ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Microarray Discovery of New OGT Substrates: The Medulloblastoma Oncogene OTX2 Is O-GlcNAcylated

View Author Information
Department of Microbiology and Immunobiology, and Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
Cite this: J. Am. Chem. Soc. 2014, 136, 13, 4845–4848
Publication Date (Web):February 28, 2014
https://doi.org/10.1021/ja500451w

Copyright © 2022 American Chemical Society. This publication is licensed under these Terms of Use.

  • Open Access
  • Editors Choice

Article Views

11445

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
PDF (1 MB)
Supporting Info (2)»

Abstract

O-GlcNAc transferase (OGT) is a serine/threonine glycosyltransferase that is essential for development and continues to be critically important throughout life. Understanding OGT’s complex biology requires identifying its substrates. Here we demonstrate the utility of a microarray approach for discovering novel OGT substrates. We also report a rapid method to validate OGT substrates that combines in vitro transcription-translation with O-GlcNAc mass tagging. Among the validated new OGT targets is Orthodenticle homeobox 2 (OTX2), a transcription factor critical for brain development, which is primarily expressed only during early embryogenesis and in medulloblastomas, where it functions as an oncogene. We show that endogenous OTX2 from a medulloblastoma cell line is O-GlcNAcylated at several sites. Our results demonstrate that protein microarray technology, combined with the target validation strategy we report, is useful for identifying biologically important OGT substrates, including substrates not present in most tissue types or cell lines.

Protein post-translational modifications (PTMs) are crucial for the proper metabolic control of protein activity. One of the most common PTMs in eukaryotes is O-GlcNAcylation, the attachment of N-acetyl glucosamine (GlcNAc) to serine and threonine side chains of intracellular proteins. This modification is effected by O-GlcNAc transferase (OGT), an enzyme essential for development that has been implicated in a variety of different signaling pathways. (1) OGT targets include kinases, phosphatases, transcription factors, and metabolic enzymes, and OGT has been implicated in insulin signaling, stress response pathways, and cell-cycle regulation, among other processes. Dysregulated O-GlcNAcylation has been linked to cancer, diabetic complications, and other pathologies. (2) Deconvoluting OGT’s myriad functions requires identifying its cellular substrates and considerable effort has been devoted to this endeavor. The vast majority of known substrates were identified using proteomic approaches based on liquid chromatography tandem mass spectrometry (LC-MS/MS). These methods require that O-GlcNAcylated cellular proteins be enriched from the general protein population prior to LC-MS/MS analysis. (3) A number of enrichment approaches have been developed based on lectin affinity capture or bioorthogonal labeling with biotin followed by streptavidin affinity capture. (4) While proteomic approaches are powerful, they have limitations. Enrichment methods can isolate proteins that are not O-GlcNAcylated as well as ones that are, resulting in false positives, and some low abundance OGT substrates may still be missed. Furthermore, O-GlcNAcylated proteins expressed only during development or in specialized cell types will not be identified in standard cell lines.

Figure 1

Figure 1. Known and novel OGT targets can be identified on microarrays. (a) Schematic of the microarray approach. A fluorescent antibody reports on O-GlcNAcylated proteins. (b) Normalized signal intensities plotted against Array ID. Selected known (red) and novel (blue) targets are indicated. Complete list of 230 targets can be found in Tables S1 and S2.

Human protein microarrays can circumvent common pitfalls of methods that rely on substrate enrichment from complex mixtures. Thousands of purified human proteins, including rare and disease-relevant proteins, are present in known, roughly equivalent concentrations on these arrays with their identities spatially encoded. (5) Large microarrays have been used to identify substrates for phosphorylation, acetylation and ubiquitylation, but have not been applied to O-GlcNAcylation. (6) Here we demonstrate the utility of large microarrays for discovering novel OGT substrates. Among a dozen new substrates confirmed using an efficient, orthogonal validation method is OTX2, a master regulator of neural development and a known oncogene for medulloblastoma, the most common malignant brain tumor in children. (7)

Human OGT contains a C-terminal catalytic domain fused to an N-terminal tetratricopeptide repeat (TPR) domain, which is involved in protein–protein interactions. (8) OGT is expressed as three different isoforms that contain identical catalytic domains but different numbers of TPRs: nucleocytoplasmic OGT (ncOGT) contains 12.5 TPRs, mitochondrially targeted OGT (mOGT) contains 9.5 TPRs, and short OGT (sOGT) contains 2.5 TPRs. (9) We purified each isoform from a bacterial overexpression system and tested them for glycosylation of protein substrates in HeLa cell extracts. (10) ncOGT and mOGT, but not sOGT, showed robust glycosylation activity in these extracts (Figure S1), consistent with previous reports. (9) Therefore, we used ncOGT and mOGT to probe a commercially available microarray containing ∼8000 unique human proteins. Microarrays were incubated with 40 μM UDP-GlcNAc and 3 μM purified ncOGT or mOGT at room temperature for one hour, and O-GlcNAc-modified proteins were then detected using a monoclonal anti-O-GlcNAc primary antibody (CTD110.6, Sigma) and a fluorescent secondary antibody (anti-mouse IgG, Alexa-fluor 646 conjugate, Cellsignal) (Figure 1a). (11) Because the anti-O-GlcNAc antibody CTD110.6 can react with pre-existing O-GlcNAc residues on the arrayed proteins, and has also been shown to bind to both O- and N-linked glycans, (12) we incubated a control microarray with UDP-GlcNAc, but without exogenous OGT, and subsequently treated it with the antibodies. The signal intensities from this control array were subtracted from the data for the test arrays to ensure that any observed signal increase in the test arrays was due to glycosylation by exogenously added OGT. The top 2% of normalized signal intensities for each OGT isoform, encompassing a total of 230 proteins, were identified as possible targets of OGT (Figure 1b). This is a stringent cutoff and there are likely many other OGT targets in the array, our first goal was not to comprehensively assess all substrates, but to establish whether a microarray approach would be useful for identifying new substrates. Among the 230 proteins were several known targets of human OGT, including IRS1 and AKT1, which are involved in insulin signaling, CRTC2, a central regulator of gluconeogenic gene expression, and CKII, a well-studied kinase involved in numerous cellular processes. (13) However, the majority of the top hits were not previously identified human OGT targets. Ingenuity Pathway Analysis showed that the hits fall into several functional classes, with the major categories including kinases, transcription factors and apoptosis-related proteins (Table S3).

Figure 2

Figure 2. A rapid, orthogonal validation method confirms new OGT substrates. (a) Schematic of the validation method. (b) Radiolabeled HGS, E2F8, and OTX2 bands shift to higher molecular weight bands. Nine other OGT substrates were validated (Figure S4 and Table S4).

Validation is a major bottleneck for all OGT substrate discovery efforts. Putative OGT substrates identified by proteomic methods are typically validated by transfecting mammalian cell lines with an overexpression vector, immunoprecipitating the expressed protein with a specific antibody, and immunoblotting for the O-GlcNAc modification using an anti-O-GlcNAc antibody. (6b) Alternatively, chemoenzymatic methods can be used to install a biotin handle on all O-GlcNAcylated proteins in a cell lysate, and specific proteins of interest can be identified after streptavidin immunoprecipitation by Western blotting using protein-specific antibodies. (14) These approaches work, but are time-intensive, and screening multiple targets requires a collection of protein-specific antibodies or mammalian overexpression vectors. To accelerate substrate validation, we developed an approach based on a method used to confirm ubiquitylation substrates. (15) In this approach, a radiolabeled protein is expressed in vitro from a commercially available cDNA clone and the O-GlcNAc post-translational modification is then detected following gel electrophoresis (Figure 2a). Unlike ubiquitylation, O-GlcNAc modifications are usually not detectable by mass shifts unless many sites are modified. Therefore, we employed a mass-tagging strategy to overcome this limitation. (16) Candidate proteins were expressed from their respective cDNA clones in an in vitro transcription/translation system (IVT, TnT SP6, Promega) supplemented with 35S-methionine (35S-Met), which radiolabels the expressed protein. Reactions were then incubated with OGT and a UDP-GlcNAc analogue containing an N-acyl azide (UDP-GlcNAz; Figure 2), (17) followed by azadibenzocyclooctyne-PEG, which adds a 5 kDa tag to each GlcNAz. (18) Prior to using the method to validate new substrates, we confirmed that OGT efficiently transfers GlcNAz to IVT-expressed nucleoporin62 (Nup62), a well-characterized OGT target that has ten glycosylation sites and thus undergoes a significant mass shift even without a PEG tag (Figure S2). (19) We then verified the mass-tagging method using IVT-expressed Nup62 and CRTC2, which also has multiple O-GlcNAcylation sites (Figure S3). (13c) For both proteins, gel analysis of IVT reactions showed a single band that shifted to a set of higher molecular weight bands only in reactions containing OGT as well as UDP-GlcNAz and azadibenzocyclooctyne-PEG. Twenty IVT-expressed proteins were then analyzed using the method outlined in Figure 2a, and 12 of these were mass shifted, confirming the microarray identification of them as substrates (Figure 2, Table S4, Figure S4). The remainder either are not OGT substrates or failed to confirm for technical reasons; i.e., the IVT-expressed protein is not correctly folded or is not identical to the form on the microarray, which was expressed in cells and may contain other PTMs. To distinguish between these possibilities, other validation methods can be used. (6b) Nevertheless, the confirmed substrates highlight the utility of the approach. The IVT, OGT, and mass-tagging reactions can be accomplished in under four hours, making it possible to validate a large number of possible substrates in a day once in vitro expression from a commercially available cDNA clone has been verified. This validation procedure should be generally useful for confirming new OGT substrates. Several of the twelve validated OGT substrates are involved in gene transcription, (20) including SSBP2, SSBP3, the glucocorticoid receptor, MEF2A, E2F8, and OTX2. Some of these proteins showed a single 5 kDa shift, consistent with one glycosylation event per protein (HGS, Figure 2b), while others showed multiple bands, indicating several O-GlcNAc modifications per protein (OTX2 and E2F8, Figure 2b). (21)

Figure 3

Figure 3. Endogenous OTX2 is O-GlcNAcylated in a medulloblastoma cell line. (a) Schematic of a validation method adapted from ref 21 with data shown for SP1 (positive control) and OTX2. (b) Immunoblot analysis of inhibitor-treated D283 Med cells. O-GlcNAc antibody shows decreased global O-GlcNAc, Nup62 and OTX2 show mass shifts when OGT is inhibited.

OTX2, a previously unknown OGT substrate, is a transcription factor that acts as a master regulator of brain development. (7) Although otx2 expression is switched off in most tissues after early embryogenesis, it is highly expressed in ∼75% of medulloblastomas, responsible for the majority of fatal childhood brain cancers. (22) Along with c-Myc, OTX2 has been identified as an important oncogene in these tumors. (23) After verifying that OTX2 is expressed in the medulloblastoma cell line D283 Med (Figure S5), we adapted a previously developed mass-tagging approach to assess its endogenous O-GlcNAcylation status (Figure 3a). (21) In the adaptation of this approach, a β-1,4-galactosyltransferase variant, GalTY289, is used to transfer azido-GalNAc (GalNAz) to existing O-GlcNAcs on proteins obtained from a cell lysate. Lysates are then treated with ADIBO-PEG to install a mass tag on each GalNAz. Following SDS-PAGE of total cell lysate, proteins of interest are detected by immunoblotting. SP1, a ubiquitous human transcription factor known to be highly O-GlcNAcylated, (24) shifted to higher molecular weight upon mass-tagging while actin, which is not O-GlcNAcylated, did not. As with SP1, the OTX2 bands shifted to higher molecular weight (Figure 3a), confirming that this protein is O-GlcNAcylated. Several shifted bands were observed, implying that OTX2 from medulloblastoma cells is O-GlcNAcylated at multiple sites, as it is when expressed via IVT (Figure 2b). We confirmed this finding by treating D283 Med cells with 50 μM Ac-5S-GlcNAc, which is metabolized to the validated OGT inhibitor UDP-5S-GlcNAc. (25) Using anti-Nup62 and anti-OTX2 antibodies, we found that inhibitor treatment resulted in a detectable shift to lower molecular weight for both proteins, consistent with the loss of multiple O-GlcNAc modifications due to OGT inhibition (Figure 3b). The roles of O-GlcNAc modification in the oncogenic functions of OTX2 are under investigation.

We have shown that human protein microarrays can detect novel OGT substrates. We note that antibody bias and subtraction of the control array mean that we are not detecting all of the O-GlcNAcylated substrates on the array. The development of alternative detection methods should overcome this limitation. While these microarrays do not yet contain all human proteins, they contain many thousands, including substrates of low abundance, temporally limited expression or glycosylation patterns, or highly restricted cell type specificity. Hence, microarray substrate profiling, combined with the IVT validation method described, can powerfully complement existing proteomic approaches. Moreover, microarray methods are uniquely well suited to exploring the effects of changes in OGT structure on substrate selection.

Supporting Information

ARTICLE SECTIONS
Jump To

Experimental procedures, microarray protocol and data analysis, IVT validation data, and list of OGT targets. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

ARTICLE SECTIONS
Jump To

  • Corresponding Author
    • Suzanne Walker - †Department of Microbiology and Immunobiology, and ‡Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
  • Authors
    • Rodrigo F. Ortiz-Meoz - †Department of Microbiology and Immunobiology, and ‡Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
    • Yifat Merbl - †Department of Microbiology and Immunobiology, and ‡Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
    • Marc W. Kirschner - †Department of Microbiology and Immunobiology, and ‡Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
  • Notes
    The authors declare no competing financial interest.

Acknowledgment

ARTICLE SECTIONS
Jump To

The OGT inhibitor was a gift from David Vocadlo (Simon Fraser University). This research was supported by the National Institutes of Health (GM094263, GM26875, and GM100539).

References

ARTICLE SECTIONS
Jump To

This article references 25 other publications.

  1. 1
    (a) Hart, G. W.; Slawson, C.; Ramirez-Correa, G.; Lagerlof, O. Annu. Rev. Biochem. 2011, 80, 825
    (b) Hanover, J. A.; Krause, M. W.; Love, D. C. Nat. Rev. Mol. Cell. Biol. 2012, 13 (5) 312
  2. 2
    (a) Wells, L.; Kreppel, L. K.; Comer, F. I.; Wadzinski, B. E.; Hart, G. W. J. Biol. Chem. 2004, 279 (37) 38466
    (b) Yang, X. Y.; Ongusaha, P. P.; Miles, P. D.; Havstad, J. C.; Zhang, F. X.; So, W. V.; Kudlow, J. E.; Michell, R. H.; Olefsky, J. M.; Field, S. J.; Evans, R. M. Nature 2008, 451 (7181) 964
    (c) Lehman, D. M.; Fu, D. J.; Freeman, A. B.; Hunt, K. J.; Leach, R. J.; Johnson-Pais, T.; Hamlington, J.; Dyer, T. D.; Arya, R.; Abboud, H.; Goring, H. H. H.; Duggirala, R.; Blangero, J.; Konrad, R. J.; Stern, M. P. Diabetes 2005, 54 (4) 1214
    (d) Zachara, N. E.; O’Donnell, N.; Cheung, W. D.; Mercer, J. J.; Marth, J. D.; Hart, G. W. J. Biol. Chem. 2004, 279 (29) 30133
    (e) Slawson, C.; Zachara, N. E.; Vosseller, K.; Cheung, W. D.; Lane, M. D.; Hart, G. W. J. Biol. Chem. 2005, 280 (38) 32944
    (f) Lazarus, B. D.; Love, D. C.; Hanover, J. A. Int. J. Biochem. Cell Biol. 2009, 41 (11) 2134
    (g) Caldwell, S. A.; Jackson, S. R.; Shahriari, K. S.; Lynch, T. P.; Sethi, G.; Walker, S.; Vosseller, K.; Reginato, M. J. Oncogene 2010, 29 (19) 2831
    (h) Ma, Z.; Vocadlo, D. J.; Vosseller, K. J. Biol. Chem. 2013, 288 (21) 15121
    (i) Lynch, T. P.; Ferrer, C. M.; Jackson, S. R.; Shahriari, K. S.; Vosseller, K.; Reginato, M. J. J. Biol. Chem. 2012, 287 (14) 11070
  3. 3
    Hahne, H.; Sobotzki, N.; Nyberg, T.; Helm, D.; Borodkin, V. S.; van Aalten, D. M.; Agnew, B.; Kuster, B. J. Proteome. Res. 2013, 12 (2) 927
  4. 4
    (a) Sprung, R.; Nandi, A.; Chen, Y.; Kim, S. C.; Barma, D.; Falck, J. R.; Zhao, Y. J. Proteome. Res. 2005, 4 (3) 950
    (b) Nandi, A.; Sprung, R.; Barma, D. K.; Zhao, Y.; Kim, S. C.; Falck, J. R.; Zhao, Y. Anal. Chem. 2006, 78 (2) 452
    (c) Gurcel, C.; Vercoutter-Edouart, A. S.; Fonbonne, C.; Mortuaire, M.; Salvador, A.; Michalski, J. C.; Lemoine, J. Anal. Bioanal. Chem. 2008, 390 (8) 2089
    (d) Zaro, B. W.; Yang, Y. Y.; Hang, H. C.; Pratt, M. R. Proc. Natl. Acad. Sci. U.S.A. 2011, 108 (20) 8146
    (e) Alfaro, J. F.; Gong, C. X.; Monroe, M. E.; Aldrich, J. T.; Clauss, T. R.; Purvine, S. O.; Wang, Z.; Camp, D. G., II; Shabanowitz, J.; Stanley, P.; Hart, G. W.; Hunt, D. F.; Yang, F.; Smith, R. D. Proc. Natl. Acad. Sci. U.S.A. 2012, 109 (19) 7280
    (f) Khidekel, N.; Ficarro, S. B.; Peters, E. C.; Hsieh-Wilson, L. C. Proc. Natl. Acad. Sci. U.S.A. 2004, 101 (36) 13132
  5. 5
    MacBeath, G.; Schreiber, S. L. Science 2000, 289 (5485) 1760
  6. 6
    (a)

    A small kinase microarray in which 3H-GlcNAc was detected was used to identify kinase substrates of OGT. See:

    (b) Dias, W. B.; Cheung, W. D.; Hart, G. W. Biochem. Biophys. Res. Commun. 2012, 422 (2) 224
  7. 7
    Beby, F.; Lamonerie, T. Exp. Eye. Res. 2013, 111, 9
  8. 8
    Jinek, M.; Rehwinkel, J.; Lazarus, B. D.; Izaurralde, E.; Hanover, J. A.; Conti, E. Nat. Struct. Mol. Biol. 2004, 11 (10) 1001
  9. 9
    Lazarus, B. D.; Love, D. C.; Hanover, J. A. Glycobiology 2006, 16 (5) 415
  10. 10
    (a) Merbl, Y.; Kirschner, M. W. Proc. Natl. Acad. Sci. U.S.A. 2009, 106 (8) 2543
    (b) Gross, B. J.; Kraybill, B. C.; Walker, S. J. Am. Chem. Soc. 2005, 127 (42) 14588
  11. 11
    Comer, F. I.; Vosseller, K.; Wells, L.; Accavitti, M. A.; Hart, G. W. Anal. Biochem. 2001, 293 (2) 169
  12. 12
    Isono, T. PLoS One 2011, 6 (4) e18959
  13. 13
    (a) Whelan, S. A.; Dias, W. B.; Thiruneelakantapillai, L.; Lane, M. D.; Hart, G. W. J. Biol. Chem. 2010, 285 (8) 5204
    (b) Wang, S.; Huang, X.; Sun, D.; Xin, X.; Pan, Q.; Peng, S.; Liang, Z.; Luo, C.; Yang, Y.; Jiang, H.; Huang, M.; Chai, W.; Ding, J.; Geng, M. PLoS One 2012, 7 (5) e37427
    (c) Dentin, R.; Hedrick, S.; Xie, J.; Yates, J., III; Montminy, M. Science 2008, 319 (5868) 1402
    (d) Tarrant, M. K.; Rho, H. S.; Xie, Z.; Jiang, Y. L.; Gross, C.; Culhane, J. C.; Yan, G.; Qian, J.; Ichikawa, Y.; Matsuoka, T.; Zachara, N.; Etzkorn, F. A.; Hart, G. W.; Jeong, J. S.; Blackshaw, S.; Zhu, H.; Cole, P. A. Nat. Chem. Biol. 2012, 8 (3) 262
    (e)

    11 out of 80 validated O-GlcNAc proteins discovered in ref 3 were also present on the protein microarray; 5 were in our top 2% of hits, and 7 were in the top 6%.

  14. 14
    Tai, H. C.; Khidekel, N.; Ficarro, S. B.; Peters, E. C.; Hsieh-Wilson, L. C. J. Am. Chem. Soc. 2004, 126 (34) 10500
  15. 15
    Merbl, Y.; Refour, P.; Patel, H.; Springer, M.; Kirschner, M. W. Cell 2013, 152 (5) 1160
  16. 16
    Boyce, M.; Bertozzi, C. R. Nat. Methods 2011, 8 (8) 638
  17. 17
    Vocadlo, D. J.; Hang, H. C.; Kim, E. J.; Hanover, J. A.; Bertozzi, C. R. Proc. Natl. Acad. Sci. U.S.A. 2003, 100 (16) 9116
  18. 18
    Yao, J. Z.; Uttamapinant, C.; Poloukhtine, A.; Baskin, J. M.; Codelli, J. A.; Sletten, E. M.; Bertozzi, C. R.; Popik, V. V.; Ting, A. Y. J. Am. Chem. Soc. 2012, 134 (8) 3720
  19. 19
    Holt, G. D.; Snow, C. M.; Senior, A.; Haltiwanger, R. S.; Gerace, L.; Hart, G. W. J. Cell. Biol. 1987, 104 (5) 1157
  20. 20
    Slawson, C.; Hart, G. W. Nat. Rev. Cancer 2011, 11 (9) 678
  21. 21
    Rexach, J. E.; Rogers, C. J.; Yu, S. H.; Tao, J.; Sun, Y. E.; Hsieh-Wilson, L. C. Nat. Chem. Biol. 2010, 6 (9) 645
  22. 22
    Adamson, D. C.; Shi, Q.; Wortham, M.; Northcott, P. A.; Di, C.; Duncan, C. G.; Li, J.; McLendon, R. E.; Bigner, D. D.; Taylor, M. D.; Yan, H. Cancer Res. 2010, 70 (1) 181
  23. 23
    Bai, R. Y.; Staedtke, V.; Lidov, H. G.; Eberhart, C. G.; Riggins, G. J. Cancer Res. 2012, 72 (22) 5988
  24. 24
    Jackson, S. P.; Tjian, R. Cell 1988, 55 (1) 125
  25. 25
    Gloster, T. M.; Zandberg, W. F.; Heinonen, J. E.; Shen, D. L.; Deng, L.; Vocadlo, D. J. Nat. Chem. Biol. 2011, 7 (3) 174

Cited By

This article is cited by 36 publications.

  1. Guoli Wang, Yang Li, Ting Wang, Jun Wang, Jun Yao, Guoquan Yan, Ying Zhang, Haojie Lu. Multi-comparative Thermal Proteome Profiling Uncovers New O-GlcNAc Proteins in a System-wide Method. Analytical Chemistry 2023, 95 (2) , 881-888. https://doi.org/10.1021/acs.analchem.2c03371
  2. Junfeng Ma, Ci Wu, Gerald W. Hart. Analytical and Biochemical Perspectives of Protein O-GlcNAcylation. Chemical Reviews 2021, 121 (3) , 1513-1581. https://doi.org/10.1021/acs.chemrev.0c00884
  3. Weston Kightlinger, Katherine F. Warfel, Matthew P. DeLisa, Michael C. Jewett. Synthetic Glycobiology: Parts, Systems, and Applications. ACS Synthetic Biology 2020, 9 (7) , 1534-1562. https://doi.org/10.1021/acssynbio.0c00210
  4. Cassandra M. Joiner, Zebulon G. Levine, Chanat Aonbangkhen, Christina M. Woo, Suzanne Walker. Aspartate Residues Far from the Active Site Drive O-GlcNAc Transferase Substrate Selection. Journal of the American Chemical Society 2019, 141 (33) , 12974-12978. https://doi.org/10.1021/jacs.9b06061
  5. Narek Darabedian, John W. Thompson, Kelly N. Chuh, Linda C. Hsieh-Wilson, Matthew R. Pratt. Optimization of Chemoenzymatic Mass Tagging by Strain-Promoted Cycloaddition (SPAAC) for the Determination of O-GlcNAc Stoichiometry by Western Blotting. Biochemistry 2018, 57 (40) , 5769-5774. https://doi.org/10.1021/acs.biochem.8b00648
  6. Zebulon G. Levine, Chenguang Fan, Michael S. Melicher, Marina Orman, Tania Benjamin, Suzanne Walker. O-GlcNAc Transferase Recognizes Protein Substrates Using an Asparagine Ladder in the Tetratricopeptide Repeat (TPR) Superhelix. Journal of the American Chemical Society 2018, 140 (10) , 3510-3513. https://doi.org/10.1021/jacs.7b13546
  7. Juan Hu, Yueying Li, Ying Li, Bo Tang, and Chun-yang Zhang . Single Quantum Dot-Based Nanosensor for Sensitive Detection of O-GlcNAc Transferase Activity. Analytical Chemistry 2017, 89 (23) , 12992-12999. https://doi.org/10.1021/acs.analchem.7b04065
  8. Wanjun Zhang, Tong Liu, Hangyan Dong, Haihong Bai, Fang Tian, Zhaomei Shi, Mingli Chen, Jianhua Wang, Weijie Qin, and Xiaohong Qian . Synthesis of a Highly Azide-Reactive and Thermosensitive Biofunctional Reagent for Efficient Enrichment and Large-Scale Identification of O-GlcNAc Proteins by Mass Spectrometry. Analytical Chemistry 2017, 89 (11) , 5810-5817. https://doi.org/10.1021/acs.analchem.6b04960
  9. Lei Lu, Dacheng Fan, Chia-Wei Hu, Matthew Worth, Zhi-Xiong Ma, and Jiaoyang Jiang . Distributive O-GlcNAcylation on the Highly Repetitive C-Terminal Domain of RNA Polymerase II. Biochemistry 2016, 55 (7) , 1149-1158. https://doi.org/10.1021/acs.biochem.5b01280
  10. Rodrigo F. Ortiz-Meoz, Jiaoyang Jiang, Michael B. Lazarus, Marina Orman, John Janetzko, Chenguang Fan, Damien Y. Duveau, Zhi-Wei Tan, Craig J. Thomas, and Suzanne Walker . A Small Molecule That Inhibits OGT Activity in Cells. ACS Chemical Biology 2015, 10 (6) , 1392-1397. https://doi.org/10.1021/acschembio.5b00004
  11. P. Andrew Chong, Michael L. Nosella, Manasvi Vanama, Roxana Ruiz-Arduengo, Julie D. Forman-Kay. Exploration of O-GlcNAc transferase glycosylation sites reveals a target sequence compositional bias. Journal of Biological Chemistry 2023, 299 (5) , 104629. https://doi.org/10.1016/j.jbc.2023.104629
  12. Hye Lee, Mi Kang, Young-Ju Kwon, Sama Abdi Nansa, Eui Jung, Sung Kim, Sang-Jin Lee, Kyung-Chae Jeong, Youngwook Kim, Heesun Cheong, Ho Seo. Targeted Inhibition of O-Linked β-N-Acetylglucosamine Transferase as a Promising Therapeutic Strategy to Restore Chemosensitivity and Attenuate Aggressive Tumor Traits in Chemoresistant Urothelial Carcinoma of the Bladder. Biomedicines 2022, 10 (5) , 1162. https://doi.org/10.3390/biomedicines10051162
  13. Daniel H. Ramirez, Bo Yang, Alexandria K. D’Souza, Dacheng Shen, Christina M. Woo. Truncation of the TPR domain of OGT alters substrate and glycosite selection. Analytical and Bioanalytical Chemistry 2021, 413 (30) , 7385-7399. https://doi.org/10.1007/s00216-021-03731-8
  14. Logan J Massman, Michael Pereckas, Nathan T Zwagerman, Stephanie Olivier-Van Stichelen. O -GlcNAcylation is essential for rapid Pomc expression and cell proliferation in corticotropic tumor cells. Endocrinology 2021, https://doi.org/10.1210/endocr/bqab178
  15. Arielis Estevez, Dongsheng Zhu, Connor Blankenship, Jiaoyang Jiang. Molecular Interrogation to Crack the Case of O‐GlcNAc. Chemistry – A European Journal 2020, 26 (53) , 12086-12100. https://doi.org/10.1002/chem.202000155
  16. Chen-chen Li, Ying Li, Yan Zhang, Chun-yang Zhang. Single-molecule fluorescence resonance energy transfer and its biomedical applications. TrAC Trends in Analytical Chemistry 2020, 122 , 115753. https://doi.org/10.1016/j.trac.2019.115753
  17. Chia‐Wei Hu, Matthew Worth, Hao Li, Jiaoyang Jiang. Chemical and Biochemical Strategies To Explore the Substrate Recognition of O ‐GlcNAc‐Cycling Enzymes. ChemBioChem 2019, 20 (3) , 312-318. https://doi.org/10.1002/cbic.201800481
  18. Jie Shi, Rob Ruijtenbeek, Roland J Pieters. Demystifying O-GlcNAcylation: hints from peptide substrates. Glycobiology 2018, 28 (11) , 814-824. https://doi.org/10.1093/glycob/cwy031
  19. Saar A. M. van der Laarse, Aneika C. Leney, Albert J. R. Heck. Crosstalk between phosphorylation and O‐Glc NA cylation: friend or foe. The FEBS Journal 2018, 285 (17) , 3152-3167. https://doi.org/10.1111/febs.14491
  20. Weston Kightlinger, Liang Lin, Madisen Rosztoczy, Wenhao Li, Matthew P. DeLisa, Milan Mrksich, Michael C. Jewett. Design of glycosylation sites by rapid synthesis and analysis of glycosyltransferases. Nature Chemical Biology 2018, 14 (6) , 627-635. https://doi.org/10.1038/s41589-018-0051-2
  21. Zafer Gurel, Nader Sheibani. O-Linked β- N -acetylglucosamine (O-GlcNAc) modification: a new pathway to decode pathogenesis of diabetic retinopathy. Clinical Science 2018, 132 (2) , 185-198. https://doi.org/10.1042/CS20171454
  22. Eun Ju Kim. In Vitro Biochemical Assays for O-GlcNAc-Processing Enzymes. ChemBioChem 2017, 18 (15) , 1462-1472. https://doi.org/10.1002/cbic.201700138
  23. Kristýna Slámová, Pavla Bojarová. Engineered N-acetylhexosamine-active enzymes in glycoscience. Biochimica et Biophysica Acta (BBA) - General Subjects 2017, 1861 (8) , 2070-2087. https://doi.org/10.1016/j.bbagen.2017.03.019
  24. An-Qi Yang, Daoyuan Li, Lianli Chi, Xin-Shan Ye. Validation, Identification, and Biological Consequences of the Site-specific O-GlcNAcylation Dynamics of Carbohydrate-responsive Element-binding Protein (ChREBP). Molecular & Cellular Proteomics 2017, 16 (7) , 1233-1243. https://doi.org/10.1074/mcp.M116.061416
  25. Nathan J. Cox, Thomas R. Meister, Michael Boyce. Chemical Biology of O -GlcNAc Glycosylation. 2017, 94-149. https://doi.org/10.1039/9781782623823-00094
  26. Zhoumin Li, Zhonghui Li, Qiqi Niu, Hui Li, Maika Vuki, Danke Xu. Visual microarray detection for human IgE based on silver nanoparticles. Sensors and Actuators B: Chemical 2017, 239 , 45-51. https://doi.org/10.1016/j.snb.2016.07.142
  27. Zebulon G. Levine, Suzanne Walker. The Biochemistry of O -GlcNAc Transferase: Which Functions Make It Essential in Mammalian Cells?. Annual Review of Biochemistry 2016, 85 (1) , 631-657. https://doi.org/10.1146/annurev-biochem-060713-035344
  28. Avital Percher, Srinivasan Ramakrishnan, Emmanuelle Thinon, Xiaoqiu Yuan, Jacob S. Yount, Howard C. Hang. Mass-tag labeling reveals site-specific and endogenous levels of protein S-fatty acylation. Proceedings of the National Academy of Sciences 2016, 113 (16) , 4302-4307. https://doi.org/10.1073/pnas.1602244113
  29. Jie Shi, Suhela Sharif, Rob Ruijtenbeek, Roland J. Pieters, . Activity Based High-Throughput Screening for Novel O-GlcNAc Transferase Substrates Using a Dynamic Peptide Microarray. PLOS ONE 2016, 11 (3) , e0151085. https://doi.org/10.1371/journal.pone.0151085
  30. Kelly N. Chuh, Anna R. Batt, Matthew R. Pratt. Chemical Methods for Encoding and Decoding of Posttranslational Modifications. Cell Chemical Biology 2016, 23 (1) , 86-107. https://doi.org/10.1016/j.chembiol.2015.11.006
  31. Yingshuai Liu, Jin Xie, Zeying Zhang, Zhisong Lu. An ultrasensitive colorimetric strategy for protein O-GlcNAcylation detection via copper deposition-enabled nonenzymatic signal amplification. RSC Advances 2016, 6 (92) , 89484-89491. https://doi.org/10.1039/C6RA17119B
  32. Stéphanie Olivier-Van Stichelen, John A. Hanover. You are what you eat. Current Opinion in Clinical Nutrition and Metabolic Care 2015, 18 (4) , 339-345. https://doi.org/10.1097/MCO.0000000000000188
  33. Anne‐Sophie Vercoutter‐Edouart, Ikram El Yazidi‐Belkoura, Céline Guinez, Steffi Baldini, Maïté Leturcq, Marlène Mortuaire, Anne‐Marie Mir, Agata Steenackers, Vanessa Dehennaut, Annick Pierce, Tony Lefebvre. Detection and identification of O ‐GlcNAcylated proteins by proteomic approaches. PROTEOMICS 2015, 15 (5-6) , 1039-1050. https://doi.org/10.1002/pmic.201400326
  34. Alexis K. Nagel, Lauren E. Ball. Intracellular Protein O-GlcNAc Modification Integrates Nutrient Status with Transcriptional and Metabolic Regulation. 2015, 137-166. https://doi.org/10.1016/bs.acr.2014.12.003
  35. John Janetzko, Suzanne Walker. The Making of a Sweet Modification: Structure and Function of O-GlcNAc Transferase. Journal of Biological Chemistry 2014, 289 (50) , 34424-34432. https://doi.org/10.1074/jbc.R114.604405
  36. Alexis K. Nagel, Lauren E. Ball. O-GlcNAc transferase and O-GlcNAcase: achieving target substrate specificity. Amino Acids 2014, 46 (10) , 2305-2316. https://doi.org/10.1007/s00726-014-1827-7
  • Abstract

    Figure 1

    Figure 1. Known and novel OGT targets can be identified on microarrays. (a) Schematic of the microarray approach. A fluorescent antibody reports on O-GlcNAcylated proteins. (b) Normalized signal intensities plotted against Array ID. Selected known (red) and novel (blue) targets are indicated. Complete list of 230 targets can be found in Tables S1 and S2.

    Figure 2

    Figure 2. A rapid, orthogonal validation method confirms new OGT substrates. (a) Schematic of the validation method. (b) Radiolabeled HGS, E2F8, and OTX2 bands shift to higher molecular weight bands. Nine other OGT substrates were validated (Figure S4 and Table S4).

    Figure 3

    Figure 3. Endogenous OTX2 is O-GlcNAcylated in a medulloblastoma cell line. (a) Schematic of a validation method adapted from ref 21 with data shown for SP1 (positive control) and OTX2. (b) Immunoblot analysis of inhibitor-treated D283 Med cells. O-GlcNAc antibody shows decreased global O-GlcNAc, Nup62 and OTX2 show mass shifts when OGT is inhibited.

  • References

    ARTICLE SECTIONS
    Jump To

    This article references 25 other publications.

    1. 1
      (a) Hart, G. W.; Slawson, C.; Ramirez-Correa, G.; Lagerlof, O. Annu. Rev. Biochem. 2011, 80, 825
      (b) Hanover, J. A.; Krause, M. W.; Love, D. C. Nat. Rev. Mol. Cell. Biol. 2012, 13 (5) 312
    2. 2
      (a) Wells, L.; Kreppel, L. K.; Comer, F. I.; Wadzinski, B. E.; Hart, G. W. J. Biol. Chem. 2004, 279 (37) 38466
      (b) Yang, X. Y.; Ongusaha, P. P.; Miles, P. D.; Havstad, J. C.; Zhang, F. X.; So, W. V.; Kudlow, J. E.; Michell, R. H.; Olefsky, J. M.; Field, S. J.; Evans, R. M. Nature 2008, 451 (7181) 964
      (c) Lehman, D. M.; Fu, D. J.; Freeman, A. B.; Hunt, K. J.; Leach, R. J.; Johnson-Pais, T.; Hamlington, J.; Dyer, T. D.; Arya, R.; Abboud, H.; Goring, H. H. H.; Duggirala, R.; Blangero, J.; Konrad, R. J.; Stern, M. P. Diabetes 2005, 54 (4) 1214
      (d) Zachara, N. E.; O’Donnell, N.; Cheung, W. D.; Mercer, J. J.; Marth, J. D.; Hart, G. W. J. Biol. Chem. 2004, 279 (29) 30133
      (e) Slawson, C.; Zachara, N. E.; Vosseller, K.; Cheung, W. D.; Lane, M. D.; Hart, G. W. J. Biol. Chem. 2005, 280 (38) 32944
      (f) Lazarus, B. D.; Love, D. C.; Hanover, J. A. Int. J. Biochem. Cell Biol. 2009, 41 (11) 2134
      (g) Caldwell, S. A.; Jackson, S. R.; Shahriari, K. S.; Lynch, T. P.; Sethi, G.; Walker, S.; Vosseller, K.; Reginato, M. J. Oncogene 2010, 29 (19) 2831
      (h) Ma, Z.; Vocadlo, D. J.; Vosseller, K. J. Biol. Chem. 2013, 288 (21) 15121
      (i) Lynch, T. P.; Ferrer, C. M.; Jackson, S. R.; Shahriari, K. S.; Vosseller, K.; Reginato, M. J. J. Biol. Chem. 2012, 287 (14) 11070
    3. 3
      Hahne, H.; Sobotzki, N.; Nyberg, T.; Helm, D.; Borodkin, V. S.; van Aalten, D. M.; Agnew, B.; Kuster, B. J. Proteome. Res. 2013, 12 (2) 927
    4. 4
      (a) Sprung, R.; Nandi, A.; Chen, Y.; Kim, S. C.; Barma, D.; Falck, J. R.; Zhao, Y. J. Proteome. Res. 2005, 4 (3) 950
      (b) Nandi, A.; Sprung, R.; Barma, D. K.; Zhao, Y.; Kim, S. C.; Falck, J. R.; Zhao, Y. Anal. Chem. 2006, 78 (2) 452
      (c) Gurcel, C.; Vercoutter-Edouart, A. S.; Fonbonne, C.; Mortuaire, M.; Salvador, A.; Michalski, J. C.; Lemoine, J. Anal. Bioanal. Chem. 2008, 390 (8) 2089
      (d) Zaro, B. W.; Yang, Y. Y.; Hang, H. C.; Pratt, M. R. Proc. Natl. Acad. Sci. U.S.A. 2011, 108 (20) 8146
      (e) Alfaro, J. F.; Gong, C. X.; Monroe, M. E.; Aldrich, J. T.; Clauss, T. R.; Purvine, S. O.; Wang, Z.; Camp, D. G., II; Shabanowitz, J.; Stanley, P.; Hart, G. W.; Hunt, D. F.; Yang, F.; Smith, R. D. Proc. Natl. Acad. Sci. U.S.A. 2012, 109 (19) 7280
      (f) Khidekel, N.; Ficarro, S. B.; Peters, E. C.; Hsieh-Wilson, L. C. Proc. Natl. Acad. Sci. U.S.A. 2004, 101 (36) 13132
    5. 5
      MacBeath, G.; Schreiber, S. L. Science 2000, 289 (5485) 1760
    6. 6
      (a)

      A small kinase microarray in which 3H-GlcNAc was detected was used to identify kinase substrates of OGT. See:

      (b) Dias, W. B.; Cheung, W. D.; Hart, G. W. Biochem. Biophys. Res. Commun. 2012, 422 (2) 224
    7. 7
      Beby, F.; Lamonerie, T. Exp. Eye. Res. 2013, 111, 9
    8. 8
      Jinek, M.; Rehwinkel, J.; Lazarus, B. D.; Izaurralde, E.; Hanover, J. A.; Conti, E. Nat. Struct. Mol. Biol. 2004, 11 (10) 1001
    9. 9
      Lazarus, B. D.; Love, D. C.; Hanover, J. A. Glycobiology 2006, 16 (5) 415
    10. 10
      (a) Merbl, Y.; Kirschner, M. W. Proc. Natl. Acad. Sci. U.S.A. 2009, 106 (8) 2543
      (b) Gross, B. J.; Kraybill, B. C.; Walker, S. J. Am. Chem. Soc. 2005, 127 (42) 14588
    11. 11
      Comer, F. I.; Vosseller, K.; Wells, L.; Accavitti, M. A.; Hart, G. W. Anal. Biochem. 2001, 293 (2) 169
    12. 12
      Isono, T. PLoS One 2011, 6 (4) e18959
    13. 13
      (a) Whelan, S. A.; Dias, W. B.; Thiruneelakantapillai, L.; Lane, M. D.; Hart, G. W. J. Biol. Chem. 2010, 285 (8) 5204
      (b) Wang, S.; Huang, X.; Sun, D.; Xin, X.; Pan, Q.; Peng, S.; Liang, Z.; Luo, C.; Yang, Y.; Jiang, H.; Huang, M.; Chai, W.; Ding, J.; Geng, M. PLoS One 2012, 7 (5) e37427
      (c) Dentin, R.; Hedrick, S.; Xie, J.; Yates, J., III; Montminy, M. Science 2008, 319 (5868) 1402
      (d) Tarrant, M. K.; Rho, H. S.; Xie, Z.; Jiang, Y. L.; Gross, C.; Culhane, J. C.; Yan, G.; Qian, J.; Ichikawa, Y.; Matsuoka, T.; Zachara, N.; Etzkorn, F. A.; Hart, G. W.; Jeong, J. S.; Blackshaw, S.; Zhu, H.; Cole, P. A. Nat. Chem. Biol. 2012, 8 (3) 262
      (e)

      11 out of 80 validated O-GlcNAc proteins discovered in ref 3 were also present on the protein microarray; 5 were in our top 2% of hits, and 7 were in the top 6%.

    14. 14
      Tai, H. C.; Khidekel, N.; Ficarro, S. B.; Peters, E. C.; Hsieh-Wilson, L. C. J. Am. Chem. Soc. 2004, 126 (34) 10500
    15. 15
      Merbl, Y.; Refour, P.; Patel, H.; Springer, M.; Kirschner, M. W. Cell 2013, 152 (5) 1160
    16. 16
      Boyce, M.; Bertozzi, C. R. Nat. Methods 2011, 8 (8) 638
    17. 17
      Vocadlo, D. J.; Hang, H. C.; Kim, E. J.; Hanover, J. A.; Bertozzi, C. R. Proc. Natl. Acad. Sci. U.S.A. 2003, 100 (16) 9116
    18. 18
      Yao, J. Z.; Uttamapinant, C.; Poloukhtine, A.; Baskin, J. M.; Codelli, J. A.; Sletten, E. M.; Bertozzi, C. R.; Popik, V. V.; Ting, A. Y. J. Am. Chem. Soc. 2012, 134 (8) 3720
    19. 19
      Holt, G. D.; Snow, C. M.; Senior, A.; Haltiwanger, R. S.; Gerace, L.; Hart, G. W. J. Cell. Biol. 1987, 104 (5) 1157
    20. 20
      Slawson, C.; Hart, G. W. Nat. Rev. Cancer 2011, 11 (9) 678
    21. 21
      Rexach, J. E.; Rogers, C. J.; Yu, S. H.; Tao, J.; Sun, Y. E.; Hsieh-Wilson, L. C. Nat. Chem. Biol. 2010, 6 (9) 645
    22. 22
      Adamson, D. C.; Shi, Q.; Wortham, M.; Northcott, P. A.; Di, C.; Duncan, C. G.; Li, J.; McLendon, R. E.; Bigner, D. D.; Taylor, M. D.; Yan, H. Cancer Res. 2010, 70 (1) 181
    23. 23
      Bai, R. Y.; Staedtke, V.; Lidov, H. G.; Eberhart, C. G.; Riggins, G. J. Cancer Res. 2012, 72 (22) 5988
    24. 24
      Jackson, S. P.; Tjian, R. Cell 1988, 55 (1) 125
    25. 25
      Gloster, T. M.; Zandberg, W. F.; Heinonen, J. E.; Shen, D. L.; Deng, L.; Vocadlo, D. J. Nat. Chem. Biol. 2011, 7 (3) 174
  • Supporting Information

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Experimental procedures, microarray protocol and data analysis, IVT validation data, and list of OGT targets. This material is available free of charge via the Internet at http://pubs.acs.org.


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect