ACS Publications. Most Trusted. Most Cited. Most Read
Durable Carbon-Coated Li2S Core–Shell Spheres for High Performance Lithium/Sulfur Cells
My Activity

Figure 1Loading Img
    Article

    Durable Carbon-Coated Li2S Core–Shell Spheres for High Performance Lithium/Sulfur Cells
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
    Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
    § Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
    Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
    The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2014, 136, 12, 4659–4663
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja412943h
    Published February 28, 2014
    Copyright © 2014 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Lithium sulfide (Li2S) is an attractive cathode material with a high theoretical specific capacity (1166 mAh g–1). However, the poor cycle life and rate capability have remained significant challenges, preventing its practical application. Here, Li2S spheres with size control have been synthesized for the first time, and a CVD method for converting them into stable carbon-coated Li2S core–shell (Li2S@C) particles has been successfully employed. These Li2S@C particles with protective and conductive carbon shells show promising specific capacities and cycling performance with a high initial discharge capacity of 972 mAh g–1 Li2S (1394 mAh g–1 S) at the 0.2C rate. Even with no added carbon, a very high Li2S content (88 wt % Li2S) electrode composed of 98 wt % 1 μm Li2S@C spheres and 2 wt % binder shows rather stable cycling performance, and little morphology change after 400 cycles at the 0.5C rate.

    Copyright © 2014 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Experimental details for the preparation of Li2S and Li2S@C spheres with three different sizes; electrochemical and materials characterization; XRD pattern of Li2S@C at 700 °C; cycle performance of Li2S@C with 5 wt % C; SEM images of products with different synthesis conditions; SEM images of particles obtained with different amounts of toluene at different times; morphology of the Li2S@C materials after polysulfide dissolution tests; TEM analysis of Li2S@C spheres before and after dissolving Li2S; cycling performance of uncoated Li2S spheres, commercial Li2S, and carbon-coated milled-commercial Li2S; rate performances of all three sizes of Li2S@C particles; SEM image of commercial Li2S; CVs of commercial Li2S before and after milling; SEM images of carbon fiber paper before and after drop casting. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 252 publications.

    1. Jing Yu, Ivan Pinto-Huguet, Chao Yue Zhang, Yingtang Zhou, Yaolin Xu, Alen Vizintin, Juan-Jesús Velasco-Vélez, Xueqiang Qi, Xiaobo Pan, Gozde Oney, Annabel Olgo, Katharina Märker, Leonardo M. Da Silva, Yufeng Luo, Yan Lu, Chen Huang, Eneli Härk, Joe Fleming, Pascale Chenevier, Andreu Cabot, Yunfei Bai, Marc Botifoll, Ashley P. Black, Qi An, Tazdin Amietszajew, Jordi Arbiol. Mechanistic Insights and Technical Challenges in Sulfur-Based Batteries: A Comprehensive In Situ/Operando Monitoring Toolbox. ACS Energy Letters 2024, Article ASAP.
    2. Yujiang Sun, Xin Zhang, Shijie Xu, Shunjin Yang, Xinyu Wang, Xiaorou Cao, Xiao Sun, Yuzhe Zhang, Dehang Ren, Xiaohu Hu, Haoyu Yang, Qiaran Zhang, Zongjing Lu, Xuejing Zhang, Yongan Yang. A Green Method of Synthesizing Battery-Grade Lithium Sulfide: Hydrogen Reduction of Lithium Sulfate. ACS Sustainable Chemistry & Engineering 2024, 12 (7) , 2813-2824. https://doi.org/10.1021/acssuschemeng.3c07872
    3. Wei Ying Lieu, Congjian Lin, Xue Liang Li, Shunqiong Jiang, Yuanjian Li, Hui Ying Yang, Zhi Wei Seh. Structural Design of Electrocatalyst-Decorated MXenes on Sulfur Spheres for Lithium–Sulfur Batteries. Nano Letters 2023, 23 (12) , 5762-5769. https://doi.org/10.1021/acs.nanolett.3c01558
    4. Tian Huang, Gengyuan Zhang, Ruwei Chen, Shangjun Lin, Hujing Zhou, Jiangtao Li, Lai-Hon Chung, Xuanhe Hu, Lin Yu, Jun He. Donor–Acceptor Conjugated Microporous Polymer toward Enhanced Redox Kinetics in Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces 2023, 15 (17) , 21075-21085. https://doi.org/10.1021/acsami.3c01558
    5. Wei Ying Lieu, Daliang Fang, Yuanjian Li, Xue Liang Li, Congjian Lin, Anupma Thakur, Brian C. Wyatt, Shengnan Sun, Tanmay Ghosh, Babak Anasori, Man-Fai Ng, Hui Ying Yang, Zhi Wei Seh. Spherical Templating of CoSe2 Nanoparticle-Decorated MXenes for Lithium–Sulfur Batteries. Nano Letters 2022, 22 (21) , 8679-8687. https://doi.org/10.1021/acs.nanolett.2c03279
    6. Youshuang Zhou, Zhaoyang Wei, Weiwei Lei, Jun You, Tianqi Liang, Qunchao Zhang, Dean Shi. Preparation of Porous Yolk–Shell S@Poly(vinyl alcohol) (PVA) Particles for a Lithium–Sulfur Battery Cathode with High Cycling and Rate Performances via a Self-Emulsification Process. ACS Applied Energy Materials 2022, 5 (6) , 7432-7442. https://doi.org/10.1021/acsaem.2c00934
    7. Ravindra Kumar Bhardwaj, Homen Lahan, Venkataraman Sekkar, Bibin John, Aninda J. Bhattacharyya. High-Performance Li-Metal-Free Sulfur Battery Employing a Lithiated Anatase TiO2 Anode and a Freestanding Li2S–Carbon Aerogel Cathode. ACS Sustainable Chemistry & Engineering 2022, 10 (1) , 410-420. https://doi.org/10.1021/acssuschemeng.1c06581
    8. Hao Yu, Peng Zeng, Xi Zhou, Changmeng Guo, Xiaolin Liu, Kaifu Wang, Xiaowei Guo, Baobao Chang, Manfang Chen, Xianyou Wang. Atomically Dispersed and O, N-Coordinated Mn-Based Catalyst for Promoting the Conversion of Polysulfides in Li2S-Based Li–S Battery. ACS Applied Materials & Interfaces 2021, 13 (45) , 54113-54123. https://doi.org/10.1021/acsami.1c18645
    9. Hong Liu, Peng Zeng, Yongfang Li, Hao Yu, Manfang Chen, Sidra Jamil, Changqing Miao, Gairong Chen, Qi-Cheng Liu, Zhigao Luo, Xianyou Wang. Polyaniline-Derived Carbon Heterostructure as Redox Mediator of Li2S Oxidation and Polysulfide Immobilizer for High-Performance Lithium–Sulfur Cathode. ACS Sustainable Chemistry & Engineering 2020, 8 (44) , 16659-16670. https://doi.org/10.1021/acssuschemeng.0c06310
    10. Jiheon Kim, Ahmed Elabd, Sung-Yoon Chung, Ali Coskun, Jang Wook Choi. Covalent Triazine Frameworks Incorporating Charged Polypyrrole Channels for High-Performance Lithium–Sulfur Batteries. Chemistry of Materials 2020, 32 (10) , 4185-4193. https://doi.org/10.1021/acs.chemmater.0c00246
    11. Tejkiran Pindi Jayakumar, Rajashekar Badam, Noriyoshi Matsumi. Allylimidazolium-Based Poly(ionic liquid) Anodic Binder for Lithium-Ion Batteries with Enhanced Cyclability. ACS Applied Energy Materials 2020, 3 (4) , 3337-3346. https://doi.org/10.1021/acsaem.9b02376
    12. Taisho Seita, Yoshiharu Matsumae, Jiali Liu, Ryoichi Tatara, Kazuhide Ueno, Kaoru Dokko, Masayoshi Watanabe. Graphite–Lithium Sulfide Battery with a Single-Phase Sparingly Solvating Electrolyte. ACS Energy Letters 2020, 5 (1) , 1-7. https://doi.org/10.1021/acsenergylett.9b02347
    13. Teyeb Ould Ely, Dana Kamzabek, Dhritiman Chakraborty, Michael F. Doherty. Lithium–Sulfur Batteries: State of the Art and Future Directions. ACS Applied Energy Materials 2018, 1 (5) , 1783-1814. https://doi.org/10.1021/acsaem.7b00153
    14. Liang Zhang, Dan Sun, Jun Feng, Elton J. Cairns, and Jinghua Guo . Revealing the Electrochemical Charging Mechanism of Nanosized Li2S by in Situ and Operando X-ray Absorption Spectroscopy. Nano Letters 2017, 17 (8) , 5084-5091. https://doi.org/10.1021/acs.nanolett.7b02381
    15. Swagata Roy, Pradip Thakur, Nur Amin Hoque, Biswajoy Bagchi, Nayim Sepay, Farha Khatun, Arpan Kool, and Sukhen Das . Electroactive and High Dielectric Folic Acid/PVDF Composite Film Rooted Simplistic Organic Photovoltaic Self-Charging Energy Storage Cell with Superior Energy Density and Storage Capability. ACS Applied Materials & Interfaces 2017, 9 (28) , 24198-24209. https://doi.org/10.1021/acsami.7b05540
    16. Chao Luo, Hongli Zhu, Wei Luo, Fei Shen, Xiulin Fan, Jiaqi Dai, Yujia Liang, Chunsheng Wang, and Liangbing Hu . Atomic-Layer-Deposition Functionalized Carbonized Mesoporous Wood Fiber for High Sulfur Loading Lithium Sulfur Batteries. ACS Applied Materials & Interfaces 2017, 9 (17) , 14801-14807. https://doi.org/10.1021/acsami.7b01205
    17. Dengrong Sun, Lin Ye, Fangxiang Sun, Hermenegildo García, and Zhaohui Li . From Mixed-Metal MOFs to Carbon-Coated Core–Shell Metal Alloy@Metal Oxide Solid Solutions: Transformation of Co/Ni-MOF-74 to CoxNi1–x@CoyNi1–yO@C for the Oxygen Evolution Reaction. Inorganic Chemistry 2017, 56 (9) , 5203-5209. https://doi.org/10.1021/acs.inorgchem.7b00333
    18. Jiarui He, Yuanfu Chen, Weiqiang Lv, Kechun Wen, Chen Xu, Wanli Zhang, Yanrong Li, Wu Qin, and Weidong He . From Metal–Organic Framework to Li2S@C–Co–N Nanoporous Architecture: A High-Capacity Cathode for Lithium–Sulfur Batteries. ACS Nano 2016, 10 (12) , 10981-10987. https://doi.org/10.1021/acsnano.6b05696
    19. Jiarui He, Yuanfu Chen, Weiqiang Lv, Kechun Wen, Chen Xu, Wanli Zhang, Wu Qin, and Weidong He . Three-Dimensional CNT/Graphene–Li2S Aerogel as Freestanding Cathode for High-Performance Li–S Batteries. ACS Energy Letters 2016, 1 (4) , 820-826. https://doi.org/10.1021/acsenergylett.6b00272
    20. Zhe Li, Shiguo Zhang, Shoshi Terada, Xiaofeng Ma, Kohei Ikeda, Yutaro Kamei, Ce Zhang, Kaoru Dokko, and Masayoshi Watanabe . Promising Cell Configuration for Next-Generation Energy Storage: Li2S/Graphite Battery Enabled by a Solvate Ionic Liquid Electrolyte. ACS Applied Materials & Interfaces 2016, 8 (25) , 16053-16062. https://doi.org/10.1021/acsami.6b03736
    21. Feixiang Wu, Jung Tae Lee, Enbo Zhao, Bao Zhang, and Gleb Yushin . Graphene–Li2S–Carbon Nanocomposite for Lithium–Sulfur Batteries. ACS Nano 2016, 10 (1) , 1333-1340. https://doi.org/10.1021/acsnano.5b06716
    22. Bin He, Wen-Cui Li, Chao Yang, Si-Qiong Wang, and An-Hui Lu . Incorporating Sulfur Inside the Pores of Carbons for Advanced Lithium–Sulfur Batteries: An Electrolysis Approach. ACS Nano 2016, 10 (1) , 1633-1639. https://doi.org/10.1021/acsnano.5b07340
    23. Lin Chen, Yuzi Liu, Fan Zhang, Caihong Liu, and Leon L. Shaw . PVP-Assisted Synthesis of Uniform Carbon Coated Li2S/CB for High-Performance Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces 2015, 7 (46) , 25748-25756. https://doi.org/10.1021/acsami.5b07331
    24. Min Wu, Yi Cui, and Yongzhu Fu . Li2S Nanocrystals Confined in Free-Standing Carbon Paper for High Performance Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces 2015, 7 (38) , 21479-21486. https://doi.org/10.1021/acsami.5b06615
    25. Yoon Hwa, Juan Zhao, and Elton J. Cairns . Lithium Sulfide (Li2S)/Graphene Oxide Nanospheres with Conformal Carbon Coating as a High-Rate, Long-Life Cathode for Li/S Cells. Nano Letters 2015, 15 (5) , 3479-3486. https://doi.org/10.1021/acs.nanolett.5b00820
    26. Chao Wang, Xusheng Wang, Yuan Yang, Akihiro Kushima, Jitao Chen, Yunhui Huang, and Ju Li . Slurryless Li2S/Reduced Graphene Oxide Cathode Paper for High-Performance Lithium Sulfur Battery. Nano Letters 2015, 15 (3) , 1796-1802. https://doi.org/10.1021/acs.nanolett.5b00112
    27. Hong-Jie Peng, Jiyuan Liang, Lin Zhu, Jia-Qi Huang, Xin-Bing Cheng, Xuefeng Guo, Weiping Ding, Wancheng Zhu, and Qiang Zhang . Catalytic Self-Limited Assembly at Hard Templates: A Mesoscale Approach to Graphene Nanoshells for Lithium–Sulfur Batteries. ACS Nano 2014, 8 (11) , 11280-11289. https://doi.org/10.1021/nn503985s
    28. Qing Zhao, Yuxiang Hu, Kai Zhang, and Jun Chen . Potassium–Sulfur Batteries: A New Member of Room-Temperature Rechargeable Metal–Sulfur Batteries. Inorganic Chemistry 2014, 53 (17) , 9000-9005. https://doi.org/10.1021/ic500919e
    29. Dae Soo Jung, Tae Hoon Hwang, Ji Hoon Lee, Hye Young Koo, Rana A. Shakoor, Ramazan Kahraman, Yong Nam Jo, Min-Sik Park, and Jang Wook Choi . Hierarchical Porous Carbon by Ultrasonic Spray Pyrolysis Yields Stable Cycling in Lithium–Sulfur Battery. Nano Letters 2014, 14 (8) , 4418-4425. https://doi.org/10.1021/nl501383g
    30. Khadijeh Hooshyari, Mohadese Rastgoo‐Deylami, Mahshid Mohammadifar, Morteza Moradi, Shahrzad Rahmani, Seifollah Jamalpour, Mahdi Tohidian. Graphene‐Based Multifunctional Nanomaterials for Lithium‐Ion Batteries: Challenges and Opportunities. 2024, 157-190. https://doi.org/10.1002/9783527838851.ch5
    31. Ravindra Kumar Bhardwaj, Yuri Mikhlin, David Zitoun. Investigation of Polysulfide Adsorption on FeS 2 Additive in Sulfur Cathode of Li–S Battery by Ex situ UV–Visible Spectroscopy. Energy Technology 2024, 12 (9) https://doi.org/10.1002/ente.202400421
    32. Mingcheng Ye, Jiaming Ye, Zuyong Feng, Miao He. Freeze-drying synthesis of metal element (Zr, Cr, Co)–doped Li4Ti5O12 anode material for enhanced electrochemical energy storage in lithium-ion batteries. Ionics 2024, 30 (7) , 3767-3778. https://doi.org/10.1007/s11581-024-05546-w
    33. Sebastian Daniel Hirt, Martin Opitz, Herbert Kappl, Mareike Hägele, Pascal Sous, Bernd Oberschachtsiek, Seniz Sörgel, Holger Kaßner, Harry Ernst Hoster. Attenuating the Polysulfide Shuttle Mechanism by Separator Coating. ChemPhysChem 2024, 25 (11) https://doi.org/10.1002/cphc.202300858
    34. Yong-Jin Jang, Hyungeun Seo, Young-Su Lee, Woosuk Cho, Young Whan Cho, Jae-Hun Kim. Cost-effective synthesis of sulfide-based solid electrolytes without using Li2S. Journal of Alloys and Compounds 2024, 989 , 174294. https://doi.org/10.1016/j.jallcom.2024.174294
    35. Qing Cheng, Peng Chen, Xiaohong Liu, Fang Wang, Huaqing Zhong, Jianxun Zhao, Heng Liu, Lianshan Sun, Wanqiang Liu. Mn and N-doped RGO as a sulfur hosting accelerate electron transfer and redox reactions for Li–S batteries. Solid State Sciences 2024, 151 , 107521. https://doi.org/10.1016/j.solidstatesciences.2024.107521
    36. Xiaoqun Qi, Xiaoyu Jin, Henghui Xu, Yujun Pan, Fengyi Yang, Zhenglu Zhu, Jie Ji, Ruining Jiang, Haoran Du, Yongsheng Ji, Dan Yang, Long Qie, Yunhui Huang. Air‐Stable Li 2 S Cathodes Enabled by an In Situ‐Formed Li + Conductor for Graphite‐Li 2 S Pouch Cells. Advanced Materials 2024, 36 (14) https://doi.org/10.1002/adma.202310756
    37. Afaq Hassan, Saima Nazir, Umair Azhar, Tausif Ahmad, M. B. Tahir. Introduction to Lithium-Sulfur Battery. 2024, 17-37. https://doi.org/10.1007/978-981-99-2796-8_2
    38. Misganaw Adigo Weret, Tamilarasan Elango Balaji, Bing Joe Hwang. Lithium Sulfide (Li2S)-Metal Nanocomposites. 2024, 231-246. https://doi.org/10.1007/978-3-031-66226-3_12
    39. Qinghua Zhang, Juan Zhu. LI2S-Carbon Nanocomposites. 2024, 247-263. https://doi.org/10.1007/978-3-031-66226-3_13
    40. Xiao Sun, Yujiang Sun, Shunjin Yang, Xiaohu Hu, Yifan Yan, Dehang Ren, Haoran Qian, Ligang Wang, Boyang Chong, Yu Jiang, Kemeng Ji, Yongan Yang. High-Performance Lithium Sulfide Cathode Made by Using Molten Lithium Polysulfides and Zif-67. 2024https://doi.org/10.2139/ssrn.5030031
    41. Wenbin Fu, Doyoub Kim, Fujia Wang, Gleb Yushin. Stabilizing cathodes and interphases for next-generation Li-ion batteries. Journal of Power Sources 2023, 561 , 232738. https://doi.org/10.1016/j.jpowsour.2023.232738
    42. Shunjin Yang, Fengming Wan, Aiguo Han, Liran Fang, Qifang Sun, Zixiang Zhao, Dawei Song, Lianqi Zhang, Lifang Chen, Colin A. Wolden, Xin Zhang, Yongan Yang. Environmentally friendly, non-glove box, closed-system and continuously massive production of lithium sulfide for battery applications. Journal of Cleaner Production 2023, 382 , 135221. https://doi.org/10.1016/j.jclepro.2022.135221
    43. Robert Dominko, Sara Drvarič Talian, Alen Vizintin. Lithium sulfur batteries: Electrochemistry and mechanistic research. 2023, 430-455. https://doi.org/10.1016/B978-0-12-823144-9.00056-X
    44. Bo Zhao, Zhixin Ren, Zesheng Li, Guoqiang Tan, Jing Xie. Encapsulate lithium sulfide cathodes with carbon-doped MoS2 for fast kinetics in lithium-sulfur batteries, a theoretical study. Acta Materialia 2023, 242 , 118441. https://doi.org/10.1016/j.actamat.2022.118441
    45. Xiangtao Bai, Tianwei Yu, Zhimin Ren, Shengmin Gong, Rong Yang, Chunrong Zhao. Key issues and emerging trends in sulfide all solid state lithium battery. Energy Storage Materials 2022, 51 , 527-549. https://doi.org/10.1016/j.ensm.2022.07.006
    46. Jieru Xu, Qiuchen Wang, Wenlin Yan, Liquan Chen, Hong Li, Fan Wu. Liquid-phase synthesis of Li 2 S and Li 3 PS 4 with lithium-based organic solutions. Chinese Physics B 2022, 31 (9) , 098203. https://doi.org/10.1088/1674-1056/ac7459
    47. Sheng Liang, Ranlin Dong, Shaohua Lu, Lei Hu, Lingli Liu, Qiang Dong, Chonghai Deng, Guangchao Qin, Mao Xu, Chu Liang. Green synthesis of fig–like Li2S–Mo@C nanocomposites for advanced lithium–sulfur batteries. Electrochimica Acta 2022, 426 , 140756. https://doi.org/10.1016/j.electacta.2022.140756
    48. Lulu Tan, Anran Li, Yusi Yang, Jianwen Zhang, Xiaogang Niu, Nan Li, Limin Liu, Lin Guo, Yujie Zhu. Highly Active and Stable Li 2 S−Cu Nanocomposite Cathodes Enabled by Kinetically Favored Displacement Interconversion between Cu 2 S and Li 2 S. Angewandte Chemie 2022, 134 (31) https://doi.org/10.1002/ange.202206012
    49. Lulu Tan, Anran Li, Yusi Yang, Jianwen Zhang, Xiaogang Niu, Nan Li, Limin Liu, Lin Guo, Yujie Zhu. Highly Active and Stable Li 2 S−Cu Nanocomposite Cathodes Enabled by Kinetically Favored Displacement Interconversion between Cu 2 S and Li 2 S. Angewandte Chemie International Edition 2022, 61 (31) https://doi.org/10.1002/anie.202206012
    50. Moumita Kotal, Sonu Jakhar, Sandipan Roy, Harish K. Sharma. Cathode materials for rechargeable lithium batteries: Recent progress and future prospects. Journal of Energy Storage 2022, 47 , 103534. https://doi.org/10.1016/j.est.2021.103534
    51. Mingkai Li, Yingming Wang, Shuzheng Sun, Yanqin Yang, Guoxian Gu, Zisheng Zhang. Rational design of an Allyl-rich Triazine-based covalent organic framework host used as efficient cathode materials for Li-S batteries. Chemical Engineering Journal 2022, 429 , 132254. https://doi.org/10.1016/j.cej.2021.132254
    52. Sheng Liang, Jie Chen, Ningning Zhou, Lei Hu, Lingli Liu, Lili Wang, Dewei Liang, Tingting Yu, Changan Tian, Chu Liang. CNT threaded porous carbon nitride nanoflakes as bifunctional hosts for lithium sulfide cathode. Journal of Alloys and Compounds 2021, 887 , 161356. https://doi.org/10.1016/j.jallcom.2021.161356
    53. Fengming Wan, Liran Fang, Xin Zhang, Colin A. Wolden, Yongan Yang. Lithium sulfide nanocrystals as cathode materials for advanced batteries. Journal of Energy Chemistry 2021, 63 , 138-169. https://doi.org/10.1016/j.jechem.2021.09.028
    54. Zhengwei Wan, Yingchong Huang, Xiaomin Zeng, Xinzhu Guo, Zhuoying Wu, Miaomiao Tian, Gu Wu, Min Ling, Zeheng Li, Xuehui Gao, Chengdu Liang. Peach gum as an efficient binder for high-areal-capacity lithium–sulfur batteries. Sustainable Materials and Technologies 2021, 30 , e00334. https://doi.org/10.1016/j.susmat.2021.e00334
    55. Shunrui Luo, Feixiang Wu, Gleb Yushin. Strategies for fabrication, confinement and performance boost of Li2S in lithium-sulfur, silicon-sulfur & related batteries. Materials Today 2021, 49 , 253-270. https://doi.org/10.1016/j.mattod.2021.03.017
    56. UnJin Ryu, Won Ho Choi, Panpan Dong, Jeeyoung Shin, Min-Kyu Song, Kyung Min Choi. Comparing Internal and Interparticle Space Effects of Metal–Organic Frameworks on Polysulfide Migration in Lithium–Sulfur Batteries. Nanomaterials 2021, 11 (10) , 2689. https://doi.org/10.3390/nano11102689
    57. Wentao Yao, Peichao Zou, Min Wang, Houchao Zhan, Feiyu Kang, Cheng Yang. Design Principle, Optimization Strategies, and Future Perspectives of Anode-Free Configurations for High-Energy Rechargeable Metal Batteries. Electrochemical Energy Reviews 2021, 4 (3) , 601-631. https://doi.org/10.1007/s41918-021-00106-6
    58. Limin Zhang, Wenqing Zhao, Shaohui Yuan, Feng Jiang, Xingqi Chen, Yue Yang, Peng Ge, Wei Sun, Xiaobo Ji. Engineering the morphology/porosity of oxygen-doped carbon for sulfur host as lithium-sulfur batteries. Journal of Energy Chemistry 2021, 60 , 531-545. https://doi.org/10.1016/j.jechem.2020.12.031
    59. Ming Jin, Rui Gao, Guiru Sun, Haibo Li, Xiangxin Xue, Chaoqun Qu, Nan Li, Yuting Zhang, Zhao Wang, Ming Feng. Dual-function LiFePO4 modified separator for low-overpotential and stable Li-S battery. Journal of Alloys and Compounds 2021, 873 , 159798. https://doi.org/10.1016/j.jallcom.2021.159798
    60. J. Nava-Avendaño, M. Nussbaum, J. Veilleux. Thermal Plasma Synthesis of Li2S Nanoparticles for Application in Lithium-Sulfur Batteries. Plasma Chemistry and Plasma Processing 2021, 41 (4) , 1149-1167. https://doi.org/10.1007/s11090-021-10168-5
    61. Wei Zhou, Dengke Zhao, Qikai Wu, Bin Fan, Xiaojing Zhu, Jiacheng Dan, Nanwen Li, Wen Lei, Ligui Li. Enhancing the adsorption and catalytic conversion of polysulfides by nitrogen doped carbon micro-flowers embedded with Mo2C nanoparticles. Carbon 2021, 178 , 371-381. https://doi.org/10.1016/j.carbon.2021.02.099
    62. Fuhua Zhao, Xiaodong Li, Jianjiang He, Kun Wang, Changshui Huang. Preparation of hierarchical graphdiyne hollow nanospheres as anode for lithium-ion batteries. Chemical Engineering Journal 2021, 413 , 127486. https://doi.org/10.1016/j.cej.2020.127486
    63. Xiangyu Meng, Yuzhao Liu, Zhiyu Wang, Yizhou Zhang, Xingyu Wang, Jieshan Qiu. A quasi-solid-state rechargeable cell with high energy and superior safety enabled by stable redox chemistry of Li 2 S in gel electrolyte. Energy & Environmental Science 2021, 14 (4) , 2278-2290. https://doi.org/10.1039/D0EE03037F
    64. Jicheng Jiang, Qining Fan, Shulei Chou, Zaiping Guo, Konstantin Konstantinov, Huakun Liu, Jiazhao Wang. Li 2 S‐Based Li‐Ion Sulfur Batteries: Progress and Prospects. Small 2021, 17 (9) https://doi.org/10.1002/smll.201903934
    65. Kai Yuan, Lixia Yuan, Jie Chen, Jingwei Xiang, Yaqi Liao, Zhen Li, Yunhui Huang. Methods and Cost Estimation for the Synthesis of Nanosized Lithium Sulfide. Small Structures 2021, 2 (3) https://doi.org/10.1002/sstr.202000059
    66. Tianran Yan, Chen Cheng, Liang Zhang. Exploration of materials electrochemistry in rechargeable batteries using advanced in situ/operando x-ray absorption spectroscopy. Electronic Structure 2021, 3 (1) , 013001. https://doi.org/10.1088/2516-1075/abea09
    67. Xiaoyu Cao, Qingyu Shen, Yefei Zhuang, Guoce Zhuang, Xiaobo Chen. Atmospheric plasma reaction synthesised Pt x Fe 1−x /graphene and TiO 2 nanoparticles/graphene for efficient dye-sensitized solar cells. RSC Advances 2021, 11 (12) , 6464-6471. https://doi.org/10.1039/D0RA10067F
    68. Guoce Zhuang, Yuting Sun, Xiaobo Chen. CuS cluster microspheres anchored on reduced graphene oxide as electrode material for asymmetric supercapacitors with outstanding performance. Journal of Materials Science: Materials in Electronics 2021, 32 (4) , 4805-4814. https://doi.org/10.1007/s10854-020-05219-0
    69. Zhen Luo, Ying Xu, Cui-Ran Gong, Yang-Qing Zheng, Zhao-Xi Zhou, Li-Ming Yu. An ultraviolet curable silicon/ graphite electrode binder for long-cycling lithium ion batteries. Journal of Power Sources 2021, 485 , 229348. https://doi.org/10.1016/j.jpowsour.2020.229348
    70. Jin Kiong Ling, Rajan Jose. Metal Oxide Composite Cathode Material for High Energy Density Batteries. 2021, 509-530. https://doi.org/10.1007/978-3-030-68462-4_20
    71. Toshikatsu Kojima, Nobuhiko Takeichi. Li2S Cathode. 2021, 375-392. https://doi.org/10.1007/978-981-33-6668-8_33
    72. Masayoshi Watanabe. Li–S Battery Using Li2S Cathode. 2021, 403-414. https://doi.org/10.1007/978-981-33-6668-8_35
    73. Xianwei Geng, Ruowei Yi, Xiangfei Lin, Chenguang Liu, Yi Sun, Yingchao Zhao, Yinqing Li, Ivona Mitrovic, Rui Liu, Li Yang, Cezhou Zhao. A high conductive TiC–TiO2/SWCNT/S composite with effective polysulfides adsorption for high performance Li–S batteries. Journal of Alloys and Compounds 2021, 851 , 156793. https://doi.org/10.1016/j.jallcom.2020.156793
    74. Shiqi Li, Zhaoyang Fan. Encapsulation methods of sulfur particles for lithium-sulfur batteries: A review. Energy Storage Materials 2021, 34 , 107-127. https://doi.org/10.1016/j.ensm.2020.09.005
    75. Jiamin Zhang, Enze Xu, Zhenjie Sun, Ya Zhou, Pengxiang Shi, Yan Gao, Zhiyong Bao, Yang Jiang. Inverse Fabrication of Li 2 S‐Nanocrystals@Doped‐Carbon Loaded on Woven Carbon Fibers to Spatial Structure Cathodes for High‐Stable Lithium–Sulfur Batteries. Small Methods 2020, 4 (12) https://doi.org/10.1002/smtd.202000463
    76. Raj Kumar, Kunal Mondal, Pritam Kumar Panda, Ajeet Kaushik, Reza Abolhassani, Rajeev Ahuja, Horst-Günter Rubahn, Yogendra Kumar Mishra. Core–shell nanostructures: perspectives towards drug delivery applications. Journal of Materials Chemistry B 2020, 8 (39) , 8992-9027. https://doi.org/10.1039/D0TB01559H
    77. Huiling Yang, Binwei Zhang, Yun‐Xiao Wang, Konstantin Konstantinov, Hua‐Kun Liu, Shi‐Xue Dou. Alkali‐Metal Sulfide as Cathodes toward Safe and High‐Capacity Metal (M = Li, Na, K) Sulfur Batteries. Advanced Energy Materials 2020, 10 (37) https://doi.org/10.1002/aenm.202001764
    78. Yoon Hwa, Elton J. Cairns. Nanostructured Sulfur and Sulfides for Advanced Lithium/Sulfur Cells. ChemElectroChem 2020, 7 (19) , 3927-3942. https://doi.org/10.1002/celc.202000758
    79. Hao Chen, Lin Zhang, Mengyu Li, Guoxin Xie. Synthesis of Core–Shell Micro/Nanoparticles and Their Tribological Application: A Review. Materials 2020, 13 (20) , 4590. https://doi.org/10.3390/ma13204590
    80. Shuping Li, Wei Zhang, Ziqi Zeng, Shijie Cheng, Jia Xie. Selenium or Tellurium as Eutectic Accelerators for High-Performance Lithium/Sodium–Sulfur Batteries. Electrochemical Energy Reviews 2020, 3 (3) , 613-642. https://doi.org/10.1007/s41918-020-00072-5
    81. Hong Liu, Peng Zeng, Yongfang Li, Hao Yu, Manfang Chen, Zhigao Luo, Changqing Miao, Gairong Chen, Xianyou Wang. The preparation and performances of lithium sulfide (Li2S)-oriented cathode composite via carbothermic reduction. Journal of Alloys and Compounds 2020, 835 , 155421. https://doi.org/10.1016/j.jallcom.2020.155421
    82. Fang Li, Chang Wu, Jicheng Jiang, Hua-Kun Liu, Jiazhao Wang. A conductive polymer derived N-doped carbon nanofiber supported Li2S coating layer for Li–S batteries with high mass loading. Journal of Alloys and Compounds 2020, 828 , 154264. https://doi.org/10.1016/j.jallcom.2020.154264
    83. Chao Luo, Enyuan Hu, Karen J. Gaskell, Xiulin Fan, Tao Gao, Chunyu Cui, Sanjit Ghose, Xiao-Qing Yang, Chunsheng Wang. A chemically stabilized sulfur cathode for lean electrolyte lithium sulfur batteries. Proceedings of the National Academy of Sciences 2020, 117 (26) , 14712-14720. https://doi.org/10.1073/pnas.2006301117
    84. Wen‐Peng Wang, Juan Zhang, Ya‐Xia Yin, Hui Duan, Jia Chou, Sheng‐Yi Li, Min Yan, Sen Xin, Yu‐Guo Guo. A Rational Reconfiguration of Electrolyte for High‐Energy and Long‐Life Lithium–Chalcogen Batteries. Advanced Materials 2020, 32 (23) https://doi.org/10.1002/adma.202000302
    85. Jian Wang, Lujie Jia, Shaorong Duan, Haitao Liu, Qingbo Xiao, Tie Li, Haiyan Fan, Kun Feng, Jin Yang, Qi Wang, Meinan Liu, Jun Zhong, Wenhui Duan, Hongzhen Lin, Yuegang Zhang. Single atomic cobalt catalyst significantly accelerates lithium ion diffusion in high mass loading Li2S cathode. Energy Storage Materials 2020, 28 , 375-382. https://doi.org/10.1016/j.ensm.2020.03.023
    86. Lei Huang, Jiaojiao Li, Bo Liu, Yahao Li, Shenghui Shen, Shengjue Deng, Chengwei Lu, Wenkui Zhang, Yang Xia, Guoxiang Pan, Xiuli Wang, Qinqin Xiong, Xinhui Xia, Jiangping Tu. Electrode Design for Lithium–Sulfur Batteries: Problems and Solutions. Advanced Functional Materials 2020, 30 (22) https://doi.org/10.1002/adfm.201910375
    87. Shiqi Li, Dan Leng, Wenyue Li, Long Qie, Zhihua Dong, Zhiqun Cheng, Zhaoyang Fan. Recent progress in developing Li2S cathodes for Li–S batteries. Energy Storage Materials 2020, 27 , 279-296. https://doi.org/10.1016/j.ensm.2020.02.010
    88. Junchao Tan, Dan Li, Yuqing Liu, Peng Zhang, Zehua Qu, Yan Yan, Hao Hu, Haoyan Cheng, Jiaoxia Zhang, Mengyao Dong, Chao Wang, Jincheng Fan, Zhiwei Li, Zhanhu Guo, Mingkai Liu. A self-supported 3D aerogel network lithium–sulfur battery cathode: sulfur spheres wrapped with phosphorus doped graphene and bridged with carbon nanofibers. Journal of Materials Chemistry A 2020, 8 (16) , 7980-7990. https://doi.org/10.1039/D0TA00284D
    89. Yingjie Zhang, Yongtai Li, Qiao Zhang, Chuan Shi, Xue Li, Yiyong Zhang. Effect of Ether Electrolyte on the Electrochemical Performance of Cu2S. International Journal of Electrochemical Science 2020, 15 (4) , 2903-2912. https://doi.org/10.20964/2020.04.78
    90. Hongya Geng, Yan Peng, Liangti Qu, Haijiao Zhang, Minghong Wu. Structure Design and Composition Engineering of Carbon‐Based Nanomaterials for Lithium Energy Storage. Advanced Energy Materials 2020, 10 (10) https://doi.org/10.1002/aenm.201903030
    91. Luoting Zhou, Wenkui Zhang, Yangfeng Wang, Sheng Liang, Yongping Gan, Hui Huang, Jun Zhang, Yang Xia, Chu Liang. Lithium Sulfide as Cathode Materials for Lithium-Ion Batteries: Advances and Challenges. Journal of Chemistry 2020, 2020 , 1-17. https://doi.org/10.1155/2020/6904517
    92. Shuping Li, Jingqi Ma, Ziqi Zeng, Wei Hu, Wei Zhang, Shijie Cheng, Jia Xie. Enhancing the kinetics of lithium–sulfur batteries under solid-state conversion by using tellurium as a eutectic accelerator. Journal of Materials Chemistry A 2020, 8 (6) , 3405-3412. https://doi.org/10.1039/C9TA13191D
    93. Lucas Lodovico, Alberto Varzi, Stefano Passerini. Effect of Aging-Induced Dioxolane Polymerization on the Electrochemistry of Carbon-Coated Lithium Sulfide. Frontiers in Chemistry 2020, 7 https://doi.org/10.3389/fchem.2019.00893
    94. Manni Li, Zeyu Wang, Eric Detsi. In Situ Electrochemical Dilatometry Study of (De)lithiation and Polysulfide Dissolution-Induced Dimensional Changes in Lithium-Sulfur Cathodes during Charging and Discharging. Journal of The Electrochemical Society 2020, 167 (5) , 050505. https://doi.org/10.1149/1945-7111/ab63c1
    95. Yunwen Wu, Toshiyuki Momma, Hiroki Nara, Tao Hang, Ming Li, Tetsuya Osaka. Synthesis of Lithium Sulfide (Li 2 S) Wrapped Carbon Nano Composite for Binder-Free Li 2 S Cathode. Journal of The Electrochemical Society 2020, 167 (2) , 020531. https://doi.org/10.1149/1945-7111/ab6b0c
    96. Zhangxiang Hao, Jie Chen, Lixia Yuan, Qiming Bing, Jingyao Liu, Weilun Chen, Zhen Li, Feng Ryan Wang, Yunhui Huang. Advanced Li 2 S/Si Full Battery Enabled by TiN Polysulfide Immobilizer. Small 2019, 15 (50) https://doi.org/10.1002/smll.201902377
    97. Mingliang Yu, Si Zhou, Zhiyu Wang, Wei Pei, Xuejun Liu, Chang Liu, Chenglin Yan, Xiangyu Meng, Song Wang, Jijun Zhao, Jieshan Qiu. A Molecular‐Cage Strategy Enabling Efficient Chemisorption–Electrocatalytic Interface in Nanostructured Li 2 S Cathode for Li Metal‐Free Rechargeable Cells with High Energy. Advanced Functional Materials 2019, 29 (46) https://doi.org/10.1002/adfm.201905986
    98. Hany El-Shinawi, Edmund J. Cussen, Serena A. Corr. A facile synthetic approach to nanostructured Li 2 S cathodes for rechargeable solid-state Li–S batteries. Nanoscale 2019, 11 (41) , 19297-19300. https://doi.org/10.1039/C9NR06239D
    99. Jinfeng Sun, Lingzhi Guo, Xuan Sun, Jinyang Zhang, Linrui Hou, Li Li, Shuhua Yang, Changzhou Yuan. One‐Dimensional Nanostructured Pseudocapacitive Materials: Design, Synthesis and Applications in Supercapacitors. Batteries & Supercaps 2019, 2 (10) , 820-841. https://doi.org/10.1002/batt.201900021
    100. Zhiyu Wang, Nan Zhang, Mingliang Yu, Junshan Liu, Song Wang, Jieshan Qiu. Boosting redox activity on MXene-induced multifunctional collaborative interface in high Li2S loading cathode for high-energy Li-S and metallic Li-free rechargeable batteries. Journal of Energy Chemistry 2019, 37 , 183-191. https://doi.org/10.1016/j.jechem.2019.03.012
    Load more citations

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2014, 136, 12, 4659–4663
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja412943h
    Published February 28, 2014
    Copyright © 2014 American Chemical Society

    Article Views

    7980

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.