ACS Publications. Most Trusted. Most Cited. Most Read
Absolute and Direct MicroRNA Quantification Using DNA–Gold Nanoparticle Probes
My Activity

Figure 1Loading Img
    Communication

    Absolute and Direct MicroRNA Quantification Using DNA–Gold Nanoparticle Probes
    Click to copy article linkArticle link copied!

    View Author Information
    Center for Biomolecular Nanotechnologies@UniLe, Istituto Italiano di Tecnologia (IIT),Via Barsanti, 73010 Arnesano, Lecce, Italy
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2014, 136, 6, 2264–2267
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja412152x
    Published February 3, 2014
    Copyright © 2014 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    DNA–gold nanoparticle probes are implemented in a simple strategy for direct microRNA (miRNA) quantification. Fluorescently labeled DNA-probe strands are immobilized on PEGylated gold nanoparticles (AuNPs). In the presence of target miRNA, DNA–RNA heteroduplexes are formed and become substrate for the endonuclease DSN (duplex-specific nuclease). Enzymatic hydrolysis of the DNA strands yields a fluorescence signal due to diffusion of the fluorophores away from the gold surface. We show that the molecular design of our DNA–AuNP probes, with the DNA strands immobilized on top of the PEG-based passivation layer, results in nearly unaltered enzymatic activity toward immobilized heteroduplexes compared to substrates free in solution. The assay, developed in a real-time format, allows absolute quantification of as little as 0.2 fmol of miR-203. We also show the application of the assay for direct quantification of cancer-related miR-203 and miR-21 in samples of extracted total RNA from cell cultures. The possibility of direct and absolute quantification may significantly advance the use of microRNAs as biomarkers in the clinical praxis.

    Copyright © 2014 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Description of materials, methods, and full experimental procedures. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 364 publications.

    1. Kangdi He, Zhen Cheng, Xianmiao Zhang, Zhiling Qian, Jia Chen, Bingqian Li, Fayan Meng, Shengrong Yu, Keqi Tang, Yong-Xiang Wu. Activating Two-Photon Silica Nanoamplifier-Based CHA and FRET for Accurate Ratiometric Bioimaging of Intracellular MicroRNA. Analytical Chemistry 2024, 96 (41) , 16338-16345. https://doi.org/10.1021/acs.analchem.4c03630
    2. Ishmeal Kwaku Duah, Hong Tang, Peng Zhang. Development of a Novel System Consisting of a Reductase-Like Nanozyme and the Reaction of Resazurin and Ammonia Borane for Sensitive Fluorometric Sensing. Analytical Chemistry 2024, 96 (36) , 14424-14432. https://doi.org/10.1021/acs.analchem.4c02121
    3. William L. Whitehouse, Louisa H. Y. Lo, Andrew B. Kinghorn, Simon C. C. Shiu, Julian A. Tanner. Structure-Switching Electrochemical Aptasensor for Rapid, Reagentless, and Single-Step Nanomolar Detection of C-Reactive Protein. ACS Applied Bio Materials 2024, 7 (6) , 3721-3730. https://doi.org/10.1021/acsabm.4c00061
    4. Xiaoxue Xi, Zhen Wu, Xiuhua Zhang, Yuebin Li, Yuandi Zhao, Wei Wen, Shengfu Wang. Endogenous Protease-Activatable Nanosensor Based on PNA–Peptide–DNA Engineering for AND-Gated and Dual-Model Detection of MicroRNA in Single Living Tumor Cells. ACS Applied Materials & Interfaces 2023, 15 (18) , 21917-21928. https://doi.org/10.1021/acsami.3c02012
    5. Zhiwei Sun, Juan Li, Yufei Yang, Yao Tong, Hui Li, Chuanxin Wang, Lutao Du, Yanyan Jiang. Ratiometric Fluorescent Biosensor Based on Self-Assembled Fluorescent Gold Nanoparticles and Duplex-Specific Nuclease-Assisted Signal Amplification for Sensitive Detection of Exosomal miRNA. Bioconjugate Chemistry 2022, 33 (9) , 1698-1706. https://doi.org/10.1021/acs.bioconjchem.2c00309
    6. Jingyi Sun, Yanan Song, Mengyue Wang, Peng Zhao, Feng Gao, Junqi Li, Mingfeng Yang, Hui Yuan, Baoliang Sun, Ying Wang. Quantitative and Noninvasive Detection of SAH-Related MiRNA in Cerebrospinal Fluids In Vivo Using SERS Sensors Based on Acupuncture-Based Technology. ACS Applied Materials & Interfaces 2022, 14 (32) , 37088-37100. https://doi.org/10.1021/acsami.2c03436
    7. Yanfei Zhang, Jun Chen, Huihui Yang, Wen Yin, Chunrong Li, Yuzhi Xu, Si-Yang Liu, Zong Dai, Xiaoyong Zou. Light-Controlled Recruitable Hybridization Chain Reaction on Exosome Vehicles for Highly Sensitive MicroRNA Imaging in Living Cells. Analytical Chemistry 2022, 94 (27) , 9665-9673. https://doi.org/10.1021/acs.analchem.2c00974
    8. Lin Yang, Sha Yu, Yongcun Yan, Sai Bi, Jun-Jie Zhu. Upconversion Nanoparticle@Au Core–Satellite Assemblies for In Situ Amplified Imaging of MicroRNA in Living Cells and Combined Cancer Phototherapy. Analytical Chemistry 2022, 94 (19) , 7075-7083. https://doi.org/10.1021/acs.analchem.2c00477
    9. Geng Yang, Ting Song, Meng Wang, Mengyue Li, QingQing Su, Zhengxin Xie, Xiaoxue Xie, Hanxi Zhang, Yi Feng, Chunhui Wu, Yiyao Liu, Hong Yang. Recent Advancements in Nanosystem-Based Molecular Beacons for RNA Detection and Imaging. ACS Applied Nano Materials 2022, 5 (3) , 3065-3086. https://doi.org/10.1021/acsanm.1c03966
    10. Yixin Liu, Binxiao Li, Ya-Jun Wang, Zihui Fan, Yang Du, Bin Li, Yan-Jun Liu, Baohong Liu. In Situ Single-Molecule Imaging of MicroRNAs in Switchable Migrating Cells under Biomimetic Confinement. Analytical Chemistry 2022, 94 (9) , 4030-4038. https://doi.org/10.1021/acs.analchem.1c05223
    11. Qianlong Wang, Lancong Liu, Xiaoyi Chen, Tiantian Wang, Hua Zhou, Hui Huang, Linsen Qing, Pei Luo. Noninvasive Prognosis of Postmyocardial Infarction Using Urinary miRNA Ultratrace Detection Based on Single-Target DNA-Functionalized AuNPs. ACS Applied Materials & Interfaces 2022, 14 (3) , 3633-3642. https://doi.org/10.1021/acsami.1c17883
    12. Khouloud Djebbi, Biao Shi, Ting Weng, Mohamed Bahri, Mohamed Amin Elaguech, Jin Liu, Chaker Tlili, Deqiang Wang. Highly Sensitive Fluorescence Assay for miRNA Detection: Investigation of the DNA Spacer Effect on the DSN Enzyme Activity toward Magnetic-Bead-Tethered Probes. ACS Omega 2022, 7 (2) , 2224-2233. https://doi.org/10.1021/acsomega.1c05775
    13. Shaocheng Liu, Jingyi Wu, Man He, Beibei Chen, Qi Kang, Yan Xu, Xiao Yin, Bin Hu. DNA Tetrahedron-Based MNAzyme for Sensitive Detection of microRNA with Elemental Tagging. ACS Applied Materials & Interfaces 2021, 13 (49) , 59076-59084. https://doi.org/10.1021/acsami.1c17234
    14. Chang Xue, Mengxue Luo, Lei Wang, Congcong Li, Shuyao Hu, Xin Yu, Pei Yuan, Zai-Sheng Wu. Stimuli-Responsive Autonomous-Motion Molecular Machine for Sensitive Simultaneous Fluorescence Imaging of Intracellular MicroRNAs. Analytical Chemistry 2021, 93 (28) , 9869-9877. https://doi.org/10.1021/acs.analchem.1c01856
    15. Zhen Zhang, Yuqiang Hu, Wenqian Yuan, Minghao Hu, Yuhan Deng, Xianjin Xiao, Tongbo Wu. Endonuclease IV-Regulated DNAzyme Motor for Universal Single-nucleotide Variation Discrimination. Analytical Chemistry 2021, 93 (28) , 9939-9948. https://doi.org/10.1021/acs.analchem.1c02230
    16. Duoduo Zhang, Kan Wang, Wei Wei, Yong Liu, Songqin Liu. Multifunctional Plasmonic Core-Satellites Nanoprobe for Cancer Diagnosis and Therapy Based on a Cascade Reaction Induced by MicroRNA. Analytical Chemistry 2021, 93 (27) , 9521-9530. https://doi.org/10.1021/acs.analchem.1c01539
    17. Shengyu Chen, Jingjin Zhao, Chunhuan Xu, Ivan Yu. Sakharov, Shulin Zhao. Absolute Quantification of MicroRNAs in a Single Cell with Chemiluminescence Detection Based on Rolling Circle Amplification on a Microchip Platform. Analytical Chemistry 2021, 93 (26) , 9218-9225. https://doi.org/10.1021/acs.analchem.1c01463
    18. Xun Liu, Xingxiang Wang, Sujuan Ye, Ronghua Li, Hongxia Li. A One–Two–Three Multifunctional System for Enhanced Imaging and Detection of Intracellular MicroRNA and Chemogene Therapy. ACS Applied Materials & Interfaces 2021, 13 (24) , 27825-27835. https://doi.org/10.1021/acsami.1c04353
    19. Bo Liu, Ping Zhou, Kaiye Wang, Shaohua Gong, Mingming Luan, Na Li, Bo Tang. Avoiding False Positive Signals: A Powerful and Reliable Au–Se Dual-Color Probe. ACS Sensors 2021, 6 (5) , 1949-1955. https://doi.org/10.1021/acssensors.1c00412
    20. Yan-Li Zhu, Yan-Mei Lian, Ji-Kai Wang, Zeng-Ping Chen, Ru-Qin Yu. Highly Sensitive and Specific Mass Spectrometric Platform for miRNA Detection Based on the Multiple-Metal-Nanoparticle Tagging Strategy. Analytical Chemistry 2021, 93 (14) , 5839-5848. https://doi.org/10.1021/acs.analchem.1c00065
    21. Ningning Wang, Lizhen Chen, Weiwei Chen, Huangxian Ju. Potential- and Color-Resolved Electrochemiluminescence of Polymer Dots for Array Imaging of Multiplex MicroRNAs. Analytical Chemistry 2021, 93 (12) , 5327-5333. https://doi.org/10.1021/acs.analchem.1c00620
    22. Pravin Hivare, Chinmaya Panda, Sharad Gupta, Dhiraj Bhatia. Programmable DNA Nanodevices for Applications in Neuroscience. ACS Chemical Neuroscience 2021, 12 (3) , 363-377. https://doi.org/10.1021/acschemneuro.0c00723
    23. Jihua Zhang, Hao Zhang, Sujuan Ye, Xingxiang Wang, Lindong Ma. Fluorescent-Raman Binary Star Ratio Probe for MicroRNA Detection and Imaging in Living Cells. Analytical Chemistry 2021, 93 (3) , 1466-1471. https://doi.org/10.1021/acs.analchem.0c03491
    24. Dana Al Sulaiman, Sarah J. Shapiro, Jose Gomez-Marquez, Patrick S. Doyle. High-Resolution Patterning of Hydrogel Sensing Motifs within Fibrous Substrates for Sensitive and Multiplexed Detection of Biomarkers. ACS Sensors 2021, 6 (1) , 203-211. https://doi.org/10.1021/acssensors.0c02121
    25. Xiaoqi Tao, Xiaoxi Chang, Xulin Wan, Yina Guo, Yaqing Zhang, Ziyi Liao, Yang Song, Erqun Song. Impact of Protein Corona on Noncovalent Molecule–Gold Nanoparticle-Based Sensing. Analytical Chemistry 2020, 92 (22) , 14990-14998. https://doi.org/10.1021/acs.analchem.0c02850
    26. Pierluigi Valente, Darya Kiryushko, Silvio Sacchetti, Pedro Machado, Claire M. Cobley, Vincenzo Mangini, Alexandra E. Porter, Joachim P. Spatz, Roland A. Fleck, Fabio Benfenati, Roberto Fiammengo. Conopeptide-Functionalized Nanoparticles Selectively Antagonize Extrasynaptic N-Methyl-d-aspartate Receptors and Protect Hippocampal Neurons from Excitotoxicity In Vitro. ACS Nano 2020, 14 (6) , 6866-6877. https://doi.org/10.1021/acsnano.0c00866
    27. Peng Shen, Guihong Zhao, Yuqian Liu, Qinyu Ge, Qingjiang Sun. Liposomal Spherical Nucleic Acid Scaffolded Site-Selective Hybridization of Nanoparticles for Visual Detection of MicroRNAs. ACS Applied Bio Materials 2020, 3 (3) , 1656-1665. https://doi.org/10.1021/acsabm.9b01222
    28. Guangyu Tao, Tiancheng Lai, Xiao Xu, Yurou Ma, Xi Wu, Xiaojing Pei, Feng Liu, Na Li. Colocalized Particle Counting Platform for Zeptomole Level Multiplexed Quantification. Analytical Chemistry 2020, 92 (5) , 3697-3706. https://doi.org/10.1021/acs.analchem.9b04823
    29. Jia-Jia Wang, Caishang Zheng, Yong-Zhong Jiang, Zhenhua Zheng, Miao Lin, Yi Lin, Zhi-Ling Zhang, Hanzhong Wang, Dai-Wen Pang. One-Step Monitoring of Multiple Enterovirus 71 Infection-Related MicroRNAs Using Core–Satellite Structure of Magnetic Nanobeads and Multicolor Quantum Dots. Analytical Chemistry 2020, 92 (1) , 830-837. https://doi.org/10.1021/acs.analchem.9b03317
    30. Liman Xian, Feng Xu, Jianzhou Liu, Ning Xu, Haidong Li, Haoying Ge, Kun Shao, Jiangli Fan, Guishan Xiao, Xiaojun Peng. MicroRNA Detection with Turnover Amplification via Hybridization-Mediated Staudinger Reduction for Pancreatic Cancer Diagnosis. Journal of the American Chemical Society 2019, 141 (51) , 20490-20497. https://doi.org/10.1021/jacs.9b11272
    31. Lin Yang, Keying Zhang, Sai Bi, Jun-Jie Zhu. Dual-Acceptor-Based Upconversion Luminescence Nanosensor with Enhanced Quenching Efficiency for in Situ Imaging and Quantification of MicroRNA in Living Cells. ACS Applied Materials & Interfaces 2019, 11 (42) , 38459-38466. https://doi.org/10.1021/acsami.9b12254
    32. Shengping Wen, Yu Su, Chuanxiang Dai, Junran Jia, Gao-Chao Fan, Li-Ping Jiang, Rong-Bin Song, Jun-Jie Zhu. Plasmon Coupling-Enhanced Raman Sensing Platform Integrated with Exonuclease-Assisted Target Recycling Amplification for Ultrasensitive and Selective Detection of microRNA-21. Analytical Chemistry 2019, 91 (19) , 12298-12306. https://doi.org/10.1021/acs.analchem.9b02476
    33. Yuqiong Kuang, Jianxiang Cao, Feifei Xu, Yun Chen. Duplex-Specific Nuclease-Mediated Amplification Strategy for Mass Spectrometry Quantification of MiRNA-200c in Breast Cancer Stem Cells. Analytical Chemistry 2019, 91 (14) , 8820-8826. https://doi.org/10.1021/acs.analchem.8b04468
    34. Na Zhang, Sujuan Ye, Zhenxing Wang, Ronghua Li, Menglei Wang. A Dual-Signal Twinkling Probe for Fluorescence-SERS Dual Spectrum Imaging and Detection of miRNA in Single Living Cell via Absolute Value Coupling of Reciprocal Signals. ACS Sensors 2019, 4 (4) , 924-930. https://doi.org/10.1021/acssensors.9b00031
    35. Mengxi Zhou, Xucong Teng, Yue Li, Ruijie Deng, Jinghong Li. Cascade Transcription Amplification of RNA Aptamer for Ultrasensitive MicroRNA Detection. Analytical Chemistry 2019, 91 (8) , 5295-5302. https://doi.org/10.1021/acs.analchem.9b00124
    36. Mei-Xing Li, Wei Zhao, Hui Wang, Xiang-Ling Li, Cong-Hui Xu, Hong-Yuan Chen, Jing-Juan Xu. Dynamic Single Molecular Rulers: Toward Quantitative Detection of MicroRNA-21 in Living Cells. Analytical Chemistry 2018, 90 (24) , 14255-14259. https://doi.org/10.1021/acs.analchem.8b03322
    37. Mengjie Li, Xin Tian, Wenbin Liang, Ruo Yuan, Yaqin Chai. Ultrasensitive Photoelectrochemical Assay with PTB7-Th/CdTe Quantum Dots Sensitized Structure as Signal Tag and Benzo-4-chlorohexadienone Precipitate as Efficient Quencher. Analytical Chemistry 2018, 90 (24) , 14521-14526. https://doi.org/10.1021/acs.analchem.8b04370
    38. Xiangtang Li, Pratik Rout, Rui Xu, Li Pan, Paul B. Tchounwou, Yonggang Ma, Yi-Ming Liu. Quantification of MicroRNAs by Coupling Cyclic Enzymatic Amplification with Microfluidic Voltage-Assisted Liquid Desorption Electrospray Ionization Mass Spectrometry. Analytical Chemistry 2018, 90 (22) , 13663-13669. https://doi.org/10.1021/acs.analchem.8b04008
    39. Linxiu Cheng, Zhikun Zhang, Duo Zuo, Wenfeng Zhu, Jie Zhang, Qingdao Zeng, Dayong Yang, Min Li, Yuliang Zhao. Ultrasensitive Detection of Serum MicroRNA Using Branched DNA-Based SERS Platform Combining Simultaneous Detection of α-Fetoprotein for Early Diagnosis of Liver Cancer. ACS Applied Materials & Interfaces 2018, 10 (41) , 34869-34877. https://doi.org/10.1021/acsami.8b10252
    40. Ye Wang, Philip D. Howes, Eunjung Kim, Christopher D. Spicer, Michael R. Thomas, Yiyang Lin, Spencer W. Crowder, Isaac J. Pence, Molly M. Stevens. Duplex-Specific Nuclease-Amplified Detection of MicroRNA Using Compact Quantum Dot–DNA Conjugates. ACS Applied Materials & Interfaces 2018, 10 (34) , 28290-28300. https://doi.org/10.1021/acsami.8b07250
    41. Xin Tang, Ruijie Deng, Yupeng Sun, Xiaojun Ren, Mengxi Zhou, Jinghong Li. Amplified Tandem Spinach-Based Aptamer Transcription Enables Low Background miRNA Detection. Analytical Chemistry 2018, 90 (16) , 10001-10008. https://doi.org/10.1021/acs.analchem.8b02471
    42. Ruiyan Guo, Fangfei Yin, Yudie Sun, Lan Mi, Lin Shi, Zhijin Tian, Tao Li. Ultrasensitive Simultaneous Detection of Multiplex Disease-Related Nucleic Acids Using Double-Enhanced Surface-Enhanced Raman Scattering Nanosensors. ACS Applied Materials & Interfaces 2018, 10 (30) , 25770-25778. https://doi.org/10.1021/acsami.8b06757
    43. Mengjie Li, Chuan Xiong, Yingning Zheng, Wenbin Liang, Ruo Yuan, Yaqin Chai. Ultrasensitive Photoelectrochemical Biosensor Based on DNA Tetrahedron as Nanocarrier for Efficient Immobilization of CdTe QDs-Methylene Blue as Signal Probe with Near-Zero Background Noise. Analytical Chemistry 2018, 90 (13) , 8211-8216. https://doi.org/10.1021/acs.analchem.8b01641
    44. Mei-Xing Li, Cong-Hui Xu, Nan Zhang, Guang-Sheng Qian, Wei Zhao, Jing-Juan Xu, Hong-Yuan Chen. Exploration of the Kinetics of Toehold-Mediated Strand Displacement via Plasmon Rulers. ACS Nano 2018, 12 (4) , 3341-3350. https://doi.org/10.1021/acsnano.7b08673
    45. Qian Zhao, Jiafang Piao, Weipan Peng, Yang Wang, Bo Zhang, Xiaoqun Gong, and Jin Chang . Simple and Sensitive Quantification of MicroRNAs via PS@Au Microspheres-Based DNA Probes and DSN-Assisted Signal Amplification Platform. ACS Applied Materials & Interfaces 2018, 10 (4) , 3324-3332. https://doi.org/10.1021/acsami.7b16733
    46. Bo Tian, Zhen Qiu, Jing Ma, Marco Donolato, Mikkel Fougt Hansen, Peter Svedlindh, and Mattias Strömberg . On-Particle Rolling Circle Amplification-Based Core–Satellite Magnetic Superstructures for MicroRNA Detection. ACS Applied Materials & Interfaces 2018, 10 (3) , 2957-2964. https://doi.org/10.1021/acsami.7b16293
    47. Xiangmin Miao, Zhiyuan Cheng, Haiyan Ma, Zongbing Li, Ning Xue, and Po Wang . Label-Free Platform for MicroRNA Detection Based on the Fluorescence Quenching of Positively Charged Gold Nanoparticles to Silver Nanoclusters. Analytical Chemistry 2018, 90 (2) , 1098-1103. https://doi.org/10.1021/acs.analchem.7b01991
    48. Xiaojing Pei, Haoyan Yin, Tiancheng Lai, Junlong Zhang, Feng Liu, Xiao Xu, and Na Li . Multiplexed Detection of Attomoles of Nucleic Acids Using Fluorescent Nanoparticle Counting Platform. Analytical Chemistry 2018, 90 (2) , 1376-1383. https://doi.org/10.1021/acs.analchem.7b04551
    49. Jing Liu, Meirong Cui, Hong Zhou, and Wenrong Yang . DNAzyme Based Nanomachine for in Situ Detection of MicroRNA in Living Cells. ACS Sensors 2017, 2 (12) , 1847-1853. https://doi.org/10.1021/acssensors.7b00710
    50. Yi Liu, Tian Shen, Jing Li, Hang Gong, Chunyan Chen, Xiaoming Chen, and Changqun Cai . Ratiometric Fluorescence Sensor for the MicroRNA Determination by Catalyzed Hairpin Assembly. ACS Sensors 2017, 2 (10) , 1430-1434. https://doi.org/10.1021/acssensors.7b00313
    51. Wei Ma, Pan Fu, Maozhong Sun, Liguang Xu, Hua Kuang, and Chuanlai Xu . Dual Quantification of MicroRNAs and Telomerase in Living Cells. Journal of the American Chemical Society 2017, 139 (34) , 11752-11759. https://doi.org/10.1021/jacs.7b03617
    52. Shasha Lu, Shuang Wang, Jiahui Zhao, Jian Sun, and Xiurong Yang . Fluorescence Light-Up Biosensor for MicroRNA Based on the Distance-Dependent Photoinduced Electron Transfer. Analytical Chemistry 2017, 89 (16) , 8429-8436. https://doi.org/10.1021/acs.analchem.7b01900
    53. Alma D. Castañeda, Nicholas J. Brenes, Aditya Kondajji, and Richard M. Crooks . Detection of microRNA by Electrocatalytic Amplification: A General Approach for Single-Particle Biosensing. Journal of the American Chemical Society 2017, 139 (22) , 7657-7664. https://doi.org/10.1021/jacs.7b03648
    54. Fei Ma, Meng Liu, Bo Tang, and Chun-yang Zhang . Sensitive Quantification of MicroRNAs by Isothermal Helicase-Dependent Amplification. Analytical Chemistry 2017, 89 (11) , 6182-6187. https://doi.org/10.1021/acs.analchem.7b01113
    55. Sujuan Ye, Xiaoxiao Li, Menglei Wang, and Bo Tang . Fluorescence and SERS Imaging for the Simultaneous Absolute Quantification of Multiple miRNAs in Living Cells. Analytical Chemistry 2017, 89 (9) , 5124-5130. https://doi.org/10.1021/acs.analchem.7b00697
    56. Wen Zhou, Qiang Li, Huiqiao Liu, Jie Yang, and Dingbin Liu . Building Electromagnetic Hot Spots in Living Cells via Target-Triggered Nanoparticle Dimerization. ACS Nano 2017, 11 (4) , 3532-3541. https://doi.org/10.1021/acsnano.7b00531
    57. Sungi Kim, Jeong-Eun Park, Woosung Hwang, Jinyoung Seo, Young-Kwang Lee, Jae-Ho Hwang, and Jwa-Min Nam . Optokinetically Encoded Nanoprobe-Based Multiplexing Strategy for MicroRNA Profiling. Journal of the American Chemical Society 2017, 139 (9) , 3558-3566. https://doi.org/10.1021/jacs.7b01311
    58. Bo Tian, Jing Ma, Zhen Qiu, Teresa Zardán Gómez de la Torre, Marco Donolato, Mikkel Fougt Hansen, Peter Svedlindh, and Mattias Strömberg . Optomagnetic Detection of MicroRNA Based on Duplex-Specific Nuclease-Assisted Target Recycling and Multilayer Core-Satellite Magnetic Superstructures. ACS Nano 2017, 11 (2) , 1798-1806. https://doi.org/10.1021/acsnano.6b07763
    59. Eunjung Kim, Philip D. Howes, Spencer W. Crowder, and Molly M. Stevens . Multi-Amplified Sensing of MicroRNA by a Small DNA Fragment-Driven Enzymatic Cascade Reaction. ACS Sensors 2017, 2 (1) , 111-118. https://doi.org/10.1021/acssensors.6b00601
    60. Kai Zhang, Haifeng Dong, Wenhao Dai, Xiangdan Meng, Huiting Lu, Tingting Wu, and Xueji Zhang . Fabricating Pt/Sn–In2O3 Nanoflower with Advanced Oxygen Reduction Reaction Performance for High-Sensitivity MicroRNA Electrochemical Detection. Analytical Chemistry 2017, 89 (1) , 648-655. https://doi.org/10.1021/acs.analchem.6b02858
    61. Fang Xu, Haifeng Dong, Yu Cao, Huiting Lu, Xiangdan Meng, Wenhao Dai, Xueji Zhang, Khalid Abdullah Al-Ghanim, and Shahid Mahboob . Ultrasensitive and Multiple Disease-Related MicroRNA Detection Based on Tetrahedral DNA Nanostructures and Duplex-Specific Nuclease-Assisted Signal Amplification. ACS Applied Materials & Interfaces 2016, 8 (49) , 33499-33505. https://doi.org/10.1021/acsami.6b12214
    62. Eoin Brennan, Roisin Moriarty, Tia E. Keyes, and Robert J. Forster . Detection and Live-Cell Imaging of a Micro-RNA Associated with the Cancer Neuroblastoma. Bioconjugate Chemistry 2016, 27 (10) , 2332-2336. https://doi.org/10.1021/acs.bioconjchem.6b00312
    63. Qing Xu, Xinhui Lou, Lei Wang, Xiaofan Ding, Haixiang Yu, and Yi Xiao . Rapid, Surfactant-Free, and Quantitative Functionalization of Gold Nanoparticles with Thiolated DNA under Physiological pH and Its Application in Molecular Beacon-Based Biosensor. ACS Applied Materials & Interfaces 2016, 8 (40) , 27298-27304. https://doi.org/10.1021/acsami.6b08350
    64. Hsin-Neng Wang, Bridget M. Crawford, Andrew M. Fales, Michelle L. Bowie, Victoria L. Seewaldt, and Tuan Vo-Dinh . Multiplexed Detection of MicroRNA Biomarkers Using SERS-Based Inverse Molecular Sentinel (iMS) Nanoprobes. The Journal of Physical Chemistry C 2016, 120 (37) , 21047-21055. https://doi.org/10.1021/acs.jpcc.6b03299
    65. Ruo-Can Qian, Yue Cao, and Yi-Tao Long . Binary System for MicroRNA-Targeted Imaging in Single Cells and Photothermal Cancer Therapy. Analytical Chemistry 2016, 88 (17) , 8640-8647. https://doi.org/10.1021/acs.analchem.6b01804
    66. Ying-Ning Zheng, Wen-Bin Liang, Cheng-Yi Xiong, Ya-Li Yuan, Ya-Qin Chai, and Ruo Yuan . Self-Enhanced Ultrasensitive Photoelectrochemical Biosensor Based on Nanocapsule Packaging Both Donor–Acceptor-Type Photoactive Material and Its Sensitizer. Analytical Chemistry 2016, 88 (17) , 8698-8705. https://doi.org/10.1021/acs.analchem.6b01984
    67. Wenjing Lu, Yiping Chen, Zhong Liu, Wenbo Tang, Qiang Feng, Jiashu Sun, and Xingyu Jiang . Quantitative Detection of MicroRNA in One Step via Next Generation Magnetic Relaxation Switch Sensing. ACS Nano 2016, 10 (7) , 6685-6692. https://doi.org/10.1021/acsnano.6b01903
    68. Rebeca M. Torrente-Rodríguez, Víctor Ruiz-Valdepeñas Montiel, Susana Campuzano, Meryem Farchado-Dinia, Rodrigo Barderas, Pablo San Segundo-Acosta, Juan J. Montoya, and José M. Pingarron . Fast Electrochemical miRNAs Determination in Cancer Cells and Tumor Tissues with Antibody-Functionalized Magnetic Microcarriers. ACS Sensors 2016, 1 (7) , 896-903. https://doi.org/10.1021/acssensors.6b00266
    69. Fangfei Yin, Huiqiao Liu, Qiang Li, Xia Gao, Yongmei Yin, and Dingbin Liu . Trace MicroRNA Quantification by Means of Plasmon-Enhanced Hybridization Chain Reaction. Analytical Chemistry 2016, 88 (9) , 4600-4604. https://doi.org/10.1021/acs.analchem.6b00772
    70. Rong Liao, Kui He, Chunyan Chen, Xiaoming Chen, and Changqun Cai . Double-Strand Displacement Biosensor and Quencher-Free Fluorescence Strategy for Rapid Detection of MicroRNA. Analytical Chemistry 2016, 88 (8) , 4254-4258. https://doi.org/10.1021/acs.analchem.5b04154
    71. Xuehong Min, Mengshi Zhang, Fujian Huang, Xiaoding Lou, and Fan Xia . Live Cell MicroRNA Imaging Using Exonuclease III-Aided Recycling Amplification Based on Aggregation-Induced Emission Luminogens. ACS Applied Materials & Interfaces 2016, 8 (14) , 8998-9003. https://doi.org/10.1021/acsami.6b01581
    72. Jun Shik Choi, So-hee Han, Hyoseok Kim, and Yong-beom Lim . Cyclic Peptide-Decorated Self-Assembled Nanohybrids for Selective Recognition and Detection of Multivalent RNAs. Bioconjugate Chemistry 2016, 27 (3) , 799-808. https://doi.org/10.1021/acs.bioconjchem.6b00017
    73. Lei Ge, Wenxiao Wang, Ximei Sun, Ting Hou, and Feng Li . Affinity-Mediated Homogeneous Electrochemical Aptasensor on a Graphene Platform for Ultrasensitive Biomolecule Detection via Exonuclease-Assisted Target-Analog Recycling Amplification. Analytical Chemistry 2016, 88 (4) , 2212-2219. https://doi.org/10.1021/acs.analchem.5b03844
    74. Si Li, Liguang Xu, Wei Ma, Xiaoling Wu, Maozhong Sun, Hua Kuang, Libing Wang, Nicholas A. Kotov, and Chuanlai Xu . Dual-Mode Ultrasensitive Quantification of MicroRNA in Living Cells by Chiroplasmonic Nanopyramids Self-Assembled from Gold and Upconversion Nanoparticles. Journal of the American Chemical Society 2016, 138 (1) , 306-312. https://doi.org/10.1021/jacs.5b10309
    75. Richard M. Graybill and Ryan C. Bailey . Emerging Biosensing Approaches for microRNA Analysis. Analytical Chemistry 2016, 88 (1) , 431-450. https://doi.org/10.1021/acs.analchem.5b04679
    76. Yongxi Zhao, Feng Chen, Qian Li, Lihua Wang, and Chunhai Fan . Isothermal Amplification of Nucleic Acids. Chemical Reviews 2015, 115 (22) , 12491-12545. https://doi.org/10.1021/acs.chemrev.5b00428
    77. Wen Zhou, Xia Gao, Dingbin Liu, and Xiaoyuan Chen . Gold Nanoparticles for In Vitro Diagnostics. Chemical Reviews 2015, 115 (19) , 10575-10636. https://doi.org/10.1021/acs.chemrev.5b00100
    78. Feng Chen, Chunhai Fan, and Yongxi Zhao . Inhibitory Impact of 3′-Terminal 2′-O-Methylated Small Silencing RNA on Target-Primed Polymerization and Unbiased Amplified Quantification of the RNA in Arabidopsis thaliana. Analytical Chemistry 2015, 87 (17) , 8758-8764. https://doi.org/10.1021/acs.analchem.5b01683
    79. Sujuan Ye, Yanying Wu, Xiaomo Zhai, and Bo Tang . Asymmetric Signal Amplification for Simultaneous SERS Detection of Multiple Cancer Markers with Significantly Different Levels. Analytical Chemistry 2015, 87 (16) , 8242-8249. https://doi.org/10.1021/acs.analchem.5b01186
    80. Xuehong Min, Yuan Zhuang, Zhenyu Zhang, Yongmei Jia, Abdul Hakeem, Fuxin Zheng, Yong Cheng, Ben Zhong Tang, Xiaoding Lou, and Fan Xia . Lab in a Tube: Sensitive Detection of MicroRNAs in Urine Samples from Bladder Cancer Patients Using a Single-Label DNA Probe with AIEgens. ACS Applied Materials & Interfaces 2015, 7 (30) , 16813-16818. https://doi.org/10.1021/acsami.5b04821
    81. Jin-Liang Ma, Bin-Cheng Yin, Huynh-Nhu Le, and Bang-Ce Ye . Label-Free Detection of Sequence-Specific DNA Based on Fluorescent Silver Nanoclusters-Assisted Surface Plasmon-Enhanced Energy Transfer. ACS Applied Materials & Interfaces 2015, 7 (23) , 12856-12863. https://doi.org/10.1021/acsami.5b03837
    82. Xiaopei Qiu, Xing Liu, Wei Zhang, Hong Zhang, Tianlun Jiang, Dongli Fan, and Yang Luo . Dynamic Monitoring of MicroRNA–DNA Hybridization Using DNAase-Triggered Signal Amplification. Analytical Chemistry 2015, 87 (12) , 6303-6310. https://doi.org/10.1021/acs.analchem.5b01159
    83. Filippo Causa, Anna Aliberti, Angela M. Cusano, Edmondo Battista, and Paolo A. Netti . Supramolecular Spectrally Encoded Microgels with Double Strand Probes for Absolute and Direct miRNA Fluorescence Detection at High Sensitivity. Journal of the American Chemical Society 2015, 137 (5) , 1758-1761. https://doi.org/10.1021/ja511644b
    84. Cuiyun Yang, Baoting Dou, Kai Shi, Yaqin Chai, Yun Xiang, and Ruo Yuan . Multiplexed and Amplified Electronic Sensor for the Detection of MicroRNAs from Cancer Cells. Analytical Chemistry 2014, 86 (23) , 11913-11918. https://doi.org/10.1021/ac503860d
    85. Haiyun Liu, Lu Li, Qian Wang, Lili Duan, and Bo Tang . Graphene Fluorescence Switch-Based Cooperative Amplification: A Sensitive and Accurate Method to Detection MicroRNA. Analytical Chemistry 2014, 86 (11) , 5487-5493. https://doi.org/10.1021/ac500752t
    86. Ruili Wang, Ruiying Peng, Liran Song, Jishan Li. Dual DNAzyme amplification-based colorimetric sensing assay for the identification and quantification of tumor-associated miRNAs. Talanta 2025, 286 , 127437. https://doi.org/10.1016/j.talanta.2024.127437
    87. Yuxin Zheng, Qian Wang, Zhiying Jin, Tingting Zhang, Jianshe Huang, Jianshan Ye, Xiurong Yang. Label-free miRNA fluorescent biosensors based on duplex-specific nucleases and silver nanoclusters. The Analyst 2025, 150 (3) , 481-488. https://doi.org/10.1039/D4AN01407C
    88. D. Madanayake, G. Thiranagama, U. Muhandiram, C. Sandaruwan, C. Rupasinghe. Nanotechnology for Plant Pathogens and Disease Detection. 2025, 127-148. https://doi.org/10.1007/978-3-031-78649-5_6
    89. Jisha Babu, D.S. Sheny, Soumya Sasikumar, K.R. Ajish. Gold nanoparticles used in biosensors. 2025, 175-200. https://doi.org/10.1016/B978-0-443-21676-3.00009-1
    90. Soniya Joshi, Alexis Moody, Padamlal Budthapa, Anita Gurung, Rachana Gautam, Prabha Sanjel, Aakash Gupta, Surya P. Aryal, Niranjan Parajuli, Narayan Bhattarai. Advances in Natural-Product-Based Fluorescent Agents and Synthetic Analogues for Analytical and Biomedical Applications. Bioengineering 2024, 11 (12) , 1292. https://doi.org/10.3390/bioengineering11121292
    91. Qianlong Wang, Lei Bao, Lishuang Wang, Zhengyuan Zhao, Xiaoyan Zhang, Weipeng Wang, Yunhan Ling, Zhengjun Zhang, Wangyang Fu. Duplex-specific-nuclease-assisted graphene field-effect transistor biosensor: A novel platform for preamplification-free detection of cancer related miRNA. Carbon 2024, 230 , 119670. https://doi.org/10.1016/j.carbon.2024.119670
    92. Francisco Corzana, Alicia Asín, Ander Eguskiza, Elisa De Tomi, Alfonso Martín‐Carnicero, María P. Martínez‐Moral, Vincenzo Mangini, Francesco Papi, Carmen Bretón, Paula Oroz, Laura Lagartera, Ester Jiménez‐Moreno, Alberto Avenoza, Jesús H. Busto, Cristina Nativi, Juan L. Asensio, Ramón Hurtado‐Guerrero, Jesús M. Peregrina, Giovanni Malerba, Alfredo Martínez, Roberto Fiammengo. Detection of Tumor‐Associated Autoantibodies in the Sera of Pancreatic Cancer Patients Using Engineered MUC1 Glycopeptide Nanoparticle Probes. Angewandte Chemie 2024, 136 (37) https://doi.org/10.1002/ange.202407131
    93. Francisco Corzana, Alicia Asín, Ander Eguskiza, Elisa De Tomi, Alfonso Martín‐Carnicero, María P. Martínez‐Moral, Vincenzo Mangini, Francesco Papi, Carmen Bretón, Paula Oroz, Laura Lagartera, Ester Jiménez‐Moreno, Alberto Avenoza, Jesús H. Busto, Cristina Nativi, Juan L. Asensio, Ramón Hurtado‐Guerrero, Jesús M. Peregrina, Giovanni Malerba, Alfredo Martínez, Roberto Fiammengo. Detection of Tumor‐Associated Autoantibodies in the Sera of Pancreatic Cancer Patients Using Engineered MUC1 Glycopeptide Nanoparticle Probes. Angewandte Chemie International Edition 2024, 63 (37) https://doi.org/10.1002/anie.202407131
    94. Yongpeng Zhang, Xuan Liu, Siqi Hou, Ranfeng Wu, Jing Yang, Cheng Zhang. Enzyme‐Programmed Self‐Assembly of Nanoparticles. ChemBioChem 2024, 25 (15) https://doi.org/10.1002/cbic.202400384
    95. Liang Liu, Junlong Cai, Kun Yang, Bo Sun, Wei Liu, Yang Li, Hankun Hu. Molecular beacon-peptide probe based double recycling amplification for multiplexed detection of serum exosomal microRNAs. Analytical Methods 2024, 16 (30) , 5202-5211. https://doi.org/10.1039/D4AY00629A
    96. Dan Zhu, Dongxia Zhao, Yang Hu, Tianhui Wei, Tong Su, Shao Su, Jie Chao, Lianhui Wang. Programmably engineered stochastic RNA nanowalker for ultrasensitive miRNA detection. Chemical Communications 2024, 60 (48) , 6142-6145. https://doi.org/10.1039/D4CC01656D
    97. Jie Sun, Jiangtao Geng, Ben Zhong Tang, Xuewen He. DNA‐Programmed (De)Hybridization of Near‐Infrared Photosensitized UCNP‐QDs‐GNPs Nanoprobes for MicroRNA Imaging and Image‐Guided Cancer Therapy. Advanced Functional Materials 2024, 34 (23) https://doi.org/10.1002/adfm.202315299
    98. Arumugam Selva Sharma, Nae Yoon Lee. Advancements in visualizing loop-mediated isothermal amplification (LAMP) reactions: A comprehensive review of colorimetric and fluorometric detection strategies for precise diagnosis of infectious diseases. Coordination Chemistry Reviews 2024, 509 , 215769. https://doi.org/10.1016/j.ccr.2024.215769
    99. Lin Yang, Yan Zang, Peng Liu, Xin Xing, Zhenxin Mou. A two-layer circuit cascade-based DNA machine for highly sensitive miRNA imaging in living cells. The Analyst 2024, 149 (10) , 2925-2931. https://doi.org/10.1039/D4AN00277F
    100. Qiming Kou, Hang Yuan, Gang Zhao, Qin Li, Jie Zhang, Meng Li, Shan Li, Minghui Zhao, Kun Zhang, Guo Pu, Liang Li, Siqi Li, Guanru Wang, Qijing Wang, Hengyi Xiao, Kai Li, Ping Lin. Ultrasensitive detection of circulating tumor cells in clinical blood samples by a three-dimensional network nanovehicle-based aptasensor platform. Sensors and Actuators B: Chemical 2024, 404 , 135172. https://doi.org/10.1016/j.snb.2023.135172
    Load more citations

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2014, 136, 6, 2264–2267
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja412152x
    Published February 3, 2014
    Copyright © 2014 American Chemical Society

    Article Views

    9838

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.