ACS Publications. Most Trusted. Most Cited. Most Read
Direct Synthesis of High-Valent Aryl–Cu(II) and Aryl–Cu(III) Compounds: Mechanistic Insight into Arene C–H Bond Metalation
My Activity

Figure 1Loading Img
    Article

    Direct Synthesis of High-Valent Aryl–Cu(II) and Aryl–Cu(III) Compounds: Mechanistic Insight into Arene C–H Bond Metalation
    Click to copy article linkArticle link copied!

    View Author Information
    Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
    Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
    Other Access OptionsSupporting Information (4)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2014, 136, 17, 6326–6332
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja412615h
    Published April 14, 2014
    Copyright © 2014 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Copper and its salts are abundant, inexpensive, and eco-friendly and have been used as the surrogates of noble metals to effect arene C–H bond activation and transformations. Despite of the recent significant progress of the study, syntheses of high-valent arylcopper(II–III) compounds are still very rare and mechanisms of copper(II)-catalyzed reactions remain elusive. With the use of azacalix[1]arene[3]pyridines as a platform, a number of arylcopper(II) compounds were synthesized efficiently from the reaction of Cu(ClO4)2 under ambient conditions. The resulting aryl–Cu(II) compounds, which contain an unprecedented (substituted) phenyl–Cu(II) σ-bond, were stable under atmospheric conditions and can undergo facile oxidation reaction by free copper(II) ions or oxone to afford arylcopper(III) compounds in good yields. Both arylcopper(II) and arylcopper(III) compounds were characterized unambiguously by means of XRD, XPS, and NMR methods. Experimental evidence including reaction kinetics, LFER and KIE, and theoretical calculations indicated that the Cu(ClO4)2-mediated arene C–H bond activation proceeds plausibly through an electrophilic aromatic metalation pathway. The synthesis of high-valent arylcopper compounds and the reaction mechanism reported here highlight the diversity and richness of organocopper chemistry.

    Copyright © 2014 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Detailed experimental procedures; characterization of all products; X-ray crystallographic files of 2b, 2g, and 3g; XPS of 2a and 3a; DPV of 2; CV and DPV of 3a; 1H and 13C NMR spectra of products; DFT calculations. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 119 publications.

    1. Kai Hua, Fei Xie, Shengfa Ye, Ming-Tian Zhang. Three Distinct Oxidation States (II/II, II/III, and III/III) of Diorganocopper Complexes. JACS Au 2024, 4 (11) , 4406-4414. https://doi.org/10.1021/jacsau.4c00745
    2. Jay S. Wright, Liam S. Sharninghausen, Alex Lapsys, Melanie S. Sanford, Peter J. H. Scott. C–H Labeling with [18F]Fluoride: An Emerging Methodology in Radiochemistry. ACS Central Science 2024, 10 (9) , 1674-1688. https://doi.org/10.1021/acscentsci.4c00997
    3. Serim Choi, Yongseok Choi, Yongjae Kim, Jaehoo Lee, Sarah Yunmi Lee. Copper-Catalyzed C–C Cross-Couplings of Tertiary Alkyl Halides with Anilines Enabled by Cyclopropenimine-Based Ligands. Journal of the American Chemical Society 2023, 145 (45) , 24897-24905. https://doi.org/10.1021/jacs.3c09369
    4. Isaac M. Blythe, Jingtong Xu, Joaquin S. Fernandez Odell, Jeff W. Kampf, Miriam A. Bowring, Melanie S. Sanford. Characterization and Reactivity of Copper(II) and Copper(III) σ-Aryl Intermediates in Aminoquinoline-Directed C–H Functionalization. Journal of the American Chemical Society 2023, 145 (33) , 18253-18259. https://doi.org/10.1021/jacs.3c00914
    5. Moumita Bera, Simarjeet Kaur, Kritika Keshari, Aakash Santra, Dooshaye Moonshiram, Sayantan Paria. Structural and Spectroscopic Characterization of Copper(III) Complexes and Subsequent One-Electron Oxidation Reaction and Reactivity Studies. Inorganic Chemistry 2023, 62 (14) , 5387-5399. https://doi.org/10.1021/acs.inorgchem.2c04168
    6. Yiu-Wai Yeung, Chun-Ming Chan, Yu-Ting Chen, Marco Chan, Mingyu Luo, Xin Gao, Bingnan Du, Wing-Yiu Yu. Cu-Catalyzed Cross-Electrophilic Coupling of α-Diazoesters with O-Benzoyl Hydroxylamines for the Synthesis of Unnatural N-Alkyl α-Amino Acid Derivatives. Organic Letters 2023, 25 (4) , 619-623. https://doi.org/10.1021/acs.orglett.2c04161
    7. Qian Zhang, Shuo Tong, Mei-Xiang Wang. Unraveling the Chemistry of High Valent Arylcopper Compounds and Their Roles in Copper-Catalyzed Arene C–H Bond Transformations Using Synthetic Macrocycles. Accounts of Chemical Research 2022, 55 (19) , 2796-2810. https://doi.org/10.1021/acs.accounts.2c00316
    8. Yao Ouyang, Chao-Lai Tong, Xiu-Hua Xu, Feng-Ling Qing. Copper and Zinc Copromoted Bromo(chloro)trifluoromethylation of Alkenes and Alkynes with Trifluoromethanesulfonic Anhydride. Organic Letters 2021, 23 (2) , 346-350. https://doi.org/10.1021/acs.orglett.0c03855
    9. Zhen Wang, Qiang Ou, Hui Ma, Guang Cheng, Qing-Pu Zhang, Bien Tan, Chun Zhang. Molecular Engineering for Organic Cage Frameworks with Fixed Pore Size to Tune Their Porous Properties and Improve CO2 Capture. ACS Applied Polymer Materials 2021, 3 (1) , 171-177. https://doi.org/10.1021/acsapm.0c00972
    10. Yu-Qi Fang, Li Dang. Mechanistic Study of Domino Rearrangement-Promoted Meta C–H Activation in 2-Methyl-N-methoxyaniline via Cu(NHC)+: Motivation and Selectivity. Organic Letters 2020, 22 (23) , 9178-9183. https://doi.org/10.1021/acs.orglett.0c03004
    11. Shuo Tong, Jiang-Tao Li, Dong-Dong Liang, Yan-E Zhang, Qi-Yun Feng, Xin Zhang, Jieping Zhu, Mei-Xiang Wang. Catalytic Enantioselective Synthesis and Switchable Chiroptical Property of Inherently Chiral Macrocycles. Journal of the American Chemical Society 2020, 142 (34) , 14432-14436. https://doi.org/10.1021/jacs.0c05369
    12. Weilong Xie, Joon Heo, Dongwook Kim, Sukbok Chang. Copper-Catalyzed Direct C–H Alkylation of Polyfluoroarenes by Using Hydrocarbons as an Alkylating Source. Journal of the American Chemical Society 2020, 142 (16) , 7487-7496. https://doi.org/10.1021/jacs.0c00169
    13. Qian Zhang, Ting Wang, Xinhao Zhang, Shuo Tong, Yun-Dong Wu, Mei-Xiang Wang. Radical Reactivity, Catalysis, and Reaction Mechanism of Arylcopper(II) Compounds: The Missing Link in Organocopper Chemistry. Journal of the American Chemical Society 2019, 141 (45) , 18341-18348. https://doi.org/10.1021/jacs.9b10226
    14. Zi-Qi Zhang, Xiang-Yu Meng, Jie Sheng, Quan Lan, Xi-Sheng Wang. Enantioselective Copper-Catalyzed 1,5-Cyanotrifluoromethylation of Vinylcyclopropanes. Organic Letters 2019, 21 (20) , 8256-8260. https://doi.org/10.1021/acs.orglett.9b03012
    15. Liyan Feng, Chao Yang, Wujiong Xia. Visible-Light Promoted Selective Imination of Unactivated C–H Bonds via Copper-nitrene Intermediates for the Synthesis of 2H-Azirines. Organic Letters 2019, 21 (20) , 8323-8327. https://doi.org/10.1021/acs.orglett.9b03103
    16. Rachel Trammell, Khashayar Rajabimoghadam, Isaac Garcia-Bosch. Copper-Promoted Functionalization of Organic Molecules: from Biologically Relevant Cu/O2 Model Systems to Organometallic Transformations. Chemical Reviews 2019, 119 (4) , 2954-3031. https://doi.org/10.1021/acs.chemrev.8b00368
    17. Yuan-Ye Jiang, Guoqing Li, Daoshan Yang, Zhaoshun Zhang, Ling Zhu, Xia Fan, Siwei Bi. Mechanism of Cu-Catalyzed Aerobic C(CO)–CH3 Bond Cleavage: A Combined Computational and Experimental Study. ACS Catalysis 2019, 9 (2) , 1066-1080. https://doi.org/10.1021/acscatal.8b03993
    18. Hao-Ching Chang, Ya-Fan Chang, Sheng-Hsiang Lin, Tsung-Han Lin, Way-Zen Lee. Ambient Stable Cyanomethylcopper(III) Complex: a Strong Cu–Csp3 Bond Supported by a PS3-Tripodal Chelator. Inorganic Chemistry 2019, 58 (1) , 22-26. https://doi.org/10.1021/acs.inorgchem.8b02511
    19. Hyunwoo Kim, Joon Heo, Junho Kim, Mu-Hyun Baik, Sukbok Chang. Copper-Mediated Amination of Aryl C–H Bonds with the Direct Use of Aqueous Ammonia via a Disproportionation Pathway. Journal of the American Chemical Society 2018, 140 (43) , 14350-14356. https://doi.org/10.1021/jacs.8b08826
    20. Ting Wang, Liyan Zhou, Youqing Yang, Xinhao Zhang, Zhuangzhi Shi, Yun-Dong Wu. Directing Effects on the Copper-Catalyzed Site-Selective Arylation of Indoles. Organic Letters 2018, 20 (20) , 6502-6505. https://doi.org/10.1021/acs.orglett.8b02825
    21. Qi-Liang Yang, Xiang-Yang Wang, Jia-Yan Lu, Li-Pu Zhang, Ping Fang, Tian-Sheng Mei. Copper-Catalyzed Electrochemical C–H Amination of Arenes with Secondary Amines. Journal of the American Chemical Society 2018, 140 (36) , 11487-11494. https://doi.org/10.1021/jacs.8b07380
    22. Yogesh Kumar Maurya, Katsuya Noda, Kazuhisa Yamasumi, Shigeki Mori, Tomoki Uchiyama, Kazutaka Kamitani, Tomoyasu Hirai, Kakeru Ninomiya, Maiko Nishibori, Yuta Hori, Yoshihito Shiota, Kazunari Yoshizawa, Masatoshi Ishida, Hiroyuki Furuta. Ground-State Copper(III) Stabilized by N-Confused/N-Linked Corroles: Synthesis, Characterization, and Redox Reactivity. Journal of the American Chemical Society 2018, 140 (22) , 6883-6892. https://doi.org/10.1021/jacs.8b01876
    23. Qian Zhang, Yang Liu, Ting Wang, Xinhao Zhang, Chao Long, Yun-Dong Wu, Mei-Xiang Wang. Mechanistic Study on Cu(II)-Catalyzed Oxidative Cross-Coupling Reaction between Arenes and Boronic Acids under Aerobic Conditions. Journal of the American Chemical Society 2018, 140 (16) , 5579-5587. https://doi.org/10.1021/jacs.8b01896
    24. Dong-Dong Liang, Mei-Xiang Wang. Synthesis and Structure of Functionalized Homo Heteracalix[2]arene[2]triazines: Effect of All Heteroatom Bridges on Macrocyclic Conformation. The Journal of Organic Chemistry 2018, 83 (6) , 3316-3324. https://doi.org/10.1021/acs.joc.8b00284
    25. Meng-Yao Zhao, De-Xian Wang, and Mei-Xiang Wang . Synthesis, Structure, and Properties of Corona[6]arenes and Their Assembly with Anions in the Crystalline State. The Journal of Organic Chemistry 2018, 83 (3) , 1502-1509. https://doi.org/10.1021/acs.joc.7b03136
    26. Liang Liu, Miaomiao Zhu, Hai-Tao Yu, Wen-Xiong Zhang, and Zhenfeng Xi . Organocopper(III) Spiro Complexes: Synthesis, Structural Characterization, and Redox Transformation. Journal of the American Chemical Society 2017, 139 (39) , 13688-13691. https://doi.org/10.1021/jacs.7b08803
    27. Xinqiang Tan, Zhonglin Liu, Haigen Shen, Pei Zhang, Zhenzhen Zhang, and Chaozhong Li . Silver-Catalyzed Decarboxylative Trifluoromethylation of Aliphatic Carboxylic Acids. Journal of the American Chemical Society 2017, 139 (36) , 12430-12433. https://doi.org/10.1021/jacs.7b07944
    28. Subrata Kundu, Christine Greene, Kamille D. Williams, Tolani K. Salvador, Jeffery A. Bertke, Thomas R. Cundari, and Timothy H. Warren . Three-Coordinate Copper(II) Aryls: Key Intermediates in C–O Bond Formation. Journal of the American Chemical Society 2017, 139 (27) , 9112-9115. https://doi.org/10.1021/jacs.7b04046
    29. Nicholas J. Taylor, Enrico Emer, Sean Preshlock, Michael Schedler, Matthew Tredwell, Stefan Verhoog, Joel Mercier, Christophe Genicot, and Véronique Gouverneur . Derisking the Cu-Mediated 18F-Fluorination of Heterocyclic Positron Emission Tomography Radioligands. Journal of the American Chemical Society 2017, 139 (24) , 8267-8276. https://doi.org/10.1021/jacs.7b03131
    30. Fei Wang, Dinghai Wang, Xiaolong Wan, Lianqian Wu, Pinhong Chen, and Guosheng Liu . Enantioselective Copper-Catalyzed Intermolecular Cyanotrifluoromethylation of Alkenes via Radical Process. Journal of the American Chemical Society 2016, 138 (48) , 15547-15550. https://doi.org/10.1021/jacs.6b10468
    31. Yang Liu, Qian Zhang, Qing-Hui Guo, and Mei-Xiang Wang . Synthesis of Functionalized Azacalix[1]arene[3]pyridine Macrocycles from Cu(II)-Mediated Direct Amination Reactions of Arene through High Valent Arylcopper(III) Intermediates. The Journal of Organic Chemistry 2016, 81 (21) , 10404-10410. https://doi.org/10.1021/acs.joc.6b01448
    32. Thomas G. Ribelli, S. M. Wahidur Rahaman, Jean-Claude Daran, Pawel Krys, Krzysztof Matyjaszewski, and Rinaldo Poli . Effect of Ligand Structure on the CuII–R OMRP Dormant Species and Its Consequences for Catalytic Radical Termination in ATRP. Macromolecules 2016, 49 (20) , 7749-7757. https://doi.org/10.1021/acs.macromol.6b01334
    33. Yang Liu, Chao Long, Liang Zhao, and Mei-Xiang Wang . Functionalization of Azacalixaromatics by Cu(II)-Catalyzed Oxidative Cross-Coupling Reaction between the Arene C–H Bond and Boronic Acids. Organic Letters 2016, 18 (19) , 5078-5081. https://doi.org/10.1021/acs.orglett.6b02530
    34. Andreas K. Rossos, Régis Y. N. Gengler, Daniel S. Badali, and R. J. Dwayne Miller . Synthesis of Bidimensional Prussian Blue Analogue Using an Inverted Langmuir–Schaefer Method. Langmuir 2016, 32 (38) , 9706-9713. https://doi.org/10.1021/acs.langmuir.6b02445
    35. Zhen Wang, Yi Luo, Tian-Long Zhai, Hui Ma, Jing-Jing Chen, Yuanjie Shu, and Chun Zhang . Porous Triphenylbenzene-Based Bicyclooxacalixarene Cage for Selective Adsorption of CO2/N2. Organic Letters 2016, 18 (18) , 4574-4577. https://doi.org/10.1021/acs.orglett.6b02219
    36. Jin-Shun Lin, Xiao-Yang Dong, Tao-Tao Li, Na-Chuan Jiang, Bin Tan, and Xin-Yuan Liu . A Dual-Catalytic Strategy To Direct Asymmetric Radical Aminotrifluoromethylation of Alkenes. Journal of the American Chemical Society 2016, 138 (30) , 9357-9360. https://doi.org/10.1021/jacs.6b04077
    37. Wen-Sheng Ren, Liang Zhao, and Mei-Xiang Wang . Functionalized O6–Corona[6]arenes: Synthesis, Structure, and Fullerene Complexation Property. Organic Letters 2016, 18 (13) , 3126-3129. https://doi.org/10.1021/acs.orglett.6b01330
    38. Xinhao Zhang, Lung Wa Chung, and Yun-Dong Wu . New Mechanistic Insights on the Selectivity of Transition-Metal-Catalyzed Organic Reactions: The Role of Computational Chemistry. Accounts of Chemical Research 2016, 49 (6) , 1302-1310. https://doi.org/10.1021/acs.accounts.6b00093
    39. Micah S. Ziegler, Daniel S. Levine, K. V. Lakshmi, and T. Don Tilley . Aryl Group Transfer from Tetraarylborato Anions to an Electrophilic Dicopper(I) Center and Mixed-Valence μ-Aryl Dicopper(I,II) Complexes. Journal of the American Chemical Society 2016, 138 (20) , 6484-6491. https://doi.org/10.1021/jacs.6b00802
    40. Althea S.-K. Tsang, Ajoy Kapat, and Franziska Schoenebeck . Factors That Control C–C Cleavage versus C–H Bond Hydroxylation in Copper-Catalyzed Oxidations of Ketones with O2. Journal of the American Chemical Society 2016, 138 (2) , 518-526. https://doi.org/10.1021/jacs.5b08347
    41. Taku Kitanosono, Lei Zhu, Chang Liu, Pengyu Xu, and Shu̅ Kobayashi . An Insoluble Copper(II) Acetylacetonate–Chiral Bipyridine Complex that Catalyzes Asymmetric Silyl Conjugate Addition in Water. Journal of the American Chemical Society 2015, 137 (49) , 15422-15425. https://doi.org/10.1021/jacs.5b11418
    42. Hui-Jun Zhang, Feng Su, and Ting-Bin Wen . Copper-Catalyzed Direct C2-Benzylation of Indoles with Alkylarenes. The Journal of Organic Chemistry 2015, 80 (22) , 11322-11329. https://doi.org/10.1021/acs.joc.5b01935
    43. Chi Yang, Wen-Di Wu, Liang Zhao, and Mei-Xiang Wang . Macrocyclic Aryl–Nickel(II) Complexes: Synthesis, Structure, and Reactivity Studies. Organometallics 2015, 34 (20) , 5167-5174. https://doi.org/10.1021/acs.organomet.5b00733
    44. Wen-Sheng Ren, Liang Zhao, and Mei-Xiang Wang . Selective Formylation of Azacalixpyridine Macrocycles and Their Transformation to Molecular Semicages. The Journal of Organic Chemistry 2015, 80 (18) , 9272-9278. https://doi.org/10.1021/acs.joc.5b01722
    45. Scott D. McCann and Shannon S. Stahl . Copper-Catalyzed Aerobic Oxidations of Organic Molecules: Pathways for Two-Electron Oxidation with a Four-Electron Oxidant and a One-Electron Redox-Active Catalyst. Accounts of Chemical Research 2015, 48 (6) , 1756-1766. https://doi.org/10.1021/acs.accounts.5b00060
    46. Wei-Hao Rao and Bing-Feng Shi . Copper(II)-Catalyzed Direct Sulfonylation of C(sp2)–H Bonds with Sodium Sulfinates. Organic Letters 2015, 17 (11) , 2784-2787. https://doi.org/10.1021/acs.orglett.5b01198
    47. Hao-Ching Chang, Feng-Chun Lo, Wen-Chi Liu, Tsung-Han Lin, Wen-Feng Liaw, Ting-Shen Kuo, and Way-Zen Lee . Ambient Stable Trigonal Bipyramidal Copper(III) Complexes Equipped with an Exchangeable Axial Ligand. Inorganic Chemistry 2015, 54 (11) , 5527-5533. https://doi.org/10.1021/acs.inorgchem.5b00603
    48. Yan-Mei Xing, Lei Zhang, and De-Cai Fang . DFT Studies on the Mechanism of Palladium(IV)-Mediated C–H Activation Reactions: Oxidant Effect and Regioselectivity. Organometallics 2015, 34 (4) , 770-777. https://doi.org/10.1021/om501239n
    49. Bo Yao, Yang Liu, Liang Zhao, De-Xian Wang, and Mei-Xiang Wang . Designing a Cu(II)–ArCu(II)–ArCu(III)–Cu(I) Catalytic Cycle: Cu(II)-Catalyzed Oxidative Arene C–H Bond Azidation with Air as an Oxidant under Ambient Conditions. The Journal of Organic Chemistry 2014, 79 (22) , 11139-11145. https://doi.org/10.1021/jo502115a
    50. Fa-Jie Chen, Gang Liao, Xin Li, Jun Wu, and Bing-Feng Shi . Cu(II)-Mediated C–S/N–S Bond Formation via C–H Activation: Access to Benzoisothiazolones Using Elemental Sulfur. Organic Letters 2014, 16 (21) , 5644-5647. https://doi.org/10.1021/ol5027156
    51. Naoko Ichiishi, Allan J. Canty, Brian F. Yates, and Melanie S. Sanford . Mechanistic Investigations of Cu-Catalyzed Fluorination of Diaryliodonium Salts: Elaborating the CuI/CuIII Manifold in Copper Catalysis. Organometallics 2014, 33 (19) , 5525-5534. https://doi.org/10.1021/om5007903
    52. Ruijuan Jiao, Ningchao Liu, Zhaohui Zong, Xian‐Sheng Ke. A Triply Linked Copper(III) Dicarbacorrole Dimer. Chemistry – A European Journal 2024, 30 (35) https://doi.org/10.1002/chem.202401240
    53. Suryadev K. Verma, Benudhar Punji. Copper-catalyzed regioselective C−H alkylation of phenol derivatives with unactivated alkyl chlorides: Manifesting a Cu(I)/Cu(III) pathway. Journal of Catalysis 2024, 430 , 115351. https://doi.org/10.1016/j.jcat.2024.115351
    54. Craig S. Day, Ruben Martin. Comproportionation and disproportionation in nickel and copper complexes. Chemical Society Reviews 2023, 52 (19) , 6601-6616. https://doi.org/10.1039/D2CS00494A
    55. Callum G. J. Hall, Helen F. Sneddon, Peter Pogány, David M. Lindsay, William J. Kerr. Experimental and computational insights into the mechanism of the copper( i )-catalysed sulfonylative Suzuki–Miyaura reaction. Chemical Science 2023, 14 (24) , 6738-6755. https://doi.org/10.1039/D3SC01337E
    56. Fei Wang, Qian Zhang, Shuo Tong, Meixiang Wang. Arene C–H bond trifluoromethylation reactions involving different high valent arylcopper intermediates. SCIENTIA SINICA Chimica 2023, 53 (3) , 522-528. https://doi.org/10.1360/SSC-2022-0234
    57. Heather Hintz, Jamey Bower, Jinghua Tang, Matthew LaLama, Christo Sevov, Shiyu Zhang. Copper-catalyzed electrochemical C–H fluorination. Chem Catalysis 2023, 3 (1) , 100491. https://doi.org/10.1016/j.checat.2022.100491
    58. H. Xu, H.-X. Dai. 1.5 Copper-Catalyzed Directed C—H Functionalization. 2023https://doi.org/10.1055/sos-SD-238-00084
    59. Jessica M. Hoover. Copper‐Catalyzed CH Functionalization Intermediates and Mechanisms. 2022, 1-40. https://doi.org/10.1002/9783527834242.chf0058
    60. K. Gayathri, Subrata Kundu. Copper in CH Functionalization: Mechanistic Insights into CH to CC/N/O Transformations. 2022, 1-30. https://doi.org/10.1002/9783527834242.chf0222
    61. Joe I. Higham, James A. Bull. Amine‐Catalyzed Copper‐Mediated C−H Sulfonylation of Benzaldehydes via a Transient Imine Directing Group**. Angewandte Chemie 2022, 134 (27) https://doi.org/10.1002/ange.202202933
    62. Joe I. Higham, James A. Bull. Amine‐Catalyzed Copper‐Mediated C−H Sulfonylation of Benzaldehydes via a Transient Imine Directing Group**. Angewandte Chemie International Edition 2022, 61 (27) https://doi.org/10.1002/anie.202202933
    63. Hugo Valdés, Xavi Ribas. Organometallic Complexes of Copper. 2022, 1-31. https://doi.org/10.1016/B978-0-12-820206-7.00124-4
    64. Rajarshi Ghosh. Chemistry of silver(III) and some of its compounds: A review. Journal of the Indian Chemical Society 2021, 98 (12) , 100238. https://doi.org/10.1016/j.jics.2021.100238
    65. He Liu, Qilong Shen. Well-defined organometallic Copper(III) complexes: Preparation, characterization and reactivity. Coordination Chemistry Reviews 2021, 442 , 213923. https://doi.org/10.1016/j.ccr.2021.213923
    66. Taghrid Chahrour, Annie Castonguay, Paul O. Oguadinma, Frank Schaper, Davit Zargarian. Reactions of a pincer proligand with copper iodide: bridging instead of C–H metalation. Canadian Journal of Chemistry 2020, 98 (9) , 524-530. https://doi.org/10.1139/cjc-2020-0058
    67. Jay S. Wright, Tanpreet Kaur, Sean Preshlock, Sean S. Tanzey, Wade P. Winton, Liam S. Sharninghausen, Nicholas Wiesner, Allen F. Brooks, Melanie S. Sanford, Peter J. H. Scott. Copper-mediated late-stage radiofluorination: five years of impact on preclinical and clinical PET imaging. Clinical and Translational Imaging 2020, 8 (3) , 167-206. https://doi.org/10.1007/s40336-020-00368-y
    68. Yang Liu, Stefan G. Resch, Iris Klawitter, George E. Cutsail, Serhiy Demeshko, Sebastian Dechert, Fritz E. Kühn, Serena DeBeer, Franc Meyer. An Adaptable N‐Heterocyclic Carbene Macrocycle Hosting Copper in Three Oxidation States. Angewandte Chemie 2020, 132 (14) , 5745-5754. https://doi.org/10.1002/ange.201912745
    69. Yang Liu, Stefan G. Resch, Iris Klawitter, George E. Cutsail, Serhiy Demeshko, Sebastian Dechert, Fritz E. Kühn, Serena DeBeer, Franc Meyer. An Adaptable N‐Heterocyclic Carbene Macrocycle Hosting Copper in Three Oxidation States. Angewandte Chemie International Edition 2020, 59 (14) , 5696-5705. https://doi.org/10.1002/anie.201912745
    70. Yun‐Bin Wu, Lin Xiao, Chun‐Li Mao, Zhong‐Lin Zang, Cheng‐He Zhou, Gui‐Xin Cai. Regio‐ and Stereoselective Synthesis of Enynyl‐Aryl Ethers Enabled by Copper/Iodide Tandem Catalysis. Advanced Synthesis & Catalysis 2019, 361 (19) , 4461-4467. https://doi.org/10.1002/adsc.201900626
    71. Ke-Zuan Deng, Li-Li Zhang, Ye-Feng Chen, He-Xin Xie, Xiao-Bo Xu, Cheng-Cai Xia, Ya-Fei Ji. Copper-mediated direct thiolation of aryl C–H bonds with disulfides. Organic & Biomolecular Chemistry 2019, 17 (29) , 7055-7065. https://doi.org/10.1039/C9OB01255A
    72. Zehai Lu, He Liu, Shihan Liu, Xuebing Leng, Yu Lan, Qilong Shen. A Key Intermediate in Copper‐Mediated Arene Trifluoromethylation, [ n Bu 4 N][Cu(Ar)(CF 3 ) 3 ]: Synthesis, Characterization, and C(sp 2 )−CF 3 Reductive Elimination. Angewandte Chemie 2019, 131 (25) , 8598-8602. https://doi.org/10.1002/ange.201904041
    73. Zehai Lu, He Liu, Shihan Liu, Xuebing Leng, Yu Lan, Qilong Shen. A Key Intermediate in Copper‐Mediated Arene Trifluoromethylation, [ n Bu 4 N][Cu(Ar)(CF 3 ) 3 ]: Synthesis, Characterization, and C(sp 2 )−CF 3 Reductive Elimination. Angewandte Chemie International Edition 2019, 58 (25) , 8510-8514. https://doi.org/10.1002/anie.201904041
    74. Shaoqiang Yang, Miao Chen, Pingping Tang. Visible‐Light Photoredox‐Catalyzed and Copper‐Promoted Trifluoromethoxylation of Arenediazonium Tetrafluoroborates. Angewandte Chemie 2019, 131 (23) , 7922-7926. https://doi.org/10.1002/ange.201901447
    75. Shaoqiang Yang, Miao Chen, Pingping Tang. Visible‐Light Photoredox‐Catalyzed and Copper‐Promoted Trifluoromethoxylation of Arenediazonium Tetrafluoroborates. Angewandte Chemie International Edition 2019, 58 (23) , 7840-7844. https://doi.org/10.1002/anie.201901447
    76. Yu Chen, Yik Ki Au, Yangjian Quan, Zuowei Xie. Copper catalyzed/mediated direct B–H alkenylation/alkynylation in carboranes. Science China Chemistry 2019, 62 (1) , 74-79. https://doi.org/10.1007/s11426-018-9388-3
    77. Meng-Di Gu, Yao Lu, Mei-Xiang Wang. Synthesis and anion binding properties of phthalimide-containing corona[6]arenes. Beilstein Journal of Organic Chemistry 2019, 15 , 1976-1983. https://doi.org/10.3762/bjoc.15.193
    78. Liang Liu, Zhenfeng Xi. Organocopper(III) Compounds with Well‐defined Structures Undergo Reductive Elimination to Form C—C or C–Heteroatom Bonds. Chinese Journal of Chemistry 2018, 36 (12) , 1213-1221. https://doi.org/10.1002/cjoc.201800365
    79. Zohreh S. Ghavami, Markus R. Anneser, Felix Kaiser, Philipp J. Altmann, Benjamin J. Hofmann, Jonas F. Schlagintweit, Gholamhossein Grivani, Fritz E. Kühn. A bench stable formal Cu( iii ) N -heterocyclic carbene accessible from simple copper( ii ) acetate. Chemical Science 2018, 9 (43) , 8307-8314. https://doi.org/10.1039/C8SC01834K
    80. Mei-Xiang Wang. Coronarenes: recent advances and perspectives on macrocyclic and supramolecular chemistry. Science China Chemistry 2018, 61 (8) , 993-1003. https://doi.org/10.1007/s11426-018-9328-8
    81. Hua Wu, Qian Wang, Jieping Zhu. Copper‐Catalyzed Enantioselective Arylative Desymmetrization of Prochiral Cyclopentenes with Diaryliodonium Salts. Angewandte Chemie 2018, 130 (10) , 2751-2755. https://doi.org/10.1002/ange.201713329
    82. Hua Wu, Qian Wang, Jieping Zhu. Copper‐Catalyzed Enantioselective Arylative Desymmetrization of Prochiral Cyclopentenes with Diaryliodonium Salts. Angewandte Chemie International Edition 2018, 57 (10) , 2721-2725. https://doi.org/10.1002/anie.201713329
    83. Jia‐Bin Xiong, Hai‐Tao Feng, Jin‐Hua Wang, Chun Zhang, Bao Li, Yan‐Song Zheng. Tetraphenylethylene Foldamers with Double Hairpin‐Turn Linkers, TNT‐Binding Mode and Detection of Highly Diluted TNT Vapor. Chemistry – A European Journal 2018, 24 (8) , 2004-2012. https://doi.org/10.1002/chem.201705346
    84. Xavi Ribas, Marc Devillard. Model Macrocyclic Ligands for Proof‐of‐Concept Mechanistic Studies in Transition‐Metal Catalysis. Chemistry – A European Journal 2018, 24 (6) , 1222-1230. https://doi.org/10.1002/chem.201704408
    85. Jessica M. Hoover. Mechanistic Aspects of Copper-Catalyzed Decarboxylative Coupling Reactions of (Hetero)Aryl Carboxylic Acids. Comments on Inorganic Chemistry 2017, 37 (4) , 169-200. https://doi.org/10.1080/02603594.2016.1261023
    86. Zhi-Hao Zhou, Cheng-Kun Li, Shao-Fang Zhou, Adedamola Shoberu, Jian-Ping Zou. Copper-catalyzed methylation of 1,3-diketones with tert-butyl peroxybenzoate. Tetrahedron 2017, 73 (19) , 2740-2746. https://doi.org/10.1016/j.tet.2017.03.058
    87. Jin-Shun Lin, Fu-Li Wang, Xiao-Yang Dong, Wei-Wei He, Yue Yuan, Su Chen, Xin-Yuan Liu. Catalytic asymmetric radical aminoperfluoroalkylation and aminodifluoromethylation of alkenes to versatile enantioenriched-fluoroalkyl amines. Nature Communications 2017, 8 (1) https://doi.org/10.1038/ncomms14841
    88. Kamlesh K. Gurjar, Rajendra K. Sharma. Mechanistic Studies of Ullmann‐Type C–N Coupling Reactions: Carbonate‐Ligated Copper(III) Intermediates. ChemCatChem 2017, 9 (5) , 862-869. https://doi.org/10.1002/cctc.201601174
    89. Qian Zhang, Mei-Xiang Wang. Synthesis of hydroxylated azacalix[1]arene[3]pyridines from hydrolysis of high valent arylcopper complexes and conversion to a double azacalix[1]arene[3]pyridine host molecule. Organic Chemistry Frontiers 2017, 4 (2) , 283-287. https://doi.org/10.1039/C6QO00669H
    90. M. A. Kremennaya, M. A. Soldatov, A. P. Budnyk, T. A. Lastovina, A. V. Soldatov. Theoretical and experimental study of mononuclear Cu(II) acetate-bipyridine complex. Journal of Structural Chemistry 2016, 57 (7) , 1348-1354. https://doi.org/10.1134/S0022476616070076
    91. . Mei‐Xiang Wang. Angewandte Chemie 2016, 13142-13142. https://doi.org/10.1002/ange.201603650
    92. . Mei‐Xiang Wang. Angewandte Chemie International Edition 2016, 12950-12950. https://doi.org/10.1002/anie.201603650
    93. Panfeng Peng, Jiang Wang, Chunpu Li, Wei Zhu, Hualiang Jiang, Hong Liu. Cu( ii )-catalyzed C6-selective C–H thiolation of 2-pyridones using air as the oxidant. RSC Advances 2016, 6 (62) , 57441-57445. https://doi.org/10.1039/C6RA04388G
    94. Guoxiong Hua, Junyi Du, Alexandra M. Z. Slawin, J. Derek Woollins. One‐Pot Approach to Organo‐Phosphorus–Chalcogen Macrocycles Incorporating Double OP(S)SC n or OP(Se)SeC n Scaffolds: A Synthetic and Structural Study. Chemistry – A European Journal 2016, 22 (23) , 7782-7791. https://doi.org/10.1002/chem.201504832
    95. Qing‐Hui Guo, Liang Zhao, Mei‐Xiang Wang. Synthesis, Structure, and Molecular Recognition of S 6 ‐ and (SO 2 ) 6 ‐Corona[6](het)arenes: Control of Macrocyclic Conformation and Properties by the Oxidation State of the Bridging Heteroatoms. Chemistry – A European Journal 2016, 22 (20) , 6947-6955. https://doi.org/10.1002/chem.201600462
    96. Juan delPozo, Juan A. Casares, Pablo Espinet. In Situ Generation of ArCu from CuF 2 Makes Coupling of Bulky Aryl Silanes Feasible and Highly Efficient. Chemistry – A European Journal 2016, 22 (12) , 4274-4284. https://doi.org/10.1002/chem.201504435
    97. Elena N. Golubeva, Oleg I. Gromov, Georgy M. Zhidomirov, Ekaterina M. Zubanova. Quantum chemistry of organocuprates as intermediates of catalytic and photochemical reactions. International Journal of Quantum Chemistry 2016, 116 (4) , 295-300. https://doi.org/10.1002/qua.24982
    98. Benedikt Reichart, Gema Guedes de la Cruz, Klaus Zangger, C. Oliver Kappe, Toma Glasnov. Copper/Nafion‐Catalyzed Hydroarylation Process Involving Ketenimine Intermediates: A Novel and Synthetic Approach to 4‐Sulfonamidoquinoline‐2‐ones and Derivatives Thereof. Advanced Synthesis & Catalysis 2016, 358 (1) , 50-55. https://doi.org/10.1002/adsc.201500942
    99. De-Xian Wang, Mei-Xiang Wang. Azacalixaromatics. 2016, 363-397. https://doi.org/10.1007/978-3-319-31867-7_14
    100. Jia Shang, Brett M. Rambo, Xiang Hao, Jun-Feng Xiang, Han-Yuan Gong, Jonathan L. Sessler. Post-synthetic modification of a macrocyclic receptor via regioselective imidazolium ring-opening. Chemical Science 2016, 7 (7) , 4148-4157. https://doi.org/10.1039/C5SC04860E
    Load all citations

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2014, 136, 17, 6326–6332
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja412615h
    Published April 14, 2014
    Copyright © 2014 American Chemical Society

    Article Views

    6256

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.