemicals. ACS Catalysis 2015, 5 (3) , 1675-1684. https://doi.org/10.1021/cs501498f
    46. Bo Song, Chang-Bin Yu, Wen-Xue Huang, Mu-Wang Chen, and Yong-Gui Zhou . Formal Palladium-Catalyzed Asymmetric Hydrogenolysis of Racemic N-Sulfonyloxaziridines. Organic Letters 2015, 17 (2) , 190-193. https://doi.org/10.1021/ol503118v
    47. . Lignin Depolymerization Technologies. 2023, 29-155. https://doi.org/10.1002/9781394191666.ch3
    48. Wenjing Zou, Hongru Zhou, Min Wang. Photoinduced Biomimetic Room‐Temperature C−O Bond Cleavage over Mn Doped CdS. ChemSusChem 2023, 367 https://doi.org/10.1002/cssc.202300727
    49. Jin-Xuan Xie, Jing-Pei Cao, Wei Jiang, Qiang Li, Yun-Peng Zhao, Chuang Zhang, Xiao-Yan Zhao, Hou-Luo Cong, Hong-Cun Bai. Catalytic hydrogenolysis of diphenyl ether over Ni/AC catalyst: Effect of hydrophilicity modification of activated carbon. Fuel Processing Technology 2023, 247 , 107781. https://doi.org/10.1016/j.fuproc.2023.107781
    50. Tang Son Nguyen, Manh Tu Le, Van Hieu Nguyen. Mild hydrogenolysis of lignin model compound and organosolv lignin over non-noble bimetallic Ni–Fe/TiN catalyst. Biomass and Bioenergy 2023, 174 , 106821. https://doi.org/10.1016/j.biombioe.2023.106821
    51. William H. Gong. BTX from Lignin. 2023, 1859-1907. https://doi.org/10.1002/9783527827992.ch60
    52. Na Ji, Poknam Ri, Xinyong Diao, Yue Rong, Changsok Kim. Supported transition metal (Mo, W) carbide and nitride catalysts for lignin hydrodeoxygenation: interplay of supports, structure, and catalysis. Catalysis Science & Technology 2023, 13 (9) , 2618-2637. https://doi.org/10.1039/D3CY00097D
    53. Xiang Li, Gao‐Wei Wang, Li‐Xia Liu, Chang‐Bin Yu, Yong‐Gui Zhou. Palladium‐Catalyzed Asymmetric Hydrogenolysis of Aryl Triflates for Construction of Axially Chiral Biaryls. Angewandte Chemie International Edition 2023, 62 (16) https://doi.org/10.1002/anie.202301337
    54. Xiang Li, Gao‐Wei Wang, Li‐Xia Liu, Chang‐Bin Yu, Yong‐Gui Zhou. Palladium‐Catalyzed Asymmetric Hydrogenolysis of Aryl Triflates for Construction of Axially Chiral Biaryls. Angewandte Chemie 2023, 135 (16) https://doi.org/10.1002/ange.202301337
    55. Guillaume Carnide, Yohan Champouret, Divyendu Valappil, Constantin Vahlas, Anne‐Françoise Mingotaud, Richard Clergereaux, Myrtil L. Kahn. Secured Nanosynthesis–Deposition Aerosol Process for Composite Thin Films Incorporating Highly Dispersed Nanoparticles. Advanced Science 2023, 10 (5) https://doi.org/10.1002/advs.202204929
    56. Yichao Jin, Xiayan Wu, Sarina Sarina, Yingping Huang*Eric R Waclawik, Huai Yong Zhu. Plasmon Enhanced Nickel(II) Catalyst for Photocatalytic Lignin Model Cleavage. Photocatalysis: Research and Potential 2023, 1 (1) , 1-10. https://doi.org/10.35534/prp.2023.10002
    57. Mitsuharu Chisaka, Toshiyuki Abe, Rong Xiang, Shigeo Maruyama, Hirofumi Daiguji. Enhancement of oxygen reduction reactivity on TiN by tuning the work function via metal doping. Physical Chemistry Chemical Physics 2022, 24 (48) , 29328-29332. https://doi.org/10.1039/D2CP04326B
    58. Yuting Zhou, Grace E. Klinger, Eric L. Hegg, Christopher M. Saffron, James E. Jackson. Skeletal Ni electrode-catalyzed C-O cleavage of diaryl ethers entails direct elimination via benzyne intermediates. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-29555-3
    59. Bo Chen, Zhi-Ze Cao, Zhi-Jun Diao, Liang-Qiu Huang, Si-Jia Zhao, Hong Yuan, Jia-Meng He. Hydrogenolysis of Lignin and C–O Linkages Containing Lignin-Related Compounds over a Macroporous Silicalite-1 Array-Supported Ru-Ni Phosphide Composite. Catalysts 2022, 12 (12) , 1625. https://doi.org/10.3390/catal12121625
    60. Saikat Dutta, Navya Subray Bhat, Harshitha N. Anchan. Nanocatalysis for Renewable Aromatics. 2022, 61-90. https://doi.org/10.1002/9781119772057.ch2
    61. . Direct Lignin C – OAr , ArO – Ar or C – Ar Bonds Cleavage without First Activation of the Adjacent Chemical Bonds. 2022, 147-187. https://doi.org/10.1002/9783527835034.ch6
    62. . Scientific Questions for Lignin Conversion and a Brief Summary of Methods for Lignin Depolymerization. 2022, 79-130. https://doi.org/10.1002/9783527835034.ch4
    63. Keeniya-Gamalage-Gehan C. De Silva, Madeline Finale, Sanchari Chowdhury. Plasmon mediated deposition of Ni on titanium nitride nanoparticles: Applications in enhanced photoreduction of bicarbonate. Materials Research Bulletin 2022, 152 , 111834. https://doi.org/10.1016/j.materresbull.2022.111834
    64. Jiajia He, Dianyong Tang, Changwei Hu, Yafei Luo, Chan Kyung Kim, Zhishan Su. Mechanistic study on the depolymerization of typical lignin-derived oligomers catalyzed by Pd/NbOPO4. Molecular Catalysis 2022, 528 , 112500. https://doi.org/10.1016/j.mcat.2022.112500
    65. Liana Chafran, Ana Elisa Matias, Luciano Paulino Silva. Green Catalysts in the Synthesis of Biopolymers and Biomaterials. ChemistrySelect 2022, 7 (28) https://doi.org/10.1002/slct.202201276
    66. Wei Jiang, Jing-Pei Cao, Chen Zhu, Ming Zhao, Zhong-Hai Ni, Xiao-Yan Zhao, Jin-Xuan Xie, Liang Zhao, Yun-Peng Zhao, Hong-Cun Bai. Catalytic hydrogenation of aromatic ring over ruthenium nanoparticles supported on α-Al2O3 at room temperature. Applied Catalysis B: Environmental 2022, 307 , 121137. https://doi.org/10.1016/j.apcatb.2022.121137
    67. Jie Zhang, Danyang Cao, Shanshan Wang, Xin Feng, Jiahua Zhu, Xiaohua Lu, Liwen Mu. Valorization of industrial lignin as lubricating additives by C–C Bond Cleavage and doping heteroelement-rich groups. Biomass and Bioenergy 2022, 161 , 106470. https://doi.org/10.1016/j.biombioe.2022.106470
    68. Hua Tan, Xuecheng Li, Hao Ma, Xiaolin Yang, Tong Zhan, Wenyu Xie, Suhua Wang, Jiaping Zhu. Facile preparation of N-doped graphitic carbon encapsulated nickel catalysts for transfer hydrogenolysis of lignin β-O-4 model compounds to aromatics. Sustainable Energy & Fuels 2022, 6 (11) , 2745-2754. https://doi.org/10.1039/D2SE00080F
    69. Kai Cui, Xiuge Zhao, Qingpo Peng, Honghui Gong, Xinjia Wei, Jiajia Wang, Manyu Chen, Zhenshan Hou. Catalytic transfer hydrogenolysis of C–O bonds in lignin model compounds without arene hydrogenation. Green Chemical Engineering 2022, 3 (1) , 25-33. https://doi.org/10.1016/j.gce.2021.07.008
    70. Shahid Khan, Tariq Ali, Xianfu Wang, Waseem Iqbal, Tariq Bashir, Wang Chao, He Sun, Hauliang Lu, Chenglin Yan, Rana Muhammad Irfan. Ni3S2@Ni5P4 nanosheets as highly productive catalyst for electrocatalytic oxygen evolution. Chemical Engineering Science 2022, 247 , 117020. https://doi.org/10.1016/j.ces.2021.117020
    71. Liang Zhao, Jing-Pei Cao, Yu-Lei Wei, Wei Jiang, Jin-Xuan Xie, Chuang Zhang, Xiao-Yan Zhao, Ming Zhao, Hong-Cun Bai. Rational synthesis of palladium nanoparticles modified by phosphorous for the conversion of diphenyl ether to KA oil. Applied Catalysis A: General 2022, 630 , 118464. https://doi.org/10.1016/j.apcata.2021.118464
    72. Changzhou Chen, Peng Liu, Minghao Zhou, Jing Li, Haihong Xia, Jianchun Jiang. One-step catalytic hydrotreatment of lignin dimer model compounds to cycloalkane and cycloalcohol by spherical metal-organic framework derived NiLa bimetallic materials. Journal of the Energy Institute 2021, 99 , 105-119. https://doi.org/10.1016/j.joei.2021.08.012
    73. Jie Yang, Mengya Sun, Liang Jiao, Hongqi Dai. Molecular Weight Distribution and Dissolution Behavior of Lignin in Alkaline Solutions. Polymers 2021, 13 (23) , 4166. https://doi.org/10.3390/polym13234166
    74. Oseweuba Valentine Okoro, Andrew Amenaghawon, Daria Podstawczyk, Houman Alimoradi, Mohammad Reza Khalili, Mylene Anwar, Peiman Brouki Milan, Lei Nie, Amin Shavandi. Fruit pomace-lignin as a sustainable biopolymer for biomedical applications. Journal of Cleaner Production 2021, 328 , 129498. https://doi.org/10.1016/j.jclepro.2021.129498
    75. Dong Liu, Zhiheng Li, Chongchong Wu, Linhua Song, PingPing Wu, Mengfei Li, Chen Wang, Zhuowu Men, Zifeng Yan, Ian D. Gates. Exploration of in-situ formed MoSx catalyst for co-hydrodeoxygenation of sawdust and vacuum gas oil in pilot-scale plant. Applied Catalysis B: Environmental 2021, 297 , 120499. https://doi.org/10.1016/j.apcatb.2021.120499
    76. Peifeng Li, Yixuan Ouyang, Gang Xiao, Yilin Zhao, Sarina Sarina, Jan Baeyens, Haijia Su, Huai-Yong Zhu. Non-plasmonic Ni nanoparticles catalyzed visible light selective hydrogenolysis of aryl ethers in lignin under mild conditions. Green Chemistry 2021, 23 (19) , 7780-7789. https://doi.org/10.1039/D1GC01953H
    77. Zhixing Cheng, Weiliang Qi, Cheng Heng Pang, Tiju Thomas, Tao Wu, Siqi Liu, Minghui Yang. Recent Advances in Transition Metal Nitride‐Based Materials for Photocatalytic Applications. Advanced Functional Materials 2021, 31 (26) https://doi.org/10.1002/adfm.202100553
    78. Ming Jiang, Xiaopeng Chen, Linlin Wang, Jiezhen Liang, Xiaojie Wei. Selective hydrogenolysis of aryl ethers over a nitrogen-doped porous carbon supported Ni–CeO 2 catalyst at low temperature. Catalysis Science & Technology 2021, 11 (9) , 3241-3250. https://doi.org/10.1039/D1CY00171J
    79. Xiao Zhou, Xian-Yong Wei, Yu-Miao Ma, Zhi-Min Zong. Highly selective catalytic hydrocracking >CH-O- bridged bonds in an alkali lignin over Ni/Hβ. Fuel 2021, 287 , 119474. https://doi.org/10.1016/j.fuel.2020.119474
    80. Jhonny Alejandro Poveda-Giraldo, Juan Camilo Solarte-Toro, Carlos Ariel Cardona Alzate. The potential use of lignin as a platform product in biorefineries: A review. Renewable and Sustainable Energy Reviews 2021, 138 , 110688. https://doi.org/10.1016/j.rser.2020.110688
    81. Xiaozhen Ma, Jing Chen, Jin Zhu, Ning Yan. Lignin‐Based Polyurethane: Recent Advances and Future Perspectives. Macromolecular Rapid Communications 2021, 42 (3) https://doi.org/10.1002/marc.202000492
    82. Xiaomeng Dou, Wenzhi Li, Chaofeng Zhu, Xiao Jiang, Hou-min Chang, Hasan Jameel. Cleavage of aryl–ether bonds in lignin model compounds using a Co–Zn-beta catalyst. RSC Advances 2020, 10 (71) , 43599-43606. https://doi.org/10.1039/D0RA08121C
    83. Xinchao Wang, Masahiko Arai, Qifan Wu, Chao Zhang, Fengyu Zhao. Hydrodeoxygenation of lignin-derived phenolics – a review on the active sites of supported metal catalysts. Green Chemistry 2020, 22 (23) , 8140-8168. https://doi.org/10.1039/D0GC02610G
    84. Lei-Lei Bie, Fang-Jing Liu, Zhi-Min Zong, Guang-Hui Liu, Jia-Pei Guo, Zhi-Xin Li, Zhi-Hao Ma, Wei-Wei Yan, Xian-Yong Wei. Selective hydrogenolysis of C O bonds in benzyloxybenzene and dealkaline lignin to valuable aromatics over Ni/TiN. Fuel Processing Technology 2020, 209 , 106523. https://doi.org/10.1016/j.fuproc.2020.106523
    85. Xiaorui Gao, Ximeng Liu, Wenjie Zang, Huilong Dong, Yajun Pang, Zongkui Kou, Pengyan Wang, Zhenghui Pan, Sunrui Wei, Shichun Mu, John Wang. Synergizing in-grown Ni3N/Ni heterostructured core and ultrathin Ni3N surface shell enables self-adaptive surface reconfiguration and efficient oxygen evolution reaction. Nano Energy 2020, 78 , 105355. https://doi.org/10.1016/j.nanoen.2020.105355
    86. Ashish Kumar Kar, Surinder Pal Kaur, T. J. Dhilip Kumar, Rajendra Srivastava. Efficient hydrogenolysis of aryl ethers over Ce-MOF supported Pd NPs under mild conditions: mechanistic insight using density functional theoretical calculations. Catalysis Science & Technology 2020, 10 (20) , 6892-6901. https://doi.org/10.1039/D0CY01279C
    87. Yao Yuan, Samira Adimi, Xuyun Guo, Tiju Thomas, Ye Zhu, Haichuan Guo, G. Sudha Priyanga, Pilsun Yoo, Jiacheng Wang, Jian Chen, Peilin Liao, J. Paul Attfield, Minghui Yang. A Surface‐Oxide‐Rich Activation Layer (SOAL) on Ni 2 Mo 3 N for a Rapid and Durable Oxygen Evolution Reaction. Angewandte Chemie 2020, 132 (41) , 18192-18197. https://doi.org/10.1002/ange.202008116
    88. Yao Yuan, Samira Adimi, Xuyun Guo, Tiju Thomas, Ye Zhu, Haichuan Guo, G. Sudha Priyanga, Pilsun Yoo, Jiacheng Wang, Jian Chen, Peilin Liao, J. Paul Attfield, Minghui Yang. A Surface‐Oxide‐Rich Activation Layer (SOAL) on Ni 2 Mo 3 N for a Rapid and Durable Oxygen Evolution Reaction. Angewandte Chemie International Edition 2020, 59 (41) , 18036-18041. https://doi.org/10.1002/anie.202008116
    89. Swathi Mukundan, Jorge Beltramini, Krishnapillai Girish Kumar, Devika Sudha Ravindran. Surface engineering of carbon supported CoMoS– an effective nanocatalyst for selective deoxygenation of lignin derived phenolics to arenes. Applied Catalysis A: General 2020, 606 , 117811. https://doi.org/10.1016/j.apcata.2020.117811
    90. Wei Zhou, Ying Li, Xiaofei Wang, Dawei Yao, Yue Wang, Shouying Huang, Wei Li, Yujun Zhao, Shengping Wang, Xinbin Ma. Insight into the nature of Brönsted acidity of Pt-(WOx)n-H model catalysts in glycerol hydrogenolysis. Journal of Catalysis 2020, 388 , 154-163. https://doi.org/10.1016/j.jcat.2020.05.019
    91. Changzhou Chen, Peng Liu, Haihong Xia, Minghao Zhou, Jiaping Zhao, Brajendra K. Sharma, Jianchun Jiang. Photocatalytic Cleavage of β-O-4 Ether Bonds in Lignin over Ni/TiO2. Molecules 2020, 25 (9) , 2109. https://doi.org/10.3390/molecules25092109
    92. Maslin Chotirach, Supawan Tantayanon, Duangamol Nuntasri Tungasmita, Junliang Sun, Sukkaneste Tungasmita. Synthesis and characterizations of TiN–SBA-15 mesoporous materials for CO 2 dry reforming enhancement. Pure and Applied Chemistry 2020, 92 (4) , 545-556. https://doi.org/10.1515/pac-2019-0806
    93. Yao Yuan, Jiacheng Wang, Samira Adimi, Hangjia Shen, Tiju Thomas, Ruguang Ma, J. Paul Attfield, Minghui Yang. Zirconium nitride catalysts surpass platinum for oxygen reduction. Nature Materials 2020, 19 (3) , 282-286. https://doi.org/10.1038/s41563-019-0535-9
    94. Yidong Zou, Xinran Zhou, Junhao Ma, Xuanyu Yang, Yonghui Deng. Recent advances in amphiphilic block copolymer templated mesoporous metal-based materials: assembly engineering and applications. Chemical Society Reviews 2020, 49 (4) , 1173-1208. https://doi.org/10.1039/C9CS00334G
    95. Wei Lv, Yuhe Liao, Yuting Zhu, Jing Liu, Changhui Zhu, Chenguang Wang, Ying Xu, Qi Zhang, Guanyi Chen, Longlong Ma. The effect of Ru/C and MgCl2 on the cleavage of inter- and intra-molecular linkages during cornstalk hydrolysis residue valorization. Cellulose 2020, 27 (2) , 799-823. https://doi.org/10.1007/s10570-019-02799-x
    96. Yinglei Han, Mortaza Gholizadeh, Chi-Cong Tran, Serge Kaliaguine, Chun-Zhu Li, Mariefel Olarte, Manuel Garcia-Perez. Hydrotreatment of pyrolysis bio-oil: A review. Fuel Processing Technology 2019, 195 , 106140. https://doi.org/10.1016/j.fuproc.2019.106140
    97. Min Wang, Feng Wang. Catalytic Scissoring of Lignin into Aryl Monomers. Advanced Materials 2019, 31 (50) https://doi.org/10.1002/adma.201901866
    98. Pengfei Han, Tana Tana, Qi Xiao, Sarina Sarina, Eric R. Waclawik, Daniel E. Gómez, Huaiyong Zhu. Promoting Ni(II) Catalysis with Plasmonic Antennas. Chem 2019, 5 (11) , 2879-2899. https://doi.org/10.1016/j.chempr.2019.07.022
    99. Chao Liu, Shiliang Wu, Huiyan Zhang, Rui Xiao. Catalytic oxidation of lignin to valuable biomass-based platform chemicals: A review. Fuel Processing Technology 2019, 191 , 181-201. https://doi.org/10.1016/j.fuproc.2019.04.007
    100. Xi Chen, Ning Yan. Nanoparticle Design for the Catalytic Valorization of Lignocellulosic Biomass. 2019, 184-206. https://doi.org/10.1039/9781788016292-00184
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect