Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Electrocatalytic Oxygen Evolution with an Immobilized TAML Activator

View Author Information
Departments of Chemical Engineering, Materials Science and Engineering, and §Chemistry, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
Cite this: J. Am. Chem. Soc. 2014, 136, 15, 5603–5606
Publication Date (Web):April 7, 2014
https://doi.org/10.1021/ja5015986
Copyright © 2014 American Chemical Society

    Article Views

    2923

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Iron complexes of tetra-amido macrocyclic ligands are important members of the suite of oxidation catalysts known as TAML activators. TAML activators are known to be fast homogeneous water oxidation (WO) catalysts, producing oxygen in the presence of chemical oxidants, e.g., ceric ammonium nitrate. These homogeneous systems exhibited low turnover numbers (TONs). Here we demonstrate immobilization on glassy carbon and carbon paper in an ink composed of the prototype TAML activator, carbon black, and Nafion and the subsequent use of this composition in heterogeneous electrocatalytic WO. The immobilized TAML system is shown to readily produce O2 with much higher TONs than the homogeneous predecessors.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    CVs of Fe-TAML as a homogeneous electrocatalyst, details of control experiments, and representative samples of gas chromatographic data. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 71 publications.

    1. Jiangzhou Xie, Jieli Xie, Christopher J. Miller, T. David Waite. Enhanced Direct Electron Transfer Mediated Contaminant Degradation by Fe(IV) Using a Carbon Black-Supported Fe(III)-TAML Suspension Electrode System. Environmental Science & Technology 2023, 57 (6) , 2557-2565. https://doi.org/10.1021/acs.est.2c08467
    2. Yujia Wang, Dengmeng Song, Jun Li, Qing Shi, Jiale Zhao, Yanping Hu, Fanlong Zeng, Ning Wang. Covalent Metalloporphyrin Polymer Coated on Carbon Nanotubes as Bifunctional Electrocatalysts for Water Splitting. Inorganic Chemistry 2022, 61 (26) , 10198-10204. https://doi.org/10.1021/acs.inorgchem.2c01415
    3. Xialiang Li, Xue-Peng Zhang, Mian Guo, Bin Lv, Kai Guo, Xiaotong Jin, Wei Zhang, Yong-Min Lee, Shunichi Fukuzumi, Wonwoo Nam, Rui Cao. Identifying Intermediates in Electrocatalytic Water Oxidation with a Manganese Corrole Complex. Journal of the American Chemical Society 2021, 143 (36) , 14613-14621. https://doi.org/10.1021/jacs.1c05204
    4. Edward Barry, Raelyn Burns, Wei Chen, Guilhem X. De Hoe, Joan Manuel Montes De Oca, Juan J. de Pablo, James Dombrowski, Jeffrey W. Elam, Alanna M. Felts, Giulia Galli, John Hack, Qiming He, Xiang He, Eli Hoenig, Aysenur Iscen, Benjamin Kash, Harold H. Kung, Nicholas H. C. Lewis, Chong Liu, Xinyou Ma, Anil Mane, Alex B. F. Martinson, Karen L. Mulfort, Julia Murphy, Kristian Mølhave, Paul Nealey, Yijun Qiao, Vepa Rozyyev, George C. Schatz, Steven J. Sibener, Dmitri Talapin, David M. Tiede, Matthew V. Tirrell, Andrei Tokmakoff, Gregory A. Voth, Zhongyang Wang, Zifan Ye, Murat Yesibolati, Nestor J. Zaluzec, Seth B. Darling. Advanced Materials for Energy-Water Systems: The Central Role of Water/Solid Interfaces in Adsorption, Reactivity, and Transport. Chemical Reviews 2021, 121 (15) , 9450-9501. https://doi.org/10.1021/acs.chemrev.1c00069
    5. Zahra Mazloomi, Jessica Margalef, Marcos Gil-Sepulcre, Nuria Romero, Martin Albrecht, Antoni Llobet, Xavier Sala, Oscar Pàmies, Montserrat Diéguez. Effect of Ligand Chelation and Sacrificial Oxidant on the Integrity of Triazole-Based Carbene Iridium Water Oxidation Catalysts. Inorganic Chemistry 2020, 59 (17) , 12337-12347. https://doi.org/10.1021/acs.inorgchem.0c01439
    6. Fei Wang, Shannon S. Stahl. Electrochemical Oxidation of Organic Molecules at Lower Overpotential: Accessing Broader Functional Group Compatibility with Electron−Proton Transfer Mediators. Accounts of Chemical Research 2020, 53 (3) , 561-574. https://doi.org/10.1021/acs.accounts.9b00544
    7. Szilárd Sáringer, Rita Achieng Akula, Adél Szerlauth, Istvan Szilagyi. Papain Adsorption on Latex Particles: Charging, Aggregation, and Enzymatic Activity. The Journal of Physical Chemistry B 2019, 123 (46) , 9984-9991. https://doi.org/10.1021/acs.jpcb.9b08799
    8. Jingguo Li, Wenchao Wan, C. A. Triana, Zbynek Novotny, Jürg Osterwalder, Rolf Erni, Greta R. Patzke. Dynamic Role of Cluster Cocatalysts on Molecular Photoanodes for Water Oxidation. Journal of the American Chemical Society 2019, 141 (32) , 12839-12848. https://doi.org/10.1021/jacs.9b06100
    9. Xian Liang Ho, Siva Prasad Das, Leonard Kia-Sheun Ng, Andrew Yun Ru Ng, Rakesh Ganguly, Han Sen Soo. Cobalt Complex of a Tetraamido Macrocyclic Ligand as a Precursor for Electrocatalytic Hydrogen Evolution. Organometallics 2019, 38 (6) , 1397-1406. https://doi.org/10.1021/acs.organomet.9b00032
    10. Caitlin M. Hanna, Andrew Luu, Jenny Y. Yang. Proton-Coupled Electron Transfer at Anthraquinone Modified Indium Tin Oxide Electrodes. ACS Applied Energy Materials 2019, 2 (1) , 59-65. https://doi.org/10.1021/acsaem.8b01568
    11. Konstantin G. Kottrup, Silvia D’Agostini, Phebe H. van Langevelde, Maxime A. Siegler, and Dennis G. H. Hetterscheid . Catalytic Activity of an Iron-Based Water Oxidation Catalyst: Substrate Effects of Graphitic Electrodes. ACS Catalysis 2018, 8 (2) , 1052-1061. https://doi.org/10.1021/acscatal.7b03284
    12. Hao-Yi Du, Si-Cong Chen, Xiao-Jun Su, Lei Jiao, and Ming-Tian Zhang . Redox-Active Ligand Assisted Multielectron Catalysis: A Case of CoIII Complex as Water Oxidation Catalyst. Journal of the American Chemical Society 2018, 140 (4) , 1557-1565. https://doi.org/10.1021/jacs.8b00032
    13. David P. de Sousa, Christopher J. Miller, Yingyue Chang, T. David Waite, and Christine J. McKenzie . Electrochemically Generated cis-Carboxylato-Coordinated Iron(IV) Oxo Acid–Base Congeners as Promiscuous Oxidants of Water Pollutants. Inorganic Chemistry 2017, 56 (24) , 14936-14947. https://doi.org/10.1021/acs.inorgchem.7b02208
    14. Fangfang Chen, Ni Wang, Haitao Lei, Dingyi Guo, Hongfei Liu, Zongyao Zhang, Wei Zhang, Wenzhen Lai, and Rui Cao . Electrocatalytic Water Oxidation by a Water-Soluble Copper(II) Complex with a Copper-Bound Carbonate Group Acting as a Potential Proton Shuttle. Inorganic Chemistry 2017, 56 (21) , 13368-13375. https://doi.org/10.1021/acs.inorgchem.7b02125
    15. Matthew R. Mills, Longzhu Q. Shen, David Z. Zhang, Alexander D. Ryabov, and Terrence J. Collins . Iron(III) Ejection from a “Beheaded” TAML Activator: Catalytically Relevant Mechanistic Insight into the Deceleration of Electrophilic Processes by Electron Donors. Inorganic Chemistry 2017, 56 (17) , 10226-10234. https://doi.org/10.1021/acs.inorgchem.7b00921
    16. Xiang-Kui Gu and Eranda Nikolla . Design of Ruddlesden–Popper Oxides with Optimal Surface Oxygen Exchange Properties for Oxygen Reduction and Evolution. ACS Catalysis 2017, 7 (9) , 5912-5920. https://doi.org/10.1021/acscatal.7b01483
    17. Terrence J. Collins and Alexander D. Ryabov . Targeting of High-Valent Iron-TAML Activators at Hydrocarbons and Beyond. Chemical Reviews 2017, 117 (13) , 9140-9162. https://doi.org/10.1021/acs.chemrev.7b00034
    18. Chao Wang, Juan Gao, and Cheng Gu . Rapid Destruction of Tetrabromobisphenol A by Iron(III)-Tetraamidomacrocyclic Ligand/Layered Double Hydroxide Composite/H2O2 System. Environmental Science & Technology 2017, 51 (1) , 488-496. https://doi.org/10.1021/acs.est.6b04294
    19. Qiuchun Dong, Qian Wang, Ziyang Dai, Huajun Qiu, and Xiaochen Dong . MOF-Derived Zn-Doped CoSe2 as an Efficient and Stable Free-Standing Catalyst for Oxygen Evolution Reaction. ACS Applied Materials & Interfaces 2016, 8 (40) , 26902-26907. https://doi.org/10.1021/acsami.6b10160
    20. James D. Blakemore, Robert H. Crabtree, and Gary W. Brudvig . Molecular Catalysts for Water Oxidation. Chemical Reviews 2015, 115 (23) , 12974-13005. https://doi.org/10.1021/acs.chemrev.5b00122
    21. Robert H. Crabtree . Deactivation in Homogeneous Transition Metal Catalysis: Causes, Avoidance, and Cure. Chemical Reviews 2015, 115 (1) , 127-150. https://doi.org/10.1021/cr5004375
    22. Markus D. Kärkäs, Oscar Verho, Eric V. Johnston, and Björn Åkermark . Artificial Photosynthesis: Molecular Systems for Catalytic Water Oxidation. Chemical Reviews 2014, 114 (24) , 11863-12001. https://doi.org/10.1021/cr400572f
    23. Chien‐Wen Lin, Yu‐Wei Chuang, Kuan‐Yu Lu, Yu‐Heng Wang. First‐Row Transition‐Metal Complexes with Tetra‐Amido Macrocyclic Ligands for Water and C(sp 3 )−H Bond Oxidation: Performance Benchmarking Using Free Energy Relationships. ChemCatChem 2024, 16 (10) https://doi.org/10.1002/cctc.202301375
    24. H.S. Sumantha, B.L. Suresha. Green, cost-effective synthesis of NiMnO3 nanoparticles and their use in supercapacitor and photodegradation applications. Nano-Structures & Nano-Objects 2024, 38 , 101151. https://doi.org/10.1016/j.nanoso.2024.101151
    25. Ruochen Dong, Lihua Bai, Sijia Liang, Shuxia Xu, Song Gao, Hongjian Li, Ran Hong, Chao Wang, Cheng Gu. Self-Assembled FeIII-TAML-Based Magnetic Nanostructures for Rapid and Sustainable Destruction of Bisphenol A. Bulletin of Environmental Contamination and Toxicology 2024, 112 (2) https://doi.org/10.1007/s00128-023-03834-1
    26. Hong‐Tao Zhang, Yu‐Hua Guo, Yao Xiao, Hao‐Yi Du, Ming‐Tian Zhang. Heterobimetallic NiFe Cooperative Molecular Water Oxidation Catalyst. Angewandte Chemie 2023, 135 (18) https://doi.org/10.1002/ange.202218859
    27. Hong‐Tao Zhang, Yu‐Hua Guo, Yao Xiao, Hao‐Yi Du, Ming‐Tian Zhang. Heterobimetallic NiFe Cooperative Molecular Water Oxidation Catalyst. Angewandte Chemie International Edition 2023, 62 (18) https://doi.org/10.1002/anie.202218859
    28. Zhuang Zhang, Ying Wang, Hui Ting Gan, Kun‐Lin Yang. Developing an Ultrasensitive Colorimetric Assay for Low‐abundance Iron‐tetraamido Macrocyclic Ligand (Fe−TAML) Catalyst. ChemistrySelect 2022, 7 (45) https://doi.org/10.1002/slct.202202346
    29. Yuan Feng, Haitao Yang, Xin Wang, Chaoquan Hu, Hailong Jing, Jiaxin Cheng. Role of transition metals in catalyst designs for oxygen evolution reaction: A comprehensive review. International Journal of Hydrogen Energy 2022, 47 (41) , 17946-17970. https://doi.org/10.1016/j.ijhydene.2022.03.270
    30. Guanyu Liu, Joel W. Ager. Electrocatalytic Oxygen Evolution Reaction. 2022, 35-85. https://doi.org/10.1002/9783527830084.ch2
    31. Wan‐Chi Hsu, Yu‐Heng Wang. Homogeneous Water Oxidation Catalyzed by First‐Row Transition Metal Complexes: Unveiling the Relationship between Turnover Frequency and Reaction Overpotential. ChemSusChem 2022, 15 (5) https://doi.org/10.1002/cssc.202102378
    32. Qingxin Zhang, Yabo Wang, Yanzhi Wang, Shujiao Yang, Xuan Wu, Bin Lv, Ni Wang, Yimei Gao, Xiaoran Xu, Haitao Lei, Rui Cao. Electropolymerization of cobalt porphyrins and corroles for the oxygen evolution reaction. Chinese Chemical Letters 2021, 32 (12) , 3807-3810. https://doi.org/10.1016/j.cclet.2021.04.048
    33. Guanyu Liu, William S. Y. Wong, Markus Kraft, Joel W. Ager, Doris Vollmer, Rong Xu. Wetting-regulated gas-involving (photo)electrocatalysis: biomimetics in energy conversion. Chemical Society Reviews 2021, 50 (18) , 10674-10699. https://doi.org/10.1039/D1CS00258A
    34. Hua-Jun Qiu, Isaac Johnson, Luyang Chen, Weitao Cong, Yoshikazu Ito, Pan Liu, Jiuhui Han, Takeshi Fujita, Akihiko Hirata, Mingwei Chen. Graphene-coated nanoporous nickel towards a metal-catalyzed oxygen evolution reaction. Nanoscale 2021, 13 (24) , 10916-10924. https://doi.org/10.1039/D1NR02074A
    35. Agnes E. Thorarinsdottir, Daniel G. Nocera. Energy catalysis needs ligands with high oxidative stability. Chem Catalysis 2021, 1 (1) , 32-43. https://doi.org/10.1016/j.checat.2021.05.012
    36. Lisi Xie, Xue‐Peng Zhang, Bin Zhao, Ping Li, Jing Qi, Xinai Guo, Bin Wang, Haitao Lei, Wei Zhang, Ulf‐Peter Apfel, Rui Cao. Enzyme‐Inspired Iron Porphyrins for Improved Electrocatalytic Oxygen Reduction and Evolution Reactions. Angewandte Chemie 2021, 133 (14) , 7654-7659. https://doi.org/10.1002/ange.202015478
    37. Lisi Xie, Xue‐Peng Zhang, Bin Zhao, Ping Li, Jing Qi, Xinai Guo, Bin Wang, Haitao Lei, Wei Zhang, Ulf‐Peter Apfel, Rui Cao. Enzyme‐Inspired Iron Porphyrins for Improved Electrocatalytic Oxygen Reduction and Evolution Reactions. Angewandte Chemie International Edition 2021, 60 (14) , 7576-7581. https://doi.org/10.1002/anie.202015478
    38. Alexander D. Ryabov. Mechanistic puzzles from Iron(III) TAML activators including substrate inhibition, zero-order and dual catalysis. 2021, 183-225. https://doi.org/10.1016/bs.adioch.2020.12.005
    39. Elizabeth T. Papish. Water Oxidation with Coordination Complex Catalysts Using Group 7 and 8 Metals. 2021, 715-741. https://doi.org/10.1016/B978-0-12-409547-2.14688-8
    40. Sahir M. Al-Zuraiji, Dávid Lukács, Miklós Németh, Krisztina Frey, Tímea Benkó, Levente Illés, József S. Pap. An Iron(III) Complex with Pincer Ligand—Catalytic Water Oxidation through Controllable Ligand Exchange. Reactions 2020, 1 (1) , 16-36. https://doi.org/10.3390/reactions1010003
    41. Jing Shi, Yu‐Hua Guo, Fei Xie, Qi‐Fa Chen, Ming‐Tian Zhang. Redox‐Active Ligand Assisted Catalytic Water Oxidation by a Ru IV =O Intermediate. Angewandte Chemie 2020, 132 (10) , 4029-4037. https://doi.org/10.1002/ange.201910614
    42. Jing Shi, Yu‐Hua Guo, Fei Xie, Qi‐Fa Chen, Ming‐Tian Zhang. Redox‐Active Ligand Assisted Catalytic Water Oxidation by a Ru IV =O Intermediate. Angewandte Chemie International Edition 2020, 59 (10) , 4000-4008. https://doi.org/10.1002/anie.201910614
    43. Sahir M. Al-Zuraiji, Tímea Benkó, Levente Illés, Miklós Németh, Krisztina Frey, Attila Sulyok, József S. Pap. Utilization of hydrophobic ligands for water-insoluble Fe(II) water oxidation catalysts – Immobilization and characterization. Journal of Catalysis 2020, 381 , 615-625. https://doi.org/10.1016/j.jcat.2019.12.003
    44. Biswanath Das, Anders Thapper, Sascha Ott, Stephen B. Colbran. Structural features of molecular electrocatalysts in multi-electron redox processes for renewable energy – recent advances. Sustainable Energy & Fuels 2019, 3 (9) , 2159-2175. https://doi.org/10.1039/C9SE00280D
    45. Amit Das, Jordan E. Nutting, Shannon S. Stahl. Electrochemical C–H oxygenation and alcohol dehydrogenation involving Fe-oxo species using water as the oxygen source. Chemical Science 2019, 10 (32) , 7542-7548. https://doi.org/10.1039/C9SC02609F
    46. Biaobiao Zhang, Licheng Sun. Artificial photosynthesis: opportunities and challenges of molecular catalysts. Chemical Society Reviews 2019, 48 (7) , 2216-2264. https://doi.org/10.1039/C8CS00897C
    47. Yanju Liu, Yongzhen Han, Zongyao Zhang, Wei Zhang, Wenzhen Lai, Yong Wang, Rui Cao. Low overpotential water oxidation at neutral pH catalyzed by a copper( ii ) porphyrin. Chemical Science 2019, 10 (9) , 2613-2622. https://doi.org/10.1039/C8SC04529A
    48. Hua Li, Xialiang Li, Haitao Lei, Guojun Zhou, Wei Zhang, Rui Cao. Convenient Immobilization of Cobalt Corroles on Carbon Nanotubes through Covalent Bonds for Electrocatalytic Hydrogen and Oxygen Evolution Reactions. ChemSusChem 2019, 12 (4) , 801-806. https://doi.org/10.1002/cssc.201802765
    49. Zoel Codolá, Julio Lloret‐Fillol, Miquel Costas. Catalytic Water Oxidation: Water Oxidation to O 2 Mediated by 3 d Transition Metal Complexes. 2019, 425-451. https://doi.org/10.1002/9783527699087.ch16
    50. Tianqi Liu, Biaobiao Zhang, Licheng Sun. Iron‐Based Molecular Water Oxidation Catalysts: Abundant, Cheap, and Promising. Chemistry – An Asian Journal 2019, 14 (1) , 31-43. https://doi.org/10.1002/asia.201801253
    51. Carla Casadevall, Alberto Bucci, Miquel Costas, Julio Lloret-Fillol. Water oxidation catalysis with well-defined molecular iron complexes. 2019, 151-196. https://doi.org/10.1016/bs.adioch.2019.03.004
    52. Julio Lloret-Fillol, Miquel Costas. Water oxidation at base metal molecular catalysts. 2019, 1-52. https://doi.org/10.1016/bs.adomc.2019.02.003
    53. Xialiang Li, Haitao Lei, Jieyu Liu, Xueli Zhao, Shuping Ding, Zongyao Zhang, Xixi Tao, Wei Zhang, Weichao Wang, Xiaohong Zheng, Rui Cao. Carbon Nanotubes with Cobalt Corroles for Hydrogen and Oxygen Evolution in pH 0–14 Solutions. Angewandte Chemie 2018, 130 (46) , 15290-15295. https://doi.org/10.1002/ange.201807996
    54. Xialiang Li, Haitao Lei, Jieyu Liu, Xueli Zhao, Shuping Ding, Zongyao Zhang, Xixi Tao, Wei Zhang, Weichao Wang, Xiaohong Zheng, Rui Cao. Carbon Nanotubes with Cobalt Corroles for Hydrogen and Oxygen Evolution in pH 0–14 Solutions. Angewandte Chemie International Edition 2018, 57 (46) , 15070-15075. https://doi.org/10.1002/anie.201807996
    55. Fengzhao, Ting Sun, Ning Xia. Metal Complexes as Molecular Electrocatalysts for Water Oxidation: A Mini-Review. International Journal of Electrochemical Science 2018, 13 (5) , 4601-4612. https://doi.org/10.20964/2018.05.27
    56. Ni Wang, Haoquan Zheng, Wei Zhang, Rui Cao. Mononuclear first-row transition-metal complexes as molecular catalysts for water oxidation. Chinese Journal of Catalysis 2018, 39 (2) , 228-244. https://doi.org/10.1016/S1872-2067(17)63001-8
    57. Jia Hui Lim, Xenia Engelmann, Sacha Corby, Rakesh Ganguly, Kallol Ray, Han Sen Soo. C–H activation and nucleophilic substitution in a photochemically generated high valent iron complex. Chemical Science 2018, 9 (16) , 3992-4002. https://doi.org/10.1039/C7SC05378A
    58. Santanu Pattanayak, Debarati Roy Chowdhury, Bikash Garai, Kundan K. Singh, Amit Paul, Basab B. Dhar, Sayam Sen Gupta. Electrochemical Formation of Fe V (O) and Mechanism of Its Reaction with Water During O−O Bond Formation. Chemistry – A European Journal 2017, 23 (14) , 3414-3424. https://doi.org/10.1002/chem.201605061
    59. Ilaria Gamba, Zoel Codolà, Julio Lloret-Fillol, Miquel Costas. Making and breaking of the O O bond at iron complexes. Coordination Chemistry Reviews 2017, 334 , 2-24. https://doi.org/10.1016/j.ccr.2016.11.007
    60. Binbin Huang, Yan Wang, Shuzhong Zhan, Jianshan Ye. One-step electrochemical deposition of Schiff base cobalt complex as effective water oxidation catalyst. Applied Surface Science 2017, 396 , 121-128. https://doi.org/10.1016/j.apsusc.2016.11.036
    61. Liang Xu, Haitao Lei, Zongyao Zhang, Zhen Yao, Jianfeng Li, Zhiyong Yu, Rui Cao. The effect of the trans axial ligand of cobalt corroles on water oxidation activity in neutral aqueous solutions. Physical Chemistry Chemical Physics 2017, 19 (15) , 9755-9761. https://doi.org/10.1039/C6CP08495H
    62. Bing Yang, Qing-Qing Yang, Xin Jiang, Bin Chen, Chen-Ho Tung, Li-Zhu Wu. Tracking the Fe IV (O) intermediate and O–O bond formation of a nonheme iron catalyst for water oxidation. Chemical Communications 2017, 53 (65) , 9063-9066. https://doi.org/10.1039/C7CC04814A
    63. J. Li, R. Güttinger, R. Moré, F. Song, W. Wan, G. R. Patzke. Frontiers of water oxidation: the quest for true catalysts. Chemical Society Reviews 2017, 46 (20) , 6124-6147. https://doi.org/10.1039/C7CS00306D
    64. Hua-Tian Shi, Xiu-Xiu Li, Fang-Hui Wu, Wei-Bin Yu. Electrocatalytic oxygen evolution with a cobalt complex. Dalton Transactions 2017, 46 (46) , 16321-16326. https://doi.org/10.1039/C7DT03653A
    65. Carla Casadevall, Zoel Codolà, Miquel Costas, Julio Lloret‐Fillol. Spectroscopic, Electrochemical and Computational Characterisation of Ru Species Involved in Catalytic Water Oxidation: Evidence for a [Ru V (O)(Py 2 Me tacn)] Intermediate. Chemistry – A European Journal 2016, 22 (29) , 10111-10126. https://doi.org/10.1002/chem.201600584
    66. Konstantin G. Kottrup, Dennis G. H. Hetterscheid. Evaluation of iron-based electrocatalysts for water oxidation – an on-line mass spectrometry approach. Chemical Communications 2016, 52 (12) , 2643-2646. https://doi.org/10.1039/C5CC10092E
    67. Markus D. Kärkäs, Björn Åkermark. Water oxidation using earth-abundant transition metal catalysts: opportunities and challenges. Dalton Transactions 2016, 45 (37) , 14421-14461. https://doi.org/10.1039/C6DT00809G
    68. Wai-Pong To, Toby Wai-Shan Chow, Chun-Wai Tse, Xiangguo Guan, Jie-Sheng Huang, Chi-Ming Che. Water oxidation catalysed by iron complex of N , N ′-dimethyl-2,11-diaza[3,3](2,6)pyridinophane. Spectroscopy of iron–oxo intermediates and density functional theory calculations. Chemical Science 2015, 6 (10) , 5891-5903. https://doi.org/10.1039/C5SC01680K
    69. Qizhi Ren, Yisong Guo, Matthew R. Mills, Alexander D. Ryabov, Terrence J. Collins. On the Iron(V) Reactivity of an Aggressive Tail‐Fluorinated Tetraamido Macrocyclic Ligand (TAML) Activator. European Journal of Inorganic Chemistry 2015, 2015 (8) , 1445-1452. https://doi.org/10.1002/ejic.201500001
    70. José Ramón Galán‐Mascarós. Water Oxidation at Electrodes Modified with Earth‐Abundant Transition‐Metal Catalysts. ChemElectroChem 2015, 2 (1) , 37-50. https://doi.org/10.1002/celc.201402268
    71. Rafael Omar Saavedra Díaz, Ronan Le Lagadec, Longzhu Q. Shen, Alexander D. Ryabov. In search for chelating TAMLs ( t etra a mido m acrocyclic l igands) with peripheral bidentate donor centers: a cobalt(III) complex of the 3,3′-(2,2′-bipyridindiyl)-tailed TAML. Journal of Coordination Chemistry 2014, 67 (23-24) , 3909-3919. https://doi.org/10.1080/00958972.2014.964224