ACS Publications. Most Trusted. Most Cited. Most Read
Highly Chemoselective Reduction of Amides (Primary, Secondary, Tertiary) to Alcohols using SmI2/Amine/H2O under Mild Conditions
My Activity

Figure 1Loading Img
  • Open Access
Communication

Highly Chemoselective Reduction of Amides (Primary, Secondary, Tertiary) to Alcohols using SmI2/Amine/H2O under Mild Conditions
Click to copy article linkArticle link copied!

View Author Information
School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
Open PDFSupporting Information (1)

Journal of the American Chemical Society

Cite this: J. Am. Chem. Soc. 2014, 136, 6, 2268–2271
Click to copy citationCitation copied!
https://doi.org/10.1021/ja412578t
Published January 24, 2014

Copyright © 2014 American Chemical Society. This publication is licensed under CC-BY.

Abstract

Click to copy section linkSection link copied!

Highly chemoselective direct reduction of primary, secondary, and tertiary amides to alcohols using SmI2/amine/H2O is reported. The reaction proceeds with C–N bond cleavage in the carbinolamine intermediate, shows excellent functional group tolerance, and delivers the alcohol products in very high yields. The expected C–O cleavage products are not formed under the reaction conditions. The observed reactivity is opposite to the electrophilicity of polar carbonyl groups resulting from the nX → π*C═O (X = O, N) conjugation. Mechanistic studies suggest that coordination of Sm to the carbonyl and then to Lewis basic nitrogen in the tetrahedral intermediate facilitate electron transfer and control the selectivity of the C–N/C–O cleavage. Notably, the method provides direct access to acyl-type radicals from unactivated amides under mild electron transfer conditions.

Copyright © 2014 American Chemical Society

The reduction of carboxylic acid derivatives is among the most important and valuable processes in organic chemistry. (1) In particular, the reduction of amides has captured much attention as a practical method for the synthesis of amines from bench-stable amide precursors. (2) Over the past decades, many reagents and conditions for this transformation have been reported, (3) including recent breakthroughs in highly chemoselective (3a) and metal-free reductions. (3g) However, in contrast to the reduction of amides to amines, which typically proceeds via C–O bond cleavage in the tetrahedral intermediate, the development of practical methods for the reduction of amides to alcohols via selective C–N bond scission remains a formidable challenge (Figure 1).

Figure 1

Figure 1. (a) Divergent reaction pathways in the reduction of amides. (b) This work: the first general, highly chemoselective reduction of amides to alcohols.

Very few examples of the chemoselective reduction of amides to alcohols have been reported. Early studies by Brown and co-workers based on typical metal hydride reagents (B–H, Al–H) revealed that the selective C–N cleavage is in principle feasible; however, only one reagent (LiEt3BH) and for only one class of substrates (aromatic N,N-dimethylamides) afforded appreciable C–N cleavage selectivity. (4) Subsequently, the groups of Hutchins, (5a) Singaram, (5b, 5c) and Myers (5d, 5e) studied metal amide–borane complexes for the reduction of sterically unhindered tertiary amides to alcohols. However, this chemistry highlighted a number of limitations, including the low reactivity and/or C–O bond cleavage selectivity for the reduction of primary and secondary amides, inadequate functional group tolerance, and the use of pyrophoric organometallic reagents that decrease the practicality of these methods. Recently, considerable advancements using catalytic hydrogenation have been reported. (6-8)

Milstein and co-workers developed a reduction of secondary and tertiary amides to alcohols that employs a Ru pincer catalyst at elevated temperatures and high H2 pressures (THF, 110 °C, 10 atm) and proceeds in excellent yields and C–N cleavage selectivity. (6) Ikariya (7) and Bergens (8) reported hydrogenation of activated secondary and tertiary amides/lactams using Ru catalysts at high temperatures and H2 pressures (100 °C, 50 atm). Additionally, Enthaler and co-workers reported a bimetallic Mo complex for the catalytic hydrosilylation of N-aryl tertiary amides with good C–N scission chemoselectivity. (9) However, these reactions suffer from limited substrate scope and typically require highly specialized pressure tube and glovebox equipment, which limits their laboratory application. Moreover, primary and secondary amides are difficult substrates because of the presence of free NH bonds. To date, a general method for the reduction of amides to alcohols with high C–N bond cleavage chemoselectivity under mild and practical reaction conditions has not been reported despite the significance of this transformation for the synthesis of fundamental building blocks, such as alcohols, from bench-stable amide precursors.

Herein we report the first general method for the reduction of all types of amides (primary, secondary, and tertiary) to alcohols using the SmI2/amine/H2O reducing system via a single electron transfer mechanism. (10) The reaction proceeds with excellent C–N bond cleavage selectivity at room temperature under mild, operationally simple reaction conditions. Notably, this process constitutes the first general method for the synthesis of ketyl-type radicals from unactivated amides. (11)

We recently reported the reduction of esters using SmI2/amine/H2O. (12) This reagent system efficiently mediates the reduction of esters, lactones, and carboxylic acids under mild conditions via open-shell reaction pathways, which are orthogonal to the traditional closed-shell mechanisms. (13) We sought to apply this chemistry to the reduction of unactivated amides. (14) We started our investigation by screening the reaction conditions using a cyclic amide substrate, 1-phenylpiperidin-2-one [see the Supporting Information (SI)]. (15) We were pleased to find that the SmI2/Et3N/H2O system mediates the reduction of 1-phenylpiperidin-2-one in excellent 96% yield with >95:5 C–N/C–O bond cleavage selectivity. Remarkably, these conditions could be readily applied to a range of acyclic amides to afford the corresponding alcohols with excellent C–N/C–O cleavage selectivity and yield (Table 1). Primary, secondary, and tertiary amides afforded the alcohol reduction products in high yields (entries 1–5).

Table 1. Reduction of Amides to Alcohols Using SmI2a
Table a

Conditions: R = Ph(CH2)2, SmI2 (8 equiv), THF, Et3N, H2O, 23 °C. See the SI for full experimental details.

Alicyclic amides (Table 1, entries 6–8), including strained azetidine (entry 6) and aziridine (see the SI) substrates resulted in high selectivity for C–N cleavage. Several amides bearing a directing functionality were subjected to the reaction conditions to determine whether Sm(II) chelation could influence the C–N cleavage selectivity (entries 9–12). In all cases, only alcohol products were formed, suggesting that chelation does not override the inherent reaction pathway. (16) We also found that amides featuring substituents known to afford mixtures of C–N/C–O cleavage products with other reagents (2a) were amenable to the Sm(II) reduction protocol and that useful levels of chemoselectivity were obtained with these substrates (entries 13 and 14). We note, however, that N,N-diisopropylamide was unreactive under our reaction conditions (entry 15). (17)

Next, the substrate scope of the reaction was investigated with regard to substitution at the α carbon of the amide with the knowledge that there is an unmet need for the reduction of primary and secondary amides (cf. tertiary amides) to alcohols using existing hydride-mediated (3, 4) and hydrogenation (6-9) methodologies (Table 2). Amides with increasing steric demand at the α carbon were suitable substrates for the reduction (entries 1–5), including a very hindered N,N-diethyl adamantyl amide (entry 5). Aromatic amides could be reduced to the corresponding alcohols with excellent C–N cleavage selectivity (entries 6–8). The method is compatible with a broad range of functional groups, including terminal and internal alkenes (see the SI; isomerization of an internal cis olefin was not observed); aryl fluorides, chlorides, bromides; trifluoromethylphenyl groups; aryl ethers; aromatic rings; and electron-rich heterocycles such as indoles (entries 9–16). In all cases, excellent selectivity for the C–N cleavage was observed. Furthermore, complex biologically active steroid scaffolds and drug molecules bearing unprotected alcohols and amines were subjected directly to the reaction conditions to afford the corresponding alcohols in high yields (entries 17 and 18). In contrast, acidic protons are not tolerated by the recently disclosed highly chemoselective reductions of amides, (3) emphasizing the mild reaction conditions and functional group tolerance of Sm(II) systems. Additional studies showed that high selectivity is also possible in the presence of other functional groups (e.g., esters; see the SI for details).

Table 2. Substrate Scope in the Reduction of Amides to Alcohols Using SmI2a
Table a

Conditions: SmI2 (4–8 equiv), THF, Et3N, H2O, 23 °C. See the SI for full experimental details.

It is particularly noteworthy that the reduction of enantioenriched amides derived from Myers and Evans auxiliaries could be achieved in good yield and selectivity to give the corresponding products in high ee (Scheme 1). The reduction of a diastereoisomer of 5 (see the SI) afforded the corresponding alcohol (S)-6 with high ee. These results demonstrate that amides bearing α-enolizable chiral centers can be readily reduced using this methodology. The recovery of the auxiliaries has not been optimized.

Scheme 1

Scheme 1. Reduction of Enantioenriched Amides to Alcohols Using SmI2

Several studies were conducted to gain insight into the reaction mechanism (see Scheme 2 and the SI): (1) The reduction of trans-cyclopropane radical clocks 8 (18) using limiting SmI2 resulted in rapid cyclopropyl ring opening to give acyclic amides 9 and alcohols 10 in the following ratios: 78:22 (primary amide), 85:15 (secondary amide), and 92:8 (tertiary amide). Cyclopropyl carbinol 11 was not detected. In an additional experiment using SmI2/H2O (i.e., without amine), cyclopropane ring opening was observed without further reduction of acyclic amide 9 to alcohol 10. These results suggest that the first electron transfer to the amide carbonyl is reversible and that the rate of the second electron transfer is sensitive to the substitution of the amide nitrogen. (2) The reductions of amides 1a, 1b, and 1e with SmI2/D2O/amine (83% D2 and kH/kD = 1.37 ± 0.1, primary amide; 95% D2 and kH/kD = 1.34 ± 0.1, secondary amide; 97% D2 and kH/kD = 1.32 ± 0.1, tertiary amide) suggested that anions are generated and protonated by H2O in a series of electron transfer steps (19) and that proton transfer is not involved in the rate-determining step of the reaction. (3) Control experiments using H218O (2.59% 18O incorporation, primary amide; 4.19%, secondary amide; 14.20%, tertiary amide) showed that amide hydrolysis, or hydrolysis of an iminium intermediate, is not a predominant pathway. (4) Selectivity studies demonstrated the following order of amide reactivity: 1° > 2° > 3°. Moreover, >95:5 selectivity was obtained in the reduction of primary amides over esters and activated over aliphatic secondary amides. (5) A Hammett study performed using a series of 4-substituted 2-phenylacetamides (12) showed a large positive ρ value of 0.52 (R2 = 0.98), which can be compared with the ρ value of 0.49 for ionization of phenylacetic acids in H2O at 25 °C. (6) The Taft correlation study, obtained by plotting log(kobs) versus ES for a series of N-alkyl-3-phenylpropanamides showed a large positive slope of 0.92 (R2 = 0.99). The results from the Hammett and Taft studies are consistent with a mechanism involving Sm coordination to the substrate and buildup of partial negative charge on the carbon of the amide carbonyl. (13g)

Scheme 2

Scheme 2. Studies Designed To Probe the Mechanism of the Reduction of Amides to Alcohols using SmI2 (R′, R″ = H; for R′ = H, R″ = n-Bu and R′, R″ = Et, See the SI)

Overall, these results are in agreement with a mechanism involving coordination of the azaphilic Lewis acid Sm (20) to nitrogen either before or after the initial electron transfer. (21) We postulate that the high chemoselectivity for C–N versus C–O cleavage results from the fact that a protonated hemiaminal is not formed in the reaction. Furthermore, collapse of the carbinolamine intermediate with selective C–N cleavage is likely promoted by the coordination of SmX3 (X = I, OH) to the Lewis basic nitrogen (20) (see Figure 1B).

In summary, the first general reduction of primary, secondary, and tertiary amides to alcohols using SmI2/amine/H2O has been developed. The reaction proceeds with high selectivity for C–N bond cleavage under mild and operationally simple reaction conditions. The mechanism involves reversible first electron transfer and electrophilic activation of the amide bond. This protocol demonstrates a broad substrate scope and provides the corresponding alcohols in excellent yields with chemoselectivity orthogonal to that of existing closed-shell processes. We fully expect that this method will be of great interest for the synthesis of functionalized alcohol-containing building blocks. Studies of the application of Sm(II) to chemoselective reductions and reductive cyclizations of functional groups are underway and will be reported shortly.

Supporting Information

Click to copy section linkSection link copied!

Experimental procedures and compound characterization data. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

Click to copy section linkSection link copied!

  • Corresponding Authors
    • Michal Szostak - School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
    • David J. Procter - School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
  • Authors
    • Malcolm Spain - School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
    • Andrew J. Eberhart - School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
  • Author Contributions

    M. Spain and A. J. Eberhart contributed equally.

  • Notes
    The authors declare no competing financial interest.

Acknowledgment

Click to copy section linkSection link copied!

We acknowledge the EPSRC and GSK for financial support.

References

Click to copy section linkSection link copied!

This article references 21 other publications.

  1. 1
    (a) Hudlicky, M. Reductions in Organic Chemistry; Ellis Horwood Ltd.: Chichester, U.K., 1984.
    (b) Seyden-Penne, J. Reductions by the Alumino- and Borohydrides in Organic Synthesis; Wiley: New York, 1997.
    (c) Modern Reduction Methods; Andersson, P. G., Munslow, I. J., Eds.; Wiley-VCH: Weinheim, Germany, 2008.
    (d) Addis, D.; Das, S.; Junge, K.; Beller, M. Angew. Chem., Int. Ed. 2011, 50, 6004
  2. 2
    (a) Comprehensive Organic Synthesis; Trost, B. M.; Fleming, I., Eds.; Pergamon Press: Oxford, U.K., 1991.
    (b) Modern Amination Methods; Ricci, A., Ed.; Wiley-VCH: Weinheim, Germany, 2000.
    (c) Carey, J. S.; Laffan, D.; Thomson, C.; Williams, M. T. Org. Biomol. Chem. 2006, 4, 2337
  3. 3

    For selected recent examples, see:

    (a) Das, S.; Addis, D.; Zhou, S.; Junge, K.; Beller, M. J. Am. Chem. Soc. 2010, 132, 1770
    (b) Das, S.; Wendt, B.; Möller, K.; Junge, K.; Beller, M. Angew. Chem., Int. Ed. 2012, 51, 1662
    (c) Das, S.; Join, B.; Junge, K.; Beller, M. Chem. Commun. 2012, 48, 2683
    (d) Das, S.; Addis, D.; Junge, K.; Beller, M. Chem.—Eur. J. 2011, 17, 12186
    (e) Zhou, S.; Junge, K.; Addis, D.; Das, S.; Beller, M. Angew. Chem., Int. Ed. 2009, 48, 9507

    For an excellent review, see:

    (f) Das, S.; Zhou, S.; Addis, D.; Junge, K.; Enthaler, S.; Beller, M. Top. Catal. 2010, 53, 979
    (g) Barbe, G.; Charette, A. B. J. Am. Chem. Soc. 2008, 130, 18
    (h) Pelletier, G.; Bechara, W. S.; Charette, A. B. J. Am. Chem. Soc. 2010, 132, 12817

    For an elegant application of chemoselective amide bond activation, see:

    (i) Bechara, W. S.; Pelletier, G.; Charette, A. B. Nat. Chem. 2012, 4, 228
    (j) Reeves, J. T.; Tan, Z.; Marsini, M. A.; Han, Z. S.; Xu, Y.; Reeves, D. C.; Lee, H.; Lu, B. Z.; Senanayake, C. H. Adv. Synth. Catal. 2013, 355, 47
    (k) Stein, M.; Breit, B. Angew. Chem., Int. Ed. 2013, 52, 2231
    (l) Cheng, C.; Brookhart, M. J. Am. Chem. Soc. 2012, 134, 11304
    (m) Park, S.; Brookhart, M. J. Am. Chem. Soc. 2012, 134, 640
    (n) Hanada, S.; Tsutsumi, E.; Motoyama, Y.; Nagashima, H. J. Am. Chem. Soc. 2009, 131, 15032
    (o) Motoyama, Y.; Mitsui, K.; Ishida, T.; Nagashima, H. J. Am. Chem. Soc. 2005, 127, 13150
    (p) Sunada, Y.; Kawakami, H.; Imaoka, T.; Motoyama, Y.; Nagashima, H. Angew. Chem., Int. Ed. 2009, 48, 9511
    (q) White, J. M.; Tunoori, A. R.; Georg, G. I. J. Am. Chem. Soc. 2000, 122, 11995
    (r) Spletstoser, J. T.; White, J. M.; Tunoori, A. R.; Georg, G. I. J. Am. Chem. Soc. 2007, 129, 3408
  4. 4
    Brown, H. C.; Kim, S. C. Synthesis 1977, 635
  5. 5
    (a) Hutchins, R. O.; Learn, K.; El-Telbany, F.; Stercho, Y. P. J. Org. Chem. 1984, 49, 2438
    (b) Fisher, G. B.; Fuller, J. C.; Harrison, J.; Alvarez, S. G.; Burkhardt, E. R.; Goralski, C. T.; Singaram, B. J. Org. Chem. 1994, 59, 6378

    For an excellent overview, see:

    (c) Pasumansky, L.; Goralski, C. T.; Singaram, B. Org. Process Res. Dev. 2006, 10, 959
    (d) Myers, A. G.; Yang, B. H.; Kopecky, D. J. Tetrahedron Lett. 1996, 37, 3623
    (e) Myers, A. G.; Yang, B. H.; Chen, H.; McKinstry, L.; Kopecky, D. J.; Gleason, J. L. J. Am. Chem. Soc. 1997, 119, 6496
  6. 6
    (a) Balaraman, E.; Gnanaprakasam, B.; Shimon, L. J. W.; Milstein, D. J. Am. Chem. Soc. 2010, 132, 16756

    For other elegant applications of Ru(II) complexes, see:

    (b) Balaraman, E.; Gunanathan, C.; Zhang, J.; Shimon, L. J. W.; Milstein, D. Nat. Chem. 2011, 3, 609
    (c) Balaraman, E.; Ben-David, Y.; Milstein, D. Angew. Chem., Int. Ed. 2011, 50, 11702
  7. 7
    (a) Ito, M.; Koo, L. W.; Himizu, A.; Kobayashi, C.; Sakaguchi, A.; Ikariya, T. Angew. Chem., Int. Ed. 2009, 48, 1324
    (b) Ito, M.; Ootsuka, T.; Watari, R.; Shiibashi, A.; Himizu, A.; Ikariya, T. J. Am. Chem. Soc. 2011, 133, 4240

    For a review, see:

    (c) Dub, P. A.; Ikariya, T. ACS Catal. 2012, 2, 1718
  8. 8
    John, J. M.; Bergens, S. H. Angew. Chem., Int. Ed. 2011, 50, 10377
  9. 9
    Krackl, S.; Someya, C. I.; Enthaler, S. Chem.—Eur. J. 2012, 18, 15267
  10. 10

    For reviews of metal-mediated radical reactions, see:

    (a) Gansäuer, A.; Bluhm, H. Chem. Rev. 2000, 100, 2771
    (b) Szostak, M.; Procter, D. J. Angew. Chem., Int. Ed. 2012, 51, 9238
    (c) Streuff, J. Synthesis 2013, 45, 281
    (d) Radicals in Synthesis I and II; Gansäuer, A., Ed.; Topics in Current Chemistry, Vols. 263–264; Springer: Berlin, 2006.

    For recent reviews of SmI2, see:

    (e) Molander, G. A.; Harris, C. R. Chem. Rev. 1996, 96, 307
    (f) Krief, A.; Laval, A. M. Chem. Rev. 1999, 99, 745
    (g) Kagan, H. B. Tetrahedron 2003, 59, 10351
    (h) Nicolaou, K. C.; Ellery, S. P.; Chen, J. S. Angew. Chem., Int. Ed. 2009, 48, 7140
    (i) Szostak, M.; Spain, M.; Procter, D. J. Chem. Soc. Rev. 2013, 42, 9155
  11. 11

    For selected studies of cyclizations of acyl-type radicals, see:

    (a) Parmar, D.; Duffy, L. A.; Sadasivam, D. V.; Matsubara, H.; Bradley, P. A.; Flowers, R. A., II; Procter, D. J. J. Am. Chem. Soc. 2009, 131, 15467
    (b) Parmar, D.; Matsubara, H.; Price, K.; Spain, M.; Procter, D. J. J. Am. Chem. Soc. 2012, 134, 12751
    (c) Sautier, B.; Lyons, S. E.; Webb, M. R.; Procter, D. J. Org. Lett. 2012, 14, 146
    (d) Szostak, M.; Sautier, B.; Spain, M.; Behlendorf, M.; Procter, D. J. Angew. Chem., Int. Ed. 2013, 52, 12559
  12. 12

    A study of the mechanism of ester reduction using SmI2/amine/H2O will be reported separately.

  13. 13
    (a) Szostak, M.; Spain, M.; Procter, D. J. Chem. Commun. 2011, 47, 10254
    (b) Szostak, M.; Spain, M.; Procter, D. J. Org. Lett. 2012, 14, 840

    For other studies of SmI2/amine/H2O, see:

    (c) Cabri, W.; Candiani, I.; Colombo, M.; Franzoi, L.; Bedeschi, A. Tetrahedron Lett. 1995, 36, 949
    (d) Dahlén, A.; Hilmersson, G. Chem.—Eur. J. 2003, 9, 1123
    (e) Dahlén, A.; Hilmersson, G. J. Am. Chem. Soc. 2005, 127, 8340
    (f) Ankner, T.; Hilmersson, G. Tetrahedron 2009, 65, 10856
    (g) Ankner, T.; Stålsmeden, A. S.; Hilmersson, G. Chem. Commun. 2013, 49, 6867
  14. 14

    Kamochi and Kudo described the reduction of aryl carboxylic acid derivatives using SmI2, but this process is low-yielding and/or limited in scope. See:

    (a) Kamochi, Y.; Kudo, T. Chem. Lett. 1993, 1495
    (b) Kamochi, Y.; Kudo, T. Bull. Chem. Soc. Jpn. 1992, 65, 3049

    Electrochemical methods for the reduction of amides have been reported. See:

    (c) Benkeser, R. A.; Watanabe, H.; Mels, S. J.; Sabol, M. A. J. Org. Chem. 1970, 35, 1210
    (d) Shono, T.; Masuda, H.; Murase, H.; Shimomura, M.; Kashimura, S. J. Org. Chem. 1992, 57, 1061
  15. 15

    Cyclic carboxylic acid derivatives are more reactive towards Sm(II) because of anomeric stabilization of the radical anion. (11a)

  16. 16
    Szostak, M.; Spain, M.; Choquette, K. A.; Flowers, R. A., II; Procter, D. J. J. Am. Chem. Soc. 2013, 135, 15702
  17. 17

    Complete recovery of the staring material was observed. In contrast, lithium amidotrihydroborate affords mixtures of C–N/C–O cleavage products with similar substrates. (5d) This divergent reactivity should prove useful in the selective reduction of this class of amides.

  18. 18
    Newcomb, M. Tetrahedron 1993, 49, 1151
  19. 19
    (a) Dahlén, A.; Hilmersson, G. Eur. J. Inorg. Chem. 2004, 3393
    (b) Flowers, R. A., II. Synlett 2008, 1427
    (c) Szostak, M.; Spain, M.; Parmar, D.; Procter, D. J. Chem. Commun. 2012, 48, 330
  20. 20
    (a) Tsuruta, H.; Yamaguchi, K.; Imamoto, T. Chem. Commun. 1999, 1703
    (b) Evans, W. J. Inorg. Chem. 2007, 46, 3435
  21. 21
    (a) Laurence, C.; Gal, J.-F. Lewis Basicity and Affinity Scales: Data and Measurement; Wiley-Blackwell: Chichester, U.K., 2009.
    (b) Cox, C.; Lectka, T. Acc. Chem. Res. 2000, 33, 849

Cited By

Click to copy section linkSection link copied!
Citation Statements
Explore this article's citation statements on scite.ai

This article is cited by 140 publications.

  1. Ruxing Li, Yilin Ma, Jianwen Zhang, Chengwei Liu. Samarium Diiodide/Samarium-Mediated Deoxygenative Hydrosilylation of Ketones. The Journal of Organic Chemistry 2024, 89 (23) , 17418-17424. https://doi.org/10.1021/acs.joc.4c02052
  2. Hengzhao Li, Kemeng Wang, Wangyu Zhao, Xinxin Li, Yijing Fu, Hainam Do, Jie An, Zhaonong Hu. Highly Chemoselective Synthesis of α, α-Dideuterio Amines by the Reductive Deuteration of Thioamides Using Mild SmI2–D2O. Organic Letters 2024, 26 (42) , 9120-9125. https://doi.org/10.1021/acs.orglett.4c03434
  3. Xiyike Deng, Feng Jiang, Xiaoming Wang. Asymmetric Deoxygenative Functionalization of Secondary Amides with Vinylpyridines Enabled by a Triple Iridium-Photoredox-Chiral Phosphoric Acid System. Organic Letters 2024, 26 (12) , 2483-2488. https://doi.org/10.1021/acs.orglett.4c00692
  4. Takahiro Watanabe, Kyohei Oga, Hiroaki Matoba, Masanori Nagatomo, Masayuki Inoue. Total Synthesis of Taxol Enabled by Intermolecular Radical Coupling and Pd-Catalyzed Cyclization. Journal of the American Chemical Society 2023, 145 (47) , 25894-25902. https://doi.org/10.1021/jacs.3c10658
  5. Alexander Hinz, Jonas Bresien, Frank Breher, Axel Schulz. Heteroatom-Based Diradical(oid)s. Chemical Reviews 2023, 123 (16) , 10468-10526. https://doi.org/10.1021/acs.chemrev.3c00255
  6. Ravneet Kaur, Ravi P. Singh. Stereoselective Reductive Coupling Reactions Utilizing [1,2]-Phospha-Brook Rearrangement: A Powerful Umpolung Approach. The Journal of Organic Chemistry 2023, 88 (15) , 10325-10338. https://doi.org/10.1021/acs.joc.3c01055
  7. Guanglong Su, Michele Formica, Ken Yamazaki, Trevor A. Hamlin, Darren J. Dixon. Catalytic Enantioselective Intramolecular Oxa-Michael Reaction to α,β-Unsaturated Esters and Amides. Journal of the American Chemical Society 2023, 145 (23) , 12771-12782. https://doi.org/10.1021/jacs.3c03182
  8. Qi Li, Wang Zhang, Chen Zhu, Hong Pan, Kang-Yue Shi, Yicheng Zhang, Man-Yi Han, Choon-Hong Tan. Organobase-Catalyzed Umpolung of Amides: The Generation and Transfer of Carbamoyl Anion. The Journal of Organic Chemistry 2023, 88 (2) , 1245-1255. https://doi.org/10.1021/acs.joc.2c02487
  9. Jiwen Jiao, Wenhan Yang, Xiaoming Wang. α-Aminocarbene-Mediated Si–H Insertion: Deoxygenative Silylation of Aromatic Amides with Silanes. The Journal of Organic Chemistry 2023, 88 (1) , 594-601. https://doi.org/10.1021/acs.joc.2c02649
  10. Gil Kolin, Renana Schwartz, Daniel Shuster, Dan Thomas Major, Shmaryahu Hoz. Cooperative Intrinsic Basicity and Hydrogen Bonding Render SmI2 More Azaphilic than Oxophilic. ACS Omega 2022, 7 (44) , 40021-40024. https://doi.org/10.1021/acsomega.2c04680
  11. Narasingan Aravindan, Varathan Vinayagam, Masilamani Jeganmohan. A Ruthenium-Catalyzed Cyclization to Dihydrobenzo[c]phenanthridinone from 7-Azabenzonorbornadienes with Aryl Amides. Organic Letters 2022, 24 (29) , 5260-5265. https://doi.org/10.1021/acs.orglett.2c01734
  12. Dong-Ping Wu, Wei Ou, Pei-Qiang Huang. Ir-Catalyzed Chemoselective Reductive Condensation Reactions of Tertiary Amides with Active Methylene Compounds. Organic Letters 2022, 24 (29) , 5366-5371. https://doi.org/10.1021/acs.orglett.2c02045
  13. Kazuhiro Okamoto, Shingo Nagahara, Yasushi Imada, Risako Narita, Yoshikazu Kitano, Kazuhiro Chiba. Hydrosilane-Mediated Electrochemical Reduction of Amides. The Journal of Organic Chemistry 2021, 86 (22) , 15992-16000. https://doi.org/10.1021/acs.joc.1c00931
  14. Jeffrey M. Lipshultz, Alexander T. Radosevich. Uniting Amide Synthesis and Activation by PIII/PV–Catalyzed Serial Condensation: Three-Component Assembly of 2-Amidopyridines. Journal of the American Chemical Society 2021, 143 (36) , 14487-14494. https://doi.org/10.1021/jacs.1c07608
  15. Philipp Spieß, Martin Berger, Daniel Kaiser, Nuno Maulide. Direct Synthesis of Enamides via Electrophilic Activation of Amides. Journal of the American Chemical Society 2021, 143 (28) , 10524-10529. https://doi.org/10.1021/jacs.1c04363
  16. Zhi-Jie Niu, Lian-Hua Li, Xue-Song Li, Hong-Chao Liu, Wei-Yu Shi, Yong-Min Liang. Formation of o-Allyl- and Allenyl-Modified Amides via Intermolecular Claisen Rearrangement. Organic Letters 2021, 23 (4) , 1315-1320. https://doi.org/10.1021/acs.orglett.0c04300
  17. Shmaryahu Hoz. Samarium Iodide Showcase: Unraveling the Mechanistic Puzzle. Accounts of Chemical Research 2020, 53 (11) , 2680-2691. https://doi.org/10.1021/acs.accounts.0c00497
  18. Vincent Pirenne, Iman Traboulsi, Lisa Rouvière, Jonathan Lusseau, Stéphane Massip, Dario M. Bassani, Frédéric Robert, Yannick Landais. p-Anisaldehyde-Photosensitized Sulfonylcyanation of Chiral Cyclobutenes: Enantioselective Access to Cyclic and Acyclic Systems Bearing All-Carbon Quaternary Stereocenters. Organic Letters 2020, 22 (2) , 575-579. https://doi.org/10.1021/acs.orglett.9b04345
  19. Wubing Yao, Lili He, Deman Han, Aiguo Zhong. Sodium Triethylborohydride-Catalyzed Controlled Reduction of Unactivated Amides to Secondary or Tertiary Amines. The Journal of Organic Chemistry 2019, 84 (22) , 14627-14635. https://doi.org/10.1021/acs.joc.9b02211
  20. Daiki Kuwana, Masanori Nagatomo, Masayuki Inoue. Total Synthesis of 5-epi-Eudesm-4(15)-ene-1β,6β-diol via Decarbonylative Radical Coupling Reaction. Organic Letters 2019, 21 (18) , 7619-7623. https://doi.org/10.1021/acs.orglett.9b02895
  21. Zirong Zhang, David B. Collum. Structures and Reactivities of Sodiated Evans Enolates: Role of Solvation and Mixed Aggregation on the Stereochemistry and Mechanism of Alkylations. Journal of the American Chemical Society 2019, 141 (1) , 388-401. https://doi.org/10.1021/jacs.8b10364
  22. Tesia V. Chciuk, William R. Anderson, Jr., Robert A. Flowers II. Interplay between Substrate and Proton Donor Coordination in Reductions of Carbonyls by SmI2–Water Through Proton-Coupled Electron-Transfer. Journal of the American Chemical Society 2018, 140 (45) , 15342-15352. https://doi.org/10.1021/jacs.8b08890
  23. Shicheng Shi, Steven P. Nolan, Michal Szostak. Well-Defined Palladium(II)–NHC Precatalysts for Cross-Coupling Reactions of Amides and Esters by Selective N–C/O–C Cleavage. Accounts of Chemical Research 2018, 51 (10) , 2589-2599. https://doi.org/10.1021/acs.accounts.8b00410
  24. Bin Zhang, Hengzhao Li, Yuxuan Ding, Yuhao Yan, Jie An. Reduction and Reductive Deuteration of Tertiary Amides Mediated by Sodium Dispersions with Distinct Proton Donor-Dependent Chemoselectivity. The Journal of Organic Chemistry 2018, 83 (11) , 6006-6014. https://doi.org/10.1021/acs.joc.8b00617
  25. Bingxin You, Mengmeng Shen, Guanqun Xie, Hui Mao, Xin Lv, and Xiaoxia Wang . Alternative Sm(II) Species-Mediated Cascade Coupling/Cyclization for the Synthesis of Oxobicyclo[3.1.0]hexane-1-ols. Organic Letters 2018, 20 (3) , 530-533. https://doi.org/10.1021/acs.orglett.7b03613
  26. Zirong Zhang and David B. Collum . Evans Enolates: Structures and Mechanisms Underlying the Aldol Addition of Oxazolidinone-Derived Boron Enolates. The Journal of Organic Chemistry 2017, 82 (14) , 7595-7601. https://doi.org/10.1021/acs.joc.7b01365
  27. Syed R. Huq, Shicheng Shi, Ray Diao, and Michal Szostak . Mechanistic Study of SmI2/H2O and SmI2/Amine/H2O-Promoted Chemoselective Reduction of Aromatic Amides (Primary, Secondary, Tertiary) to Alcohols via Aminoketyl Radicals. The Journal of Organic Chemistry 2017, 82 (13) , 6528-6540. https://doi.org/10.1021/acs.joc.7b00372
  28. Loorthuraja Rasu, Jeremy M. John, Elanna Stephenson, Riley Endean, Suneth Kalapugama, Roxanne Clément, and Steven H. Bergens . Highly Enantioselective Hydrogenation of Amides via Dynamic Kinetic Resolution Under Low Pressure and Room Temperature. Journal of the American Chemical Society 2017, 139 (8) , 3065-3071. https://doi.org/10.1021/jacs.6b12254
  29. Huan-Ming Huang and David J. Procter . Dearomatizing Radical Cyclizations and Cyclization Cascades Triggered by Electron-Transfer Reduction of Amide-Type Carbonyls. Journal of the American Chemical Society 2017, 139 (4) , 1661-1667. https://doi.org/10.1021/jacs.6b12077
  30. Minhui Han, Xiaodong Ma, Shangchu Yao, Yuxuan Ding, Zihan Yan, Adila Adijiang, Yufei Wu, Hengzhao Li, Yuntong Zhang, Peng Lei, Yun Ling, and Jie An . Development of a Modified Bouveault–Blanc Reduction for the Selective Synthesis of α,α-Dideuterio Alcohols. The Journal of Organic Chemistry 2017, 82 (2) , 1285-1290. https://doi.org/10.1021/acs.joc.6b02950
  31. Samuel Thurow, Eder J. Lenardão, Xavier Just-Baringo, and David J. Procter . Reduction of Selenoamides to Amines Using SmI2–H2O. Organic Letters 2017, 19 (1) , 50-53. https://doi.org/10.1021/acs.orglett.6b03325
  32. Nomaan M. Rezayee, Danielle C. Samblanet, and Melanie S. Sanford . Iron-Catalyzed Hydrogenation of Amides to Alcohols and Amines. ACS Catalysis 2016, 6 (10) , 6377-6383. https://doi.org/10.1021/acscatal.6b01454
  33. Chriss E. McDonald, Jeremy D. Ramsey, Christopher C. McAtee, Joseph R. Mauck, Erin M. Hale, and Justin A. Cumens . The Use of Ureates as Activators for Samarium Diiodide. The Journal of Organic Chemistry 2016, 81 (14) , 5903-5914. https://doi.org/10.1021/acs.joc.6b00733
  34. Norie Momiyama, Hiroshi Okamoto, Jun Kikuchi, Toshinobu Korenaga, and Masahiro Terada . Perfluorinated Aryls in the Design of Chiral Brønsted Acid Catalysts: Catalysis of Enantioselective [4 + 2] Cycloadditions and Ene Reactions of Imines with Alkenes by Chiral Mono-Phosphoric Acids with Perfluoroaryls. ACS Catalysis 2016, 6 (2) , 1198-1204. https://doi.org/10.1021/acscatal.5b02136
  35. Shicheng Shi and Michal Szostak . Aminoketyl Radicals in Organic Synthesis: Stereoselective Cyclization of Five- and Six-Membered Cyclic Imides to 2-Azabicycles Using SmI2–H2O. Organic Letters 2015, 17 (20) , 5144-5147. https://doi.org/10.1021/acs.orglett.5b02732
  36. Evan H. Tallmadge and David B. Collum . Evans Enolates: Solution Structures of Lithiated Oxazolidinone-Derived Enolates. Journal of the American Chemical Society 2015, 137 (40) , 13087-13095. https://doi.org/10.1021/jacs.5b08207
  37. Tesia V. Chciuk and Robert A. Flowers, II . Proton-Coupled Electron Transfer in the Reduction of Arenes by SmI2–Water Complexes. Journal of the American Chemical Society 2015, 137 (35) , 11526-11531. https://doi.org/10.1021/jacs.5b07518
  38. Patrick Cyr, Sophie Régnier, William S. Bechara, and André B. Charette . Rapid Access to 3-Aminoindazoles from Tertiary Amides. Organic Letters 2015, 17 (14) , 3386-3389. https://doi.org/10.1021/acs.orglett.5b00765
  39. Xavier Just-Baringo and David J. Procter . Sm(II)-Mediated Electron Transfer to Carboxylic Acid Derivatives: Development of Complexity-Generating Cascades. Accounts of Chemical Research 2015, 48 (5) , 1263-1275. https://doi.org/10.1021/acs.accounts.5b00083
  40. Mengmeng Shen, Yawei Tu, Guanqun Xie, Qingsheng Niu, Hui Mao, Tingting Xie, Robert A. Flowers, II, Xin Lv, and Xiaoxia Wang . Allylsamarium Bromide-Mediated Cascade Cyclization of Homoallylic Esters. Synthesis of 2-(2-Hydroxyalkyl)cyclopropanols and 2-(2-Hydroxyethyl)bicyclo[2.1.1]hexan-1-ols. The Journal of Organic Chemistry 2015, 80 (1) , 52-61. https://doi.org/10.1021/jo501797w
  41. Michal Szostak, Malcolm Spain, Andrew J. Eberhart, and David J. Procter . Mechanism of SmI2/Amine/H2O-Promoted Chemoselective Reductions of Carboxylic Acid Derivatives (Esters, Acids, and Amides) to Alcohols. The Journal of Organic Chemistry 2014, 79 (24) , 11988-12003. https://doi.org/10.1021/jo5018525
  42. Michal Szostak, Malcolm Spain, Brice Sautier, and David J. Procter . Switching between Reaction Pathways by an Alcohol Cosolvent Effect: SmI2–Ethylene Glycol vs SmI2–H2O Mediated Synthesis of Uracils. Organic Letters 2014, 16 (21) , 5694-5697. https://doi.org/10.1021/ol502775w
  43. Michal Szostak, Malcolm Spain, and David J. Procter . Selective Synthesis of α,α-Dideuterio Alcohols by the Reduction of Carboxylic Acids Using SmI2 and D2O as Deuterium Source under SET Conditions. Organic Letters 2014, 16 (19) , 5052-5055. https://doi.org/10.1021/ol502404e
  44. Ryan C. Chadwick, Vladimir Kardelis, Philip Lim, and Alex Adronov . Metal-Free Reduction of Secondary and Tertiary N-Phenyl Amides by Tris(pentafluorophenyl)boron-Catalyzed Hydrosilylation. The Journal of Organic Chemistry 2014, 79 (16) , 7728-7733. https://doi.org/10.1021/jo501299j
  45. Jie An, D. Neil Work, Craig Kenyon, and David J. Procter . Evaluating a Sodium Dispersion Reagent for the Bouveault–Blanc Reduction of Esters. The Journal of Organic Chemistry 2014, 79 (14) , 6743-6747. https://doi.org/10.1021/jo501093g
  46. Michal Szostak, Neal J. Fazakerley, Dixit Parmar, and David J. Procter . Cross-Coupling Reactions Using Samarium(II) Iodide. Chemical Reviews 2014, 114 (11) , 5959-6039. https://doi.org/10.1021/cr400685r
  47. Michal Szostak, Malcolm Spain, and David J. Procter . Ketyl-Type Radicals from Cyclic and Acyclic Esters are Stabilized by SmI2(H2O)n: The Role of SmI2(H2O)n in Post-Electron Transfer Steps. Journal of the American Chemical Society 2014, 136 (23) , 8459-8466. https://doi.org/10.1021/ja503494b
  48. Michal Szostak, Malcolm Spain, and David J. Procter . Determination of the Effective Redox Potentials of SmI2, SmBr2, SmCl2, and their Complexes with Water by Reduction of Aromatic Hydrocarbons. Reduction of Anthracene and Stilbene by Samarium(II) Iodide–Water Complex. The Journal of Organic Chemistry 2014, 79 (6) , 2522-2537. https://doi.org/10.1021/jo4028243
  49. Michal Szostak, Brice Sautier, Malcolm Spain, and David J. Procter . Electron Transfer Reduction of Nitriles Using SmI2–Et3N–H2O: Synthetic Utility and Mechanism. Organic Letters 2014, 16 (4) , 1092-1095. https://doi.org/10.1021/ol403668e
  50. Chengwei Liu, Yilin Ma, Wei Zhou. Samarium Diiodide/Samarium‐Mediated Deoxygenative Hydroborylation of Aldehydes. European Journal of Organic Chemistry 2025, 28 (13) https://doi.org/10.1002/ejoc.202401249
  51. Sonalin Senapati, Subhendu Jena, Manwar Box, Sandeepan Maity. Successors of SmI 2 : Next Generation Metal, Photo and Electro‐Catalysis for Reductive Organic Synthesis. European Journal of Organic Chemistry 2025, 28 (13) https://doi.org/10.1002/ejoc.202401342
  52. Timothy P. Aldhous, Raymond Chung, Abbas Hassan, Andrew G. Dalling, Phillippa Cooper, Simon Grélaud, Richard J. Mudd, Lyman J. Feron, Paul D. Kemmitt, John F. Bower. Benzamide‐Directed Hydroarylative Cross‐Couplings Using Minimally Activated Alkenes: Enantioselective Synthesis of Tertiary and Quaternary Stereocenters. Angewandte Chemie International Edition 2025, 140 https://doi.org/10.1002/anie.202502569
  53. Timothy P. Aldhous, Raymond Chung, Abbas Hassan, Andrew G. Dalling, Phillippa Cooper, Simon Grélaud, Richard J. Mudd, Lyman J. Feron, Paul D. Kemmitt, John F. Bower. Benzamide‐Directed Hydroarylative Cross‐Couplings Using Minimally Activated Alkenes: Enantioselective Synthesis of Tertiary and Quaternary Stereocenters. Angewandte Chemie 2025, 140 https://doi.org/10.1002/ange.202502569
  54. Zhanyong Tang, Zhenying Yao, Yueyang Yu, Jialin Huang, Xiaoqiang Ma, Xingda Zhao, Zhe Chang, Depeng Zhao. Photoredox‐Catalyzed [3+2] annulation of Aromatic Amides with Olefins via Iminium Intermediates. Angewandte Chemie 2024, 136 (52) https://doi.org/10.1002/ange.202412152
  55. Zhanyong Tang, Zhenying Yao, Yueyang Yu, Jialin Huang, Xiaoqiang Ma, Xingda Zhao, Zhe Chang, Depeng Zhao. Photoredox‐Catalyzed [3+2] annulation of Aromatic Amides with Olefins via Iminium Intermediates. Angewandte Chemie International Edition 2024, 63 (52) https://doi.org/10.1002/anie.202412152
  56. Haiting Wu, Yougen Xu, An Lin, Zhi Wang, Huanjun Chen, Xinwei Zhu, Yadong Gao, Lebin Su. Direct synthesis of α-functionalized amides via heteroatom–hydrogen insertion reactions using amide-sulfoxonium ylides. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-54532-3
  57. Yongqi Liang, Yilin Ma, Wei Zhou, Yongmei Cui, Michal Szostak, Chengwei Liu. Samarium diiodide/samarium-mediated direct deoxygenative hydroborylation of ketones with hydroborane esters. Organic & Biomolecular Chemistry 2024, 22 (39) , 7956-7960. https://doi.org/10.1039/D4OB01287A
  58. Jin-Yu He, Yan-Zhao Wang, Wen-Xi Duan, Jia-Rong Li, Hao Xu, Cuiju Zhu. Highly selective hydrolysis of amides via electroreduction. Green Chemistry 2024, 26 (14) , 8204-8210. https://doi.org/10.1039/D4GC02851A
  59. Kota Yoshioka, Hiroki Iwasaki, Mako Hanaki, Saho Ito, Yuzuha Iwamoto, Rio Ichihara, Hisanori Nambu. A SmI 2 -mediated reductive cyclisation reaction using the trifluoroacetamide group as the radical precursor. Organic & Biomolecular Chemistry 2024, 22 (10) , 1988-1992. https://doi.org/10.1039/D3OB02040A
  60. Qiu Shi, Wenbo H. Liu. Reactivity Umpolung of Amides in Organic Synthesis. Asian Journal of Organic Chemistry 2023, 12 (12) https://doi.org/10.1002/ajoc.202300473
  61. Jing Wen, Zhewei Li, Yanhui Tang, Min Pu, Ming Lei. Mechanistic insights into amide formation from aryl epoxides and amines catalyzed by ruthenium pincer complexes: a DFT study. Dalton Transactions 2023, 52 (24) , 8449-8455. https://doi.org/10.1039/D3DT00726J
  62. Zhen-Zhang Weng, Chao-Long Chen, Long-Wu Ye, La-Sheng Long, Lan-Sun Zheng, Xiang-Jian Kong. Lanthanide-oxo clusters for efficient catalytic reduction of carboxamides. Science China Chemistry 2023, 66 (2) , 443-448. https://doi.org/10.1007/s11426-022-1493-y
  63. Elwira Bisz, Pamela Podchorodecka, Hengzhao Li, Wioletta Ochędzan-Siodłak, Jie An, Michal Szostak. Sequential Iron-Catalyzed C(sp2)–C(sp3) Cross-Coupling of Chlorobenzamides/Chemoselective Amide Reduction and Reductive Deuteration to Benzylic Alcohols. Molecules 2023, 28 (1) , 223. https://doi.org/10.3390/molecules28010223
  64. Wenhan Yang, Jiwen Jiao, Xiaoming Wang. Merging Electron Transfer Activation with 1,2-Metalate Migration: Deoxygenative Silylation of Amides. Chinese Journal of Organic Chemistry 2023, 43 (5) , 1857. https://doi.org/10.6023/cjoc202212019
  65. Lingyu Zhang, Dengbing Xie, Songlin Zhang. A Method for the Synthesis of 1,2,3,4‐Tetrahydroquinolines through Reduction of Quinolin‐2(1H)‐ones Promoted by SmI 2 /H 2 O/Et 3 N. European Journal of Organic Chemistry 2022, 2022 (47) https://doi.org/10.1002/ejoc.202201063
  66. Shahboz Yakubov, Willibald J. Stockerl, Xianhai Tian, Ahmed Shahin, Mark John P. Mandigma, Ruth M. Gschwind, Joshua P. Barham. Benzoates as photosensitization catalysts and auxiliaries in efficient, practical, light-powered direct C(sp 3 )–H fluorinations. Chemical Science 2022, 13 (47) , 14041-14051. https://doi.org/10.1039/D2SC05735B
  67. Xin Hong, Pei‐Pei Xie, Zhi‐Xin Qin, Shuo‐Qing Zhang. Computational Studies of Amide C  N Bond Activation. 2022, 365-402. https://doi.org/10.1002/9783527830251.ch13
  68. H. Keith Chenault. Introduction to Pyrrolidone and Caprolactam Chemistry. 2022, 1-69. https://doi.org/10.1002/9781119468769.hpcbm01
  69. Bianca T. Matsuo, Pedro H. R. Oliveira, Emanuele F. Pissinati, Kimberly B. Vega, Iva S. de Jesus, Jose Tiago M. Correia, Márcio Paixao. Photoinduced carbamoylation reactions: unlocking new reactivities towards amide synthesis. Chemical Communications 2022, 58 (60) , 8322-8339. https://doi.org/10.1039/D2CC02585J
  70. Jie Luo, Quan-Quan Zhou, Michael Montag, Yehoshoa Ben-David, David Milstein. Acceptorless dehydrogenative synthesis of primary amides from alcohols and ammonia. Chemical Science 2022, 13 (13) , 3894-3901. https://doi.org/10.1039/D1SC07102E
  71. Youliang He, Yuxiao Wang, Shi‐Jun Li, Yu Lan, Xiaoming Wang. Deoxygenative Cross‐Coupling of Aromatic Amides with Polyfluoroarenes. Angewandte Chemie 2022, 134 (11) https://doi.org/10.1002/ange.202115497
  72. Youliang He, Yuxiao Wang, Shi‐Jun Li, Yu Lan, Xiaoming Wang. Deoxygenative Cross‐Coupling of Aromatic Amides with Polyfluoroarenes. Angewandte Chemie International Edition 2022, 61 (11) https://doi.org/10.1002/anie.202115497
  73. Yu-Feng Zhang, Mohamed Mellah. Samarium( ii )-electrocatalyzed chemoselective reductive alkoxylation of phthalimides. Organic Chemistry Frontiers 2022, 9 (5) , 1308-1314. https://doi.org/10.1039/D1QO01760H
  74. Greesha N. Majethia, Wahajul Haq, Ganesaratnam K. Balendiran. A facile and chemoselectivity in synthesis of 4-chloro-N-(4-((1-hydroxy-2-methylpropan-2-yl)oxy)phenethyl)benzamide, the alcohol derivative of Bezafibrate. Results in Chemistry 2022, 4 , 100417. https://doi.org/10.1016/j.rechem.2022.100417
  75. Keith P Reber, Emma L Niner. Synthesis of (−)-halichonic acid and (−)-halichonic acid B. Beilstein Journal of Organic Chemistry 2022, 18 , 1629-1635. https://doi.org/10.3762/bjoc.18.174
  76. Andrey Y. Khalimon. Deoxygenative hydroboration of carboxamides: a versatile and selective synthetic approach to amines. Dalton Transactions 2021, 50 (47) , 17455-17466. https://doi.org/10.1039/D1DT03516A
  77. Grégoire Sieg, Quentin Pessemesse, Sascha Reith, Stefan Yelin, Christian Limberg, Dominik Munz, C. Gunnar Werncke. Cobalt and Iron Stabilized Ketyl, Ketiminyl and Aldiminyl Radical Anions. Chemistry – A European Journal 2021, 27 (67) , 16760-16767. https://doi.org/10.1002/chem.202103096
  78. Anders Højgaard Hansen, Henriette B. Christensen, Sunil K. Pandey, Eugenia Sergeev, Alice Valentini, Julia Dunlop, Domonkos Dedeo, Simone Fratta, Brian D. Hudson, Graeme Milligan, Trond Ulven, Elisabeth Rexen Ulven. Structure‐Activity Relationship Explorations and Discovery of a Potent Antagonist for the Free Fatty Acid Receptor 2. ChemMedChem 2021, 16 (21) , 3326-3341. https://doi.org/10.1002/cmdc.202100356
  79. Zhiqiang Guo, Tengfei Pang, Leilei Yan, Xuehong Wei, Jianbin Chao, Chanjuan Xi. CO 2 -tuned highly selective reduction of formamides to the corresponding methylamines. Green Chemistry 2021, 23 (19) , 7534-7538. https://doi.org/10.1039/D1GC02815D
  80. Jiwen Jiao, Xiaoming Wang. Merging Electron Transfer with 1,2‐Metalate Rearrangement: Deoxygenative Arylation of Aromatic Amides with Arylboronic Esters. Angewandte Chemie 2021, 133 (31) , 17225-17230. https://doi.org/10.1002/ange.202104359
  81. Jiwen Jiao, Xiaoming Wang. Merging Electron Transfer with 1,2‐Metalate Rearrangement: Deoxygenative Arylation of Aromatic Amides with Arylboronic Esters. Angewandte Chemie International Edition 2021, 60 (31) , 17088-17093. https://doi.org/10.1002/anie.202104359
  82. H. Keith Chenault. Introduction to Pyrrolidone and Caprolactam Chemistry. 2021, 1-69. https://doi.org/10.1002/9781119468769.hpcbm001
  83. R. A. Flowers, T. V. Chciuk, C. O. Bartulovich. 2.2 Samarium-Mediated Reductions. 2021https://doi.org/10.1055/sos-SD-233-00001
  84. Veronica Papa, Jose R. Cabrero-Antonino, Anke Spannenberg, Kathrin Junge, Matthias Beller. Homogeneous cobalt-catalyzed deoxygenative hydrogenation of amides to amines. Catalysis Science & Technology 2020, 10 (18) , 6116-6128. https://doi.org/10.1039/D0CY01078B
  85. Jian Zhou, Xiaofan Bo, Li Wan, Zhong Xin. Efficient Reduction of Oxazolyl‐Bearing Secondary Anilides to Amines by Nickel‐Catalyzed Hydrosilylation. Asian Journal of Organic Chemistry 2020, 9 (5) , 818-821. https://doi.org/10.1002/ajoc.202000054
  86. Sem Raj Tamang, Arpita Singh, Deepika Bedi, Adineh Rezaei Bazkiaei, Audrey A. Warner, Keeley Glogau, Corey McDonald, Daniel K. Unruh, Michael Findlater. Polynuclear lanthanide–diketonato clusters for the catalytic hydroboration of carboxamides and esters. Nature Catalysis 2020, 3 (2) , 154-162. https://doi.org/10.1038/s41929-019-0405-5
  87. Wei Ou, Pei-Qiang Huang. Amides as surrogates of aldehydes for C-C bond formation: amide-based direct Knoevenagel-type condensation reaction and related reactions. Science China Chemistry 2020, 63 (1) , 11-15. https://doi.org/10.1007/s11426-019-9586-3
  88. Iván Sorribes, Samantha C. S. Lemos, Santiago Martín, Alvaro Mayoral, Renata C. Lima, Juan Andrés. Palladium doping of In 2 O 3 towards a general and selective catalytic hydrogenation of amides to amines and alcohols. Catalysis Science & Technology 2019, 9 (24) , 6965-6976. https://doi.org/10.1039/C9CY02128K
  89. Monserrat H. Garduño‐Castro, David J. Procter. Diastereoselective Hydroxyethylation of β ‐Hydroxyketones: A Reformatsky Cyclization‐Lactone Reduction Cascade Mediated by SmI 2 −H 2 O. Helvetica Chimica Acta 2019, 102 (12) https://doi.org/10.1002/hlca.201900227
  90. Shengzong Liang, Ricardo A. Angnes, Chinmay S. Potnis, Gerald B. Hammond. Photoredox catalyzed C(sp3) C(sp) coupling of dihydropyridines and alkynylbenziodoxolones. Tetrahedron Letters 2019, 60 (45) , 151230. https://doi.org/10.1016/j.tetlet.2019.151230
  91. Sandeep V. H. S. Bhaskaruni, Kranthi Kumar Gangu, Suresh Maddila, Sreekantha B. Jonnalagadda. Our Contributions in Synthesis of Diverse Heterocyclic Scaffolds by Using Mixed Oxides as Heterogeneous Catalysts. The Chemical Record 2019, 19 (9) , 1793-1812. https://doi.org/10.1002/tcr.201800077
  92. Wubing Yao, Rongrong Li, Jianguo Yang, Feiyue Hao. Hydride-catalyzed selectively reductive cleavage of unactivated tertiary amides using hydrosilane. Catalysis Science & Technology 2019, 9 (15) , 3874-3878. https://doi.org/10.1039/C9CY00924H
  93. Derek Yiren Ong, Zhihao Yen, Asami Yoshii, Julia Revillo Imbernon, Ryo Takita, Shunsuke Chiba. Controlled Reduction of Carboxamides to Alcohols or Amines by Zinc Hydrides. Angewandte Chemie 2019, 131 (15) , 5046-5051. https://doi.org/10.1002/ange.201900233
  94. Derek Yiren Ong, Zhihao Yen, Asami Yoshii, Julia Revillo Imbernon, Ryo Takita, Shunsuke Chiba. Controlled Reduction of Carboxamides to Alcohols or Amines by Zinc Hydrides. Angewandte Chemie International Edition 2019, 58 (15) , 4992-4997. https://doi.org/10.1002/anie.201900233
  95. Sikwang Seong, Hyeonggeun Lim, Sunkyu Han. Biosynthetically Inspired Transformation of Iboga to Monomeric Post-iboga Alkaloids. Chem 2019, 5 (2) , 353-363. https://doi.org/10.1016/j.chempr.2018.10.009
  96. Hengzhao Li, Zemin Lai, Adila Adijiang, Hongye Zhao, Jie An. Selective C-N σ Bond Cleavage in Azetidinyl Amides under Transition Metal-Free Conditions. Molecules 2019, 24 (3) , 459. https://doi.org/10.3390/molecules24030459
  97. Huan‐Ming Huang, David J. Procter. Selective Electron Transfer Reduction of Urea‐Type Carbonyls. European Journal of Organic Chemistry 2019, 2019 (2-3) , 313-317. https://doi.org/10.1002/ejoc.201800794
  98. Leila O. Khafizova, Liliya I. Khusainova, Tat’yana V. Tyumkina, Kirill S. Ryazanov, Natal’ya R. Popod’ko, Usein M. Dzhemilev. An original catalytic synthesis of boriran-1-ols. Mendeleev Communications 2018, 28 (6) , 577-578. https://doi.org/10.1016/j.mencom.2018.11.003
  99. Ervin Kovács, Balázs Rózsa, Attila Csomos, Imre G. Csizmadia, Zoltán Mucsi. Amide Activation in Ground and Excited States. Molecules 2018, 23 (11) , 2859. https://doi.org/10.3390/molecules23112859
  100. Daniel Kaiser, Adriano Bauer, Miran Lemmerer, Nuno Maulide. Amide activation: an emerging tool for chemoselective synthesis. Chemical Society Reviews 2018, 47 (21) , 7899-7925. https://doi.org/10.1039/C8CS00335A
Load all citations

Journal of the American Chemical Society

Cite this: J. Am. Chem. Soc. 2014, 136, 6, 2268–2271
Click to copy citationCitation copied!
https://doi.org/10.1021/ja412578t
Published January 24, 2014

Copyright © 2014 American Chemical Society. This publication is licensed under CC-BY.

Article Views

25k

Altmetric

-

Citations

Learn about these metrics

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • Abstract

    Figure 1

    Figure 1. (a) Divergent reaction pathways in the reduction of amides. (b) This work: the first general, highly chemoselective reduction of amides to alcohols.

    Scheme 1

    Scheme 1. Reduction of Enantioenriched Amides to Alcohols Using SmI2

    Scheme 2

    Scheme 2. Studies Designed To Probe the Mechanism of the Reduction of Amides to Alcohols using SmI2 (R′, R″ = H; for R′ = H, R″ = n-Bu and R′, R″ = Et, See the SI)
  • References


    This article references 21 other publications.

    1. 1
      (a) Hudlicky, M. Reductions in Organic Chemistry; Ellis Horwood Ltd.: Chichester, U.K., 1984.
      (b) Seyden-Penne, J. Reductions by the Alumino- and Borohydrides in Organic Synthesis; Wiley: New York, 1997.
      (c) Modern Reduction Methods; Andersson, P. G., Munslow, I. J., Eds.; Wiley-VCH: Weinheim, Germany, 2008.
      (d) Addis, D.; Das, S.; Junge, K.; Beller, M. Angew. Chem., Int. Ed. 2011, 50, 6004
    2. 2
      (a) Comprehensive Organic Synthesis; Trost, B. M.; Fleming, I., Eds.; Pergamon Press: Oxford, U.K., 1991.
      (b) Modern Amination Methods; Ricci, A., Ed.; Wiley-VCH: Weinheim, Germany, 2000.
      (c) Carey, J. S.; Laffan, D.; Thomson, C.; Williams, M. T. Org. Biomol. Chem. 2006, 4, 2337
    3. 3

      For selected recent examples, see:

      (a) Das, S.; Addis, D.; Zhou, S.; Junge, K.; Beller, M. J. Am. Chem. Soc. 2010, 132, 1770
      (b) Das, S.; Wendt, B.; Möller, K.; Junge, K.; Beller, M. Angew. Chem., Int. Ed. 2012, 51, 1662
      (c) Das, S.; Join, B.; Junge, K.; Beller, M. Chem. Commun. 2012, 48, 2683
      (d) Das, S.; Addis, D.; Junge, K.; Beller, M. Chem.—Eur. J. 2011, 17, 12186
      (e) Zhou, S.; Junge, K.; Addis, D.; Das, S.; Beller, M. Angew. Chem., Int. Ed. 2009, 48, 9507

      For an excellent review, see:

      (f) Das, S.; Zhou, S.; Addis, D.; Junge, K.; Enthaler, S.; Beller, M. Top. Catal. 2010, 53, 979
      (g) Barbe, G.; Charette, A. B. J. Am. Chem. Soc. 2008, 130, 18
      (h) Pelletier, G.; Bechara, W. S.; Charette, A. B. J. Am. Chem. Soc. 2010, 132, 12817

      For an elegant application of chemoselective amide bond activation, see:

      (i) Bechara, W. S.; Pelletier, G.; Charette, A. B. Nat. Chem. 2012, 4, 228
      (j) Reeves, J. T.; Tan, Z.; Marsini, M. A.; Han, Z. S.; Xu, Y.; Reeves, D. C.; Lee, H.; Lu, B. Z.; Senanayake, C. H. Adv. Synth. Catal. 2013, 355, 47
      (k) Stein, M.; Breit, B. Angew. Chem., Int. Ed. 2013, 52, 2231
      (l) Cheng, C.; Brookhart, M. J. Am. Chem. Soc. 2012, 134, 11304
      (m) Park, S.; Brookhart, M. J. Am. Chem. Soc. 2012, 134, 640
      (n) Hanada, S.; Tsutsumi, E.; Motoyama, Y.; Nagashima, H. J. Am. Chem. Soc. 2009, 131, 15032
      (o) Motoyama, Y.; Mitsui, K.; Ishida, T.; Nagashima, H. J. Am. Chem. Soc. 2005, 127, 13150
      (p) Sunada, Y.; Kawakami, H.; Imaoka, T.; Motoyama, Y.; Nagashima, H. Angew. Chem., Int. Ed. 2009, 48, 9511
      (q) White, J. M.; Tunoori, A. R.; Georg, G. I. J. Am. Chem. Soc. 2000, 122, 11995
      (r) Spletstoser, J. T.; White, J. M.; Tunoori, A. R.; Georg, G. I. J. Am. Chem. Soc. 2007, 129, 3408
    4. 4
      Brown, H. C.; Kim, S. C. Synthesis 1977, 635
    5. 5
      (a) Hutchins, R. O.; Learn, K.; El-Telbany, F.; Stercho, Y. P. J. Org. Chem. 1984, 49, 2438
      (b) Fisher, G. B.; Fuller, J. C.; Harrison, J.; Alvarez, S. G.; Burkhardt, E. R.; Goralski, C. T.; Singaram, B. J. Org. Chem. 1994, 59, 6378

      For an excellent overview, see:

      (c) Pasumansky, L.; Goralski, C. T.; Singaram, B. Org. Process Res. Dev. 2006, 10, 959
      (d) Myers, A. G.; Yang, B. H.; Kopecky, D. J. Tetrahedron Lett. 1996, 37, 3623
      (e) Myers, A. G.; Yang, B. H.; Chen, H.; McKinstry, L.; Kopecky, D. J.; Gleason, J. L. J. Am. Chem. Soc. 1997, 119, 6496
    6. 6
      (a) Balaraman, E.; Gnanaprakasam, B.; Shimon, L. J. W.; Milstein, D. J. Am. Chem. Soc. 2010, 132, 16756

      For other elegant applications of Ru(II) complexes, see:

      (b) Balaraman, E.; Gunanathan, C.; Zhang, J.; Shimon, L. J. W.; Milstein, D. Nat. Chem. 2011, 3, 609
      (c) Balaraman, E.; Ben-David, Y.; Milstein, D. Angew. Chem., Int. Ed. 2011, 50, 11702
    7. 7
      (a) Ito, M.; Koo, L. W.; Himizu, A.; Kobayashi, C.; Sakaguchi, A.; Ikariya, T. Angew. Chem., Int. Ed. 2009, 48, 1324
      (b) Ito, M.; Ootsuka, T.; Watari, R.; Shiibashi, A.; Himizu, A.; Ikariya, T. J. Am. Chem. Soc. 2011, 133, 4240

      For a review, see:

      (c) Dub, P. A.; Ikariya, T. ACS Catal. 2012, 2, 1718
    8. 8
      John, J. M.; Bergens, S. H. Angew. Chem., Int. Ed. 2011, 50, 10377
    9. 9
      Krackl, S.; Someya, C. I.; Enthaler, S. Chem.—Eur. J. 2012, 18, 15267
    10. 10

      For reviews of metal-mediated radical reactions, see:

      (a) Gansäuer, A.; Bluhm, H. Chem. Rev. 2000, 100, 2771
      (b) Szostak, M.; Procter, D. J. Angew. Chem., Int. Ed. 2012, 51, 9238
      (c) Streuff, J. Synthesis 2013, 45, 281
      (d) Radicals in Synthesis I and II; Gansäuer, A., Ed.; Topics in Current Chemistry, Vols. 263–264; Springer: Berlin, 2006.

      For recent reviews of SmI2, see:

      (e) Molander, G. A.; Harris, C. R. Chem. Rev. 1996, 96, 307
      (f) Krief, A.; Laval, A. M. Chem. Rev. 1999, 99, 745
      (g) Kagan, H. B. Tetrahedron 2003, 59, 10351
      (h) Nicolaou, K. C.; Ellery, S. P.; Chen, J. S. Angew. Chem., Int. Ed. 2009, 48, 7140
      (i) Szostak, M.; Spain, M.; Procter, D. J. Chem. Soc. Rev. 2013, 42, 9155
    11. 11

      For selected studies of cyclizations of acyl-type radicals, see:

      (a) Parmar, D.; Duffy, L. A.; Sadasivam, D. V.; Matsubara, H.; Bradley, P. A.; Flowers, R. A., II; Procter, D. J. J. Am. Chem. Soc. 2009, 131, 15467
      (b) Parmar, D.; Matsubara, H.; Price, K.; Spain, M.; Procter, D. J. J. Am. Chem. Soc. 2012, 134, 12751
      (c) Sautier, B.; Lyons, S. E.; Webb, M. R.; Procter, D. J. Org. Lett. 2012, 14, 146
      (d) Szostak, M.; Sautier, B.; Spain, M.; Behlendorf, M.; Procter, D. J. Angew. Chem., Int. Ed. 2013, 52, 12559
    12. 12

      A study of the mechanism of ester reduction using SmI2/amine/H2O will be reported separately.

    13. 13
      (a) Szostak, M.; Spain, M.; Procter, D. J. Chem. Commun. 2011, 47, 10254
      (b) Szostak, M.; Spain, M.; Procter, D. J. Org. Lett. 2012, 14, 840

      For other studies of SmI2/amine/H2O, see:

      (c) Cabri, W.; Candiani, I.; Colombo, M.; Franzoi, L.; Bedeschi, A. Tetrahedron Lett. 1995, 36, 949
      (d) Dahlén, A.; Hilmersson, G. Chem.—Eur. J. 2003, 9, 1123
      (e) Dahlén, A.; Hilmersson, G. J. Am. Chem. Soc. 2005, 127, 8340
      (f) Ankner, T.; Hilmersson, G. Tetrahedron 2009, 65, 10856
      (g) Ankner, T.; Stålsmeden, A. S.; Hilmersson, G. Chem. Commun. 2013, 49, 6867
    14. 14

      Kamochi and Kudo described the reduction of aryl carboxylic acid derivatives using SmI2, but this process is low-yielding and/or limited in scope. See:

      (a) Kamochi, Y.; Kudo, T. Chem. Lett. 1993, 1495
      (b) Kamochi, Y.; Kudo, T. Bull. Chem. Soc. Jpn. 1992, 65, 3049

      Electrochemical methods for the reduction of amides have been reported. See:

      (c) Benkeser, R. A.; Watanabe, H.; Mels, S. J.; Sabol, M. A. J. Org. Chem. 1970, 35, 1210
      (d) Shono, T.; Masuda, H.; Murase, H.; Shimomura, M.; Kashimura, S. J. Org. Chem. 1992, 57, 1061
    15. 15

      Cyclic carboxylic acid derivatives are more reactive towards Sm(II) because of anomeric stabilization of the radical anion. (11a)

    16. 16
      Szostak, M.; Spain, M.; Choquette, K. A.; Flowers, R. A., II; Procter, D. J. J. Am. Chem. Soc. 2013, 135, 15702
    17. 17

      Complete recovery of the staring material was observed. In contrast, lithium amidotrihydroborate affords mixtures of C–N/C–O cleavage products with similar substrates. (5d) This divergent reactivity should prove useful in the selective reduction of this class of amides.

    18. 18
      Newcomb, M. Tetrahedron 1993, 49, 1151
    19. 19
      (a) Dahlén, A.; Hilmersson, G. Eur. J. Inorg. Chem. 2004, 3393
      (b) Flowers, R. A., II. Synlett 2008, 1427
      (c) Szostak, M.; Spain, M.; Parmar, D.; Procter, D. J. Chem. Commun. 2012, 48, 330
    20. 20
      (a) Tsuruta, H.; Yamaguchi, K.; Imamoto, T. Chem. Commun. 1999, 1703
      (b) Evans, W. J. Inorg. Chem. 2007, 46, 3435
    21. 21
      (a) Laurence, C.; Gal, J.-F. Lewis Basicity and Affinity Scales: Data and Measurement; Wiley-Blackwell: Chichester, U.K., 2009.
      (b) Cox, C.; Lectka, T. Acc. Chem. Res. 2000, 33, 849
  • Supporting Information

    Supporting Information


    Experimental procedures and compound characterization data. This material is available free of charge via the Internet at http://pubs.acs.org.


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.