ACS Publications. Most Trusted. Most Cited. Most Read
Enhancing the Hole-Conductivity of Spiro-OMeTAD without Oxygen or Lithium Salts by Using Spiro(TFSI)2 in Perovskite and Dye-Sensitized Solar Cells
My Activity

Figure 1Loading Img
    Article

    Enhancing the Hole-Conductivity of Spiro-OMeTAD without Oxygen or Lithium Salts by Using Spiro(TFSI)2 in Perovskite and Dye-Sensitized Solar Cells
    Click to copy article linkArticle link copied!

    View Author Information
    §Department of Chemistry and Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2014, 136, 31, 10996–11001
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja504539w
    Published July 22, 2014
    Copyright © 2014 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    2,2′,7,7′-Tetrakis(N,N-di-p-methoxyphenylamine)-9,9′-spirobifluorene (spiro-OMeTAD), the prevalent organic hole transport material used in solid-state dye-sensitized solar cells and perovskite-absorber solar cells, relies on an uncontrolled oxidative process to reach appreciable conductivity. This work presents the use of a dicationic salt of spiro-OMeTAD, named spiro(TFSI)2, as a facile means of controllably increasing the conductivity of spiro-OMeTAD up to 10–3 S cm–1 without relying on oxidation in air. Spiro(TFSI)2 enables the first demonstration of solid-state dye-sensitized solar cells fabricated and operated with the complete exclusion of oxygen after deposition of the sensitizer with higher and more reproducible device performance. Perovskite-absorber solar cells fabricated with spiro(TFSI)2 show improved operating stability in an inert atmosphere. Gaining control of the conductivity of the HTM in both dye-sensitized and perovskite-absorber solar cells in an inert atmosphere using spiro(TFSI)2 is an important step toward the commercialization of these technologies.

    Copyright © 2014 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Additional figures, data, and detailed synthetic preparation and characterization procedures of spiro(TFSI)2. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 540 publications.

    1. Shuang Gao, Xingcheng Li, Rui Cao, Xinyu Li, Tao Chen, Yalin Lu, Junfa Zhu, Shangfeng Yang. Hot Pure Oxygen Accelerated Oxidation of Spiro-OMeTAD for Efficient Perovskite Solar Cells with a Record Certified Fill Factor Exceeding 87%. ACS Energy Letters 2024, 9 (10) , 5037-5044. https://doi.org/10.1021/acsenergylett.4c01912
    2. Andrea Cabrera-Espinoza, Silvia Collavini, José G. Sánchez, Ivet Kosta, Emilio Palomares, Juan Luis Delgado. Photo-Cross-Linked Fullerene-Based Hole Transport Material for Moisture-Resistant Regular Fullerene Sandwich Perovskite Solar Cells. ACS Applied Materials & Interfaces 2024, 16 (16) , 20852-20864. https://doi.org/10.1021/acsami.4c02573
    3. Qinglong Zhu, Pin Lv, Yuxi Zhang, Yijie Wang, Gan Luo, Ziqi An, Min Hu, Kaiwen Hu, Wangnan Li, Feifei Yang, Bo Zhang, Zhiliang Ku, Yi-Bing Cheng, Jianfeng Lu. LiTFSI-Free Hole Transport Materials for Robust Perovskite Solar Cells and Modules with High Efficiencies. ACS Applied Materials & Interfaces 2024, 16 (7) , 8875-8884. https://doi.org/10.1021/acsami.3c17468
    4. Rana Yekani, Han Wang, Pegah Ghamari, Stéphanie Bessette, Jonathan Sharir-Smith, Raynald Gauvin, George P. Demopoulos. Impact of Photo-Induced Doping of Spiro-OMeTAD as HTL on Perovskite Solar Cell Hysteresis Dynamics. The Journal of Physical Chemistry C 2024, 128 (2) , 710-722. https://doi.org/10.1021/acs.jpcc.3c05366
    5. Jung Hwan Lee, Tatiana Ghanem, Darío Javier Puchán Sánchez, Pierre Josse, Philippe Blanchard, Hyungju Ahn, Dominik Lungerich, Nam-Gyu Park, Clément Cabanetos, Jong Hyeok Park. Enhancing Intermolecular Interaction of Spiro-OMeTAD for Stable Perovskite Solar Cells with Efficiencies over 24%. ACS Energy Letters 2023, 8 (9) , 3895-3901. https://doi.org/10.1021/acsenergylett.3c01016
    6. Giovanni Spinelli, George H. Morritt, Michele Pavone, Michael R. Probert, Paul G. Waddell, Tomas Edvinsson, Ana Belén Muñoz-García, Marina Freitag. Conductivity in Thin Films of Transition Metal Coordination Complexes. ACS Applied Energy Materials 2023, 6 (4) , 2122-2127. https://doi.org/10.1021/acsaem.2c02999
    7. S. Krishnan, K. Senthilkumar. Tetrathiafulvalene Derivatives as Hole-Transporting Materials in Perovskite Solar Cell. The Journal of Physical Chemistry A 2022, 126 (31) , 5079-5088. https://doi.org/10.1021/acs.jpca.2c01631
    8. Se-Yong Jeong, Hui-Seon Kim, Nam-Gyu Park. Challenges for Thermally Stable Spiro-MeOTAD toward the Market Entry of Highly Efficient Perovskite Solar Cells. ACS Applied Materials & Interfaces 2022, 14 (30) , 34220-34227. https://doi.org/10.1021/acsami.1c21852
    9. Nabonswende Aida Nadege Ouedraogo, George Omololu Odunmbaku, Bing Guo, Shanshan Chen, Xiaoxue Lin, Tatyana Shumilova, Kuan Sun. Oxidation of Spiro-OMeTAD in High-Efficiency Perovskite Solar Cells. ACS Applied Materials & Interfaces 2022, 14 (30) , 34303-34327. https://doi.org/10.1021/acsami.2c06163
    10. Katarzyna Pydzińska-Białek, Grzegorz Nowaczyk, Marcin Ziółek. Complete Perovskite Solar Cells with Gold Electrodes Studied in the Visible and Near-Infrared Ranges. Chemistry of Materials 2022, 34 (14) , 6355-6366. https://doi.org/10.1021/acs.chemmater.2c00845
    11. Chieh-Ming Hung, Jin-Tai Lin, Yu-Hsuan Yang, Yi-Chun Liu, Mong-Wen Gu, Tai-Che Chou, Sheng-Fu Wang, Zi-Qin Chen, Chi-Chi Wu, Li-Cyun Chen, Cheng-Chih Hsu, Chun-Hsien Chen, Ching-Wen Chiu, Hsieh-Chih Chen, Pi-Tai Chou. Modulation of Perovskite Grain Boundaries by Electron Donor–Acceptor Zwitterions R,R-Diphenylamino-phenyl-pyridinium-(CH2)n-sulfonates: All-Round Improvement on the Solar Cell Performance. JACS Au 2022, 2 (5) , 1189-1199. https://doi.org/10.1021/jacsau.2c00160
    12. Boyuan Hu, Jian Zhang, Yulin Yang, Jiaqi Wang, Wei Wang, Jiao Li, Shihui Liu, Debin Xia, Kaifeng Lin, Yayu Dong, Ruiqing Fan. Investigation on the Mechanism of Radical Intermediate Formation and Moderate Oxidation of Spiro-OMeTAD by the Synergistic Effect of Multisubstituted Polyoxometalates in Perovskite Solar Cells. ACS Applied Materials & Interfaces 2022, 14 (15) , 17610-17620. https://doi.org/10.1021/acsami.1c24337
    13. Ernestas Kasparavicius, Marius Franckevičius, Vida Malinauskiene, Kristijonas Genevičius, Vytautas Getautis, Tadas Malinauskas. Oxidized Spiro-OMeTAD: Investigation of Stability in Contact with Various Perovskite Compositions. ACS Applied Energy Materials 2021, 4 (12) , 13696-13705. https://doi.org/10.1021/acsaem.1c02375
    14. Sukyoung Goh, Gyumin Jang, Sunihl Ma, Jaemin Park, Hayeon Ban, Chan Uk Lee, Junwoo Lee, Jooho Moon. Understanding the Influence of Anion Exchange on the Hole Transport Layer for Efficient and Humidity-Stable Perovskite Solar Cells. ACS Sustainable Chemistry & Engineering 2021, 9 (49) , 16730-16740. https://doi.org/10.1021/acssuschemeng.1c05848
    15. Ganbaatar Tumen-Ulzii, Toshinori Matsushima, Chihaya Adachi. Mini-Review on Efficiency and Stability of Perovskite Solar Cells with Spiro-OMeTAD Hole Transport Layer: Recent Progress and Perspectives. Energy & Fuels 2021, 35 (23) , 18915-18927. https://doi.org/10.1021/acs.energyfuels.1c02190
    16. Jing Liu, Qingshun Dong, Minhuan Wang, Hongru Ma, Mingzhu Pei, Jiming Bian, Yantao Shi. Efficient Planar Perovskite Solar Cells with Carbon Quantum Dot-Modified spiro-MeOTAD as a Composite Hole Transport Layer. ACS Applied Materials & Interfaces 2021, 13 (47) , 56265-56272. https://doi.org/10.1021/acsami.1c18344
    17. Ke Zhao, Yang Zhao, Yulin Tan, Ke Hu, Zhong-Sheng Wang. Boosting the Conductivity of the NiOx Layer through Cerium Doping for Efficient Planar Inverted Perovskite Solar Cells. ACS Applied Energy Materials 2021, 4 (9) , 9038-9045. https://doi.org/10.1021/acsaem.1c01330
    18. Yousaf Hameed Khattak, Faisal Baig, Ahmed Shuja, Lahoucine Atourki, Kashif Riaz, Bernabé Marí Soucase. Device Optimization of PIN Structured Perovskite Solar Cells: Impact of Design Variants. ACS Applied Electronic Materials 2021, 3 (8) , 3509-3520. https://doi.org/10.1021/acsaelm.1c00460
    19. Tai Wu, Rongshan Zhuang, Rongjun Zhao, Rongmei Zhao, Lizhong Zhu, Gaoyuan Liu, Runtao Wang, Kanghong Zhao, Yong Hua. Understanding the Effects of Fluorine Substitution in Lithium Salt on Photovoltaic Properties and Stability of Perovskite Solar Cells. ACS Energy Letters 2021, 6 (6) , 2218-2228. https://doi.org/10.1021/acsenergylett.1c00685
    20. Muyi Zhang, Yuhao Liu, Bo Yang, Xuetian Lin, Yue Lu, Jiajia Zheng, Chao Chen, Jiang Tang. Efficiency Improvement of Bournonite CuPbSbS3 Solar Cells via Crystallinity Enhancement. ACS Applied Materials & Interfaces 2021, 13 (11) , 13273-13280. https://doi.org/10.1021/acsami.1c00689
    21. Yongyoon Cho, Hyung Do Kim, Jianghui Zheng, Jueming Bing, Yong Li, Meng Zhang, Martin A. Green, Atsushi Wakamiya, Shujuan Huang, Hideo Ohkita, Anita W.Y. Ho-Baillie. Elucidating Mechanisms behind Ambient Storage-Induced Efficiency Improvements in Perovskite Solar Cells. ACS Energy Letters 2021, 6 (3) , 925-933. https://doi.org/10.1021/acsenergylett.0c02406
    22. Ross A. Kerner, Sungyeon Heo, Kwangdong Roh, Kyle MacMillan, Bryon W. Larson, Barry P. Rand. Organic Hole Transport Material Ionization Potential Dictates Diffusion Kinetics of Iodine Species in Halide Perovskite Devices. ACS Energy Letters 2021, 6 (2) , 501-508. https://doi.org/10.1021/acsenergylett.0c02495
    23. Zilong Zhang, Lusheng Liang, Longhui Deng, Lu Ren, Nan Zhao, Jianhua Huang, Yaming Yu, Peng Gao. Fused Dithienopicenocarbazole Enabling High Mobility Dopant-Free Hole-Transporting Polymers for Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces 2021, 13 (5) , 6688-6698. https://doi.org/10.1021/acsami.0c21729
    24. Youngwoong Kim, Geunjin Kim, Nam Joong Jeon, Chulhee Lim, Jangwon Seo, Bumjoon J. Kim. Methoxy-Functionalized Triarylamine-Based Hole-Transporting Polymers for Highly Efficient and Stable Perovskite Solar Cells. ACS Energy Letters 2020, 5 (10) , 3304-3313. https://doi.org/10.1021/acsenergylett.0c01901
    25. Wei Zhang, Fuguo Zhang, Bo Xu, Yuanyuan Li, Linqin Wang, Biaobiao Zhang, Yu Guo, James M. Gardner, Licheng Sun, Lars Kloo. Organic Salts as p-Type Dopants for Efficient LiTFSI-Free Perovskite Solar Cells. ACS Applied Materials & Interfaces 2020, 12 (30) , 33751-33758. https://doi.org/10.1021/acsami.0c08322
    26. Tracy H. Schloemer, James A. Raiford, Timothy S. Gehan, Taylor Moot, Sanjini Nanayakkara, Steven P. Harvey, Rosemary C. Bramante, Sean Dunfield, Amy E. Louks, Annalise E. Maughan, Lyle Bliss, Michael D. McGehee, Maikel F. A. M. van Hest, Matthew O. Reese, Stacey F. Bent, Joseph J. Berry, Joseph M. Luther, Alan Sellinger. The Molybdenum Oxide Interface Limits the High-Temperature Operational Stability of Unencapsulated Perovskite Solar Cells. ACS Energy Letters 2020, 5 (7) , 2349-2360. https://doi.org/10.1021/acsenergylett.0c01023
    27. Jiang Liu, Wenzhu Liu, Erkan Aydin, George T. Harrison, Furkan H. Isikgor, Xinbo Yang, Anand S. Subbiah, Stefaan De Wolf. Lewis-Acid Doping of Triphenylamine-Based Hole Transport Materials Improves the Performance and Stability of Perovskite Solar Cells. ACS Applied Materials & Interfaces 2020, 12 (21) , 23874-23884. https://doi.org/10.1021/acsami.0c03660
    28. Anik Sen, Axel Groβ. Effect of Electron-Withdrawing/-Donating Groups on the Sensitizing Action of the Novel Organic Dye “3-(5-(4-(Diphenylamino)styryl)thiophen-2-yl)-2-cyanoacrylic Acid” for N-Type Dye-Sensitized Solar Cells: A Theoretical Study. The Journal of Physical Chemistry C 2020, 124 (16) , 8526-8540. https://doi.org/10.1021/acs.jpcc.0c00369
    29. Yasemin Saygili, Hui-Seon Kim, Bowen Yang, Jiajia Suo, Ana B. Muñoz-Garcia, Michele Pavone, Anders Hagfeldt. Revealing the Mechanism of Doping of spiro-MeOTAD via Zn Complexation in the Absence of Oxygen and Light. ACS Energy Letters 2020, 5 (4) , 1271-1277. https://doi.org/10.1021/acsenergylett.0c00319
    30. Camille Geffroy, Eftychia Grana, Takeru Bessho, Samy Almosni, Zeguo Tang, Anirudh Sharma, Takumi Kinoshita, Fumiyasu Awai, Eric Cloutet, Thierry Toupance, Hiroshi Segawa, Georges Hadziioannou. p-Doping of a Hole Transport Material via a Poly(ionic liquid) for over 20% Efficiency and Hysteresis-Free Perovskite Solar Cells. ACS Applied Energy Materials 2020, 3 (2) , 1393-1401. https://doi.org/10.1021/acsaem.9b01819
    31. Lele Qiu, Xubin Zheng, Jian Zhang, Yulin Yang, Wei Cao, Yayu Dong, Debin Xia, Xuesong Zhou, Ruiqing Fan. Insights into the Mechanism of Solid-State Metal Organic Complexes as Controllable and Stable p-Type Dopants in Efficient Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces 2020, 12 (1) , 546-555. https://doi.org/10.1021/acsami.9b16341
    32. Dong Geon Lee, Min-cheol Kim, Shen Wang, Byeong Jo Kim, Ying Shirley Meng, Hyun Suk Jung. Effect of Metal Electrodes on Aging-Induced Performance Recovery in Perovskite Solar Cells. ACS Applied Materials & Interfaces 2019, 11 (51) , 48497-48504. https://doi.org/10.1021/acsami.9b14619
    33. Il Jeon, Ahmed Shawky, Hao-Sheng Lin, Seungju Seo, Hiroshi Okada, Jin-Wook Lee, Amrita Pal, Shaun Tan, Anton Anisimov, Esko I. Kauppinen, Yang Yang, Sergei Manzhos, Shigeo Maruyama, Yutaka Matsuo. Controlled Redox of Lithium-Ion Endohedral Fullerene for Efficient and Stable Metal Electrode-Free Perovskite Solar Cells. Journal of the American Chemical Society 2019, 141 (42) , 16553-16558. https://doi.org/10.1021/jacs.9b06418
    34. Rebecka L. Forward, Kitty Y. Chen, David M. Weekes, David J. Dvorak, Yang Cao, Curtis P. Berlinguette. Protocol for Quantifying the Doping of Organic Hole-Transport Materials. ACS Energy Letters 2019, 4 (10) , 2547-2551. https://doi.org/10.1021/acsenergylett.9b01766
    35. Anik Sen, Axel Groß. Does Involving Additional Linker Always Increase the Efficiency of an Organic Dye for p-Type Dye-Sensitized Solar Cells?. ACS Applied Energy Materials 2019, 2 (9) , 6341-6347. https://doi.org/10.1021/acsaem.9b00973
    36. Wei Zhang, Yong Hua, Linqin Wang, Biaobiao Zhang, Yuanyuan Li, Peng Liu, Valentina Leandri, Yu Guo, Hong Chen, James M. Gardner, Licheng Sun, Lars Kloo. The Central Role of Ligand Conjugation for Properties of Coordination Complexes as Hole-Transport Materials in Perovskite Solar Cells. ACS Applied Energy Materials 2019, 2 (9) , 6768-6779. https://doi.org/10.1021/acsaem.9b01223
    37. Do Hyung Chun, Sungsoon Kim, Sung Uk Chai, Wook Kim, Wanjung Kim, Jung Hwan Lee, Ryan Rhee, Dukhyun Choi, Jung Kyu Kim, Hyunjung Shin, Jong Hyeok Park. Grain Boundary Healing of Organic–Inorganic Halide Perovskites for Moisture Stability. Nano Letters 2019, 19 (9) , 6498-6505. https://doi.org/10.1021/acs.nanolett.9b02721
    38. Jianfeng Lu, Andrew D. Scully, Jingsong Sun, Boer Tan, Anthony S. R. Chesman, Sonia Ruiz Raga, Liangcong Jiang, Xiongfeng Lin, Narendra Pai, Wenchao Huang, Yi-Bing Cheng, Udo Bach, Alexandr N. Simonov. Multiple Roles of Cobalt Pyrazol-Pyridine Complexes in High-Performing Perovskite Solar Cells. The Journal of Physical Chemistry Letters 2019, 10 (16) , 4675-4682. https://doi.org/10.1021/acs.jpclett.9b01783
    39. Kai Wang, Xiaoyang Liu, Rong Huang, Congcong Wu, Dong Yang, Xiaowen Hu, Xiaofang Jiang, James C. Duchamp, Harry Dorn, Shashank Priya. Nonionic Sc3N@C80 Dopant for Efficient and Stable Halide Perovskite Photovoltaics. ACS Energy Letters 2019, 4 (8) , 1852-1861. https://doi.org/10.1021/acsenergylett.9b01042
    40. Antonio Agresti, Sara Pescetelli, Alessandro Lorenzo Palma, Beatriz Martín-García, Leyla Najafi, Sebastiano Bellani, Iwan Moreels, Mirko Prato, Francesco Bonaccorso, Aldo Di Carlo. Two-Dimensional Material Interface Engineering for Efficient Perovskite Large-Area Modules. ACS Energy Letters 2019, 4 (8) , 1862-1871. https://doi.org/10.1021/acsenergylett.9b01151
    41. Jianchang Wu, Chang Liu, Bo Li, Fenglong Gu, Luozheng Zhang, Manman Hu, Xiang Deng, Yuan Qiao, Yongyun Mao, Wenchang Tan, Yanqing Tian, Baomin Xu. Side-Chain Polymers as Dopant-Free Hole-Transporting Materials for Perovskite Solar Cells—The Impact of Substituents’ Positions in Carbazole on Device Performance. ACS Applied Materials & Interfaces 2019, 11 (30) , 26928-26937. https://doi.org/10.1021/acsami.9b07859
    42. Li Na Quan, Barry P. Rand, Richard H. Friend, Subodh Gautam Mhaisalkar, Tae-Woo Lee, Edward H. Sargent. Perovskites for Next-Generation Optical Sources. Chemical Reviews 2019, 119 (12) , 7444-7477. https://doi.org/10.1021/acs.chemrev.9b00107
    43. John Mohanraj, Markus Stihl, Elfriede Simon, Oliver von Sicard, Günter Schmidt, Maximilian Fleischer, Christian Neuber, Mukundan Thelakkat. Li-Salt-Free, Coevaporated Cu(TFSI)2-Doped Hole Conductors for Efficient CH3NH3PbI3 Perovskite Solar Cells. ACS Applied Energy Materials 2019, 2 (5) , 3469-3478. https://doi.org/10.1021/acsaem.9b00260
    44. Siyu Wang, Qiquan Luo, Wei-Hai Fang, Run Long. Interfacial Engineering Determines Band Alignment and Steers Charge Separation and Recombination at an Inorganic Perovskite Quantum Dot/WS2 Junction: A Time Domain Ab Initio Study. The Journal of Physical Chemistry Letters 2019, 10 (6) , 1234-1241. https://doi.org/10.1021/acs.jpclett.9b00285
    45. Caleb C. Boyd, Rongrong Cheacharoen, Tomas Leijtens, Michael D. McGehee. Understanding Degradation Mechanisms and Improving Stability of Perovskite Photovoltaics. Chemical Reviews 2019, 119 (5) , 3418-3451. https://doi.org/10.1021/acs.chemrev.8b00336
    46. Clara Aranda, Antonio Guerrero, Juan Bisquert. Ionic Effect Enhances Light Emission and the Photovoltage of Methylammonium Lead Bromide Perovskite Solar Cells by Reduced Surface Recombination. ACS Energy Letters 2019, 4 (3) , 741-746. https://doi.org/10.1021/acsenergylett.9b00186
    47. Lukas Kegelmann, Philipp Tockhorn, Christian M. Wolff, José A. Márquez, Sebastián Caicedo-Dávila, Lars Korte, Thomas Unold, Wilfried Lövenich, Dieter Neher, Bernd Rech, Steve Albrecht. Mixtures of Dopant-Free Spiro-OMeTAD and Water-Free PEDOT as a Passivating Hole Contact in Perovskite Solar Cells. ACS Applied Materials & Interfaces 2019, 11 (9) , 9172-9181. https://doi.org/10.1021/acsami.9b01332
    48. Deyu Xin, Zenghua Wang, Min Zhang, Xiaojia Zheng, Yong Qin, Jianguo Zhu, Wen-Hua Zhang. Green Anti-solvent Processed Efficient Flexible Perovskite Solar Cells. ACS Sustainable Chemistry & Engineering 2019, 7 (4) , 4343-4350. https://doi.org/10.1021/acssuschemeng.8b06190
    49. Tracy H. Schloemer, Timothy S. Gehan, Jeffrey A. Christians, Deborah G. Mitchell, Alex Dixon, Zhen Li, Kai Zhu, Joseph J. Berry, Joseph M. Luther, Alan Sellinger. Thermally Stable Perovskite Solar Cells by Systematic Molecular Design of the Hole-Transport Layer. ACS Energy Letters 2019, 4 (2) , 473-482. https://doi.org/10.1021/acsenergylett.8b02431
    50. Rachel Heasley, Luke M. Davis, Danny Chua, Christina M. Chang, Roy G. Gordon. Vapor Deposition of Transparent, p-Type Cuprous Iodide Via a Two-Step Conversion Process. ACS Applied Energy Materials 2018, 1 (12) , 6953-6963. https://doi.org/10.1021/acsaem.8b01363
    51. Shen Wang, Zihan Huang, Xuefeng Wang, Yingmin Li, Marcella Günther, Sophia Valenzuela, Pritesh Parikh, Amanda Cabreros, Wei Xiong, Ying Shirley Meng. Unveiling the Role of tBP–LiTFSI Complexes in Perovskite Solar Cells. Journal of the American Chemical Society 2018, 140 (48) , 16720-16730. https://doi.org/10.1021/jacs.8b09809
    52. Leyla Najafi, Babak Taheri, Beatriz Martín-García, Sebastiano Bellani, Diego Di Girolamo, Antonio Agresti, Reinier Oropesa-Nuñez, Sara Pescetelli, Luigi Vesce, Emanuele Calabrò, Mirko Prato, Antonio E. Del Rio Castillo, Aldo Di Carlo, Francesco Bonaccorso. MoS2 Quantum Dot/Graphene Hybrids for Advanced Interface Engineering of a CH3NH3PbI3 Perovskite Solar Cell with an Efficiency of over 20%. ACS Nano 2018, 12 (11) , 10736-10754. https://doi.org/10.1021/acsnano.8b05514
    53. Rebecca A. Belisle, Kevin A. Bush, Luca Bertoluzzi, Aryeh Gold-Parker, Michael F. Toney, Michael D. McGehee. Impact of Surfaces on Photoinduced Halide Segregation in Mixed-Halide Perovskites. ACS Energy Letters 2018, 3 (11) , 2694-2700. https://doi.org/10.1021/acsenergylett.8b01562
    54. Siraj Sidhik, Sandeep Surendra Panikar, Christopher Rosiles Pérez, Tzarara López Luke, Ramón Carriles, Sergio Calixto Carrera, Elder De la Rosa. Interfacial Engineering of TiO2 by Graphene Nanoplatelets for High-Efficiency Hysteresis-free Perovskite Solar Cells. ACS Sustainable Chemistry & Engineering 2018, 6 (11) , 15391-15401. https://doi.org/10.1021/acssuschemeng.8b03826
    55. Jinbao Zhang, Quentin Daniel, Tian Zhang, Xiaoming Wen, Bo Xu, Licheng Sun, Udo Bach, Yi-Bing Cheng. Chemical Dopant Engineering in Hole Transport Layers for Efficient Perovskite Solar Cells: Insight into the Interfacial Recombination. ACS Nano 2018, 12 (10) , 10452-10462. https://doi.org/10.1021/acsnano.8b06062
    56. Kyle M. Fransishyn, Soumya Kundu, Timothy L. Kelly. Elucidating the Failure Mechanisms of Perovskite Solar Cells in Humid Environments Using In Situ Grazing-Incidence Wide-Angle X-ray Scattering. ACS Energy Letters 2018, 3 (9) , 2127-2133. https://doi.org/10.1021/acsenergylett.8b01300
    57. Lijian Zhang, Chenhui Jiang, Chunyan Wu, Huanxin Ju, Guoshun Jiang, Weifeng Liu, Changfei Zhu, Tao Chen. V2O5 as Hole Transporting Material for Efficient All Inorganic Sb2S3 Solar Cells. ACS Applied Materials & Interfaces 2018, 10 (32) , 27098-27105. https://doi.org/10.1021/acsami.8b09843
    58. Nourdine Zibouche, George Volonakis, Feliciano Giustino. Graphene Oxide/Perovskite Interfaces For Photovoltaics. The Journal of Physical Chemistry C 2018, 122 (29) , 16715-16726. https://doi.org/10.1021/acs.jpcc.8b03230
    59. Jiangsheng Li, Chaoyang Kuang, Min Zhao, Chengjie Zhao, Le Liu, Fushen Lu, Ning Wang, Changshui Huang, Chenghao Duan, Hongmei Jian, Lili Yao, Tonggang Jiu. Ternary CuZnS Nanocrystals: Synthesis, Characterization, and Interfacial Application in Perovskite Solar Cells. Inorganic Chemistry 2018, 57 (14) , 8375-8381. https://doi.org/10.1021/acs.inorgchem.8b01030
    60. Dechan Angmo, Xiaojin Peng, Jinshu Cheng, Mei Gao, Nicholas Rolston, Kallista Sears, Chuantian Zuo, Jegadesan Subbiah, Seok-Soon Kim, Hasitha Weerasinghe, Reinhold H. Dauskardt, Doojin Vak. Beyond Fullerenes: Indacenodithiophene-Based Organic Charge-Transport Layer toward Upscaling of Low-Cost Perovskite Solar Cells. ACS Applied Materials & Interfaces 2018, 10 (26) , 22143-22155. https://doi.org/10.1021/acsami.8b04861
    61. Maria Ulfa, Thierry Pauporté, Thanh-Tuân Bui, Fabrice Goubard. Impact of Organic Hole Transporting Material and Doping on the Electrical Response of Perovskite Solar Cells. The Journal of Physical Chemistry C 2018, 122 (22) , 11651-11658. https://doi.org/10.1021/acs.jpcc.8b02141
    62. Jorge G. Ibanez, Marina. E. Rincón, Silvia Gutierrez-Granados, M’hamed Chahma, Oscar A. Jaramillo-Quintero, Bernardo A. Frontana-Uribe. Conducting Polymers in the Fields of Energy, Environmental Remediation, and Chemical–Chiral Sensors. Chemical Reviews 2018, 118 (9) , 4731-4816. https://doi.org/10.1021/acs.chemrev.7b00482
    63. Yohan Ko, Yechan Kim, Chanyong Lee, Youbin Kim, Yongseok Jun. Investigation of Hole-Transporting Poly(triarylamine) on Aggregation and Charge Transport for Hysteresisless Scalable Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces 2018, 10 (14) , 11633-11641. https://doi.org/10.1021/acsami.7b18745
    64. Jin Hyuck Heo, Sungmin Park, Sang Hyuk Im, and Hae Jung Son . Development of Dopant-Free Donor–Acceptor-type Hole Transporting Material for Highly Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces 2017, 9 (45) , 39511-39518. https://doi.org/10.1021/acsami.7b11938
    65. Guangpeng Gao, Ningning Liang, Hua Geng, Wei Jiang, Huiting Fu, Jiajing Feng, Jianhui Hou, Xinliang Feng, and Zhaohui Wang . Spiro-Fused Perylene Diimide Arrays. Journal of the American Chemical Society 2017, 139 (44) , 15914-15920. https://doi.org/10.1021/jacs.7b09140
    66. Alba Pellaroque, Nakita K. Noel, Severin N. Habisreutinger, Yadong Zhang, Stephen Barlow, Seth R. Marder, and Henry J. Snaith . Efficient and Stable Perovskite Solar Cells Using Molybdenum Tris(dithiolene)s as p-Dopants for Spiro-OMeTAD. ACS Energy Letters 2017, 2 (9) , 2044-2050. https://doi.org/10.1021/acsenergylett.7b00614
    67. Carlito S. Ponseca, Jr., Pavel Chábera, Jens Uhlig, Petter Persson, and Villy Sundström . Ultrafast Electron Dynamics in Solar Energy Conversion. Chemical Reviews 2017, 117 (16) , 10940-11024. https://doi.org/10.1021/acs.chemrev.6b00807
    68. Guan-Woo Kim, Gyeongho Kang, Mahdi Malekshahi Byranvand, Gang-Young Lee, and Taiho Park . Gradated Mixed Hole Transport Layer in a Perovskite Solar Cell: Improving Moisture Stability and Efficiency. ACS Applied Materials & Interfaces 2017, 9 (33) , 27720-27726. https://doi.org/10.1021/acsami.7b07071
    69. Dong Hun Sin, Sae Byeok Jo, Seung Goo Lee, Hyomin Ko, Min Kim, Hansol Lee, and Kilwon Cho . Enhancing the Durability and Carrier Selectivity of Perovskite Solar Cells Using a Blend Interlayer. ACS Applied Materials & Interfaces 2017, 9 (21) , 18103-18112. https://doi.org/10.1021/acsami.7b02349
    70. Severin N. Habisreutinger, Bernard Wenger, Henry J. Snaith, and Robin J. Nicholas . Dopant-Free Planar n–i–p Perovskite Solar Cells with Steady-State Efficiencies Exceeding 18%. ACS Energy Letters 2017, 2 (3) , 622-628. https://doi.org/10.1021/acsenergylett.7b00028
    71. Maebienne Anjelica B. Gapol, Mannix P. Balanay, and Dong Hee Kim . Molecular Engineering of Tetraphenylbenzidine-Based Hole Transport Material for Perovskite Solar Cell. The Journal of Physical Chemistry A 2017, 121 (6) , 1371-1380. https://doi.org/10.1021/acs.jpca.6b12651
    72. He Xi, Shi Tang, Xiaohua Ma, Jingjing Chang, Dazheng Chen, Zhenhua Lin, Peng Zhong, Hong Wang, and Chunfu Zhang . Performance Enhancement of Planar Heterojunction Perovskite Solar Cells through Tuning the Doping Properties of Hole-Transporting Materials. ACS Omega 2017, 2 (1) , 326-336. https://doi.org/10.1021/acsomega.6b00465
    73. Guohua Dong, Debin Xia, Yulin Yang, Li Shenga, Tengling Ye, and Ruiqing Fan . Keggin-Type PMo11V as a P-type Dopant for Enhancing the Efficiency and Reproducibility of Perovskite Solar Cells. ACS Applied Materials & Interfaces 2017, 9 (3) , 2378-2386. https://doi.org/10.1021/acsami.6b12938
    74. Björn Lüssem, Chang-Min Keum, Daniel Kasemann, Ben Naab, Zhenan Bao, and Karl Leo . Doped Organic Transistors. Chemical Reviews 2016, 116 (22) , 13714-13751. https://doi.org/10.1021/acs.chemrev.6b00329
    75. William H. Nguyen, Christopher J. Barile, and Michael D. McGehee . Small Molecule Anchored to Mesoporous ITO for High-Contrast Black Electrochromics. The Journal of Physical Chemistry C 2016, 120 (46) , 26336-26341. https://doi.org/10.1021/acs.jpcc.6b08820
    76. Hsien-Hsin Chou, Yu-Hsien Chiang, Ming-Hsien Li, Po-Shen Shen, Hsiang-Jung Wei, Chi-Lun Mai, Peter Chen, and Chen-Yu Yeh . Zinc Porphyrin–Ethynylaniline Conjugates as Novel Hole-Transporting Materials for Perovskite Solar Cells with Power Conversion Efficiency of 16.6%. ACS Energy Letters 2016, 1 (5) , 956-962. https://doi.org/10.1021/acsenergylett.6b00432
    77. Xiaojia Zheng, Congcong Wu, Shikhar K. Jha, Zhen Li, Kai Zhu, and Shashank Priya . Improved Phase Stability of Formamidinium Lead Triiodide Perovskite by Strain Relaxation. ACS Energy Letters 2016, 1 (5) , 1014-1020. https://doi.org/10.1021/acsenergylett.6b00457
    78. Tanja Miletić, Eleonora Pavoni, Vanira Trifiletti, Aurora Rizzo, Andrea Listorti, Silvia Colella, Nicola Armaroli, and Davide Bonifazi . Covalently Functionalized SWCNTs as Tailored p-Type Dopants for Perovskite Solar Cells. ACS Applied Materials & Interfaces 2016, 8 (41) , 27966-27973. https://doi.org/10.1021/acsami.6b08398
    79. Alessandro Lorenzo Palma, Lucio Cinà, Yan Busby, Andrea Marsella, Antonio Agresti, Sara Pescetelli, Jean-Jacques Pireaux, and Aldo Di Carlo . Mesoscopic Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces 2016, 8 (40) , 26989-26997. https://doi.org/10.1021/acsami.6b07750
    80. Brian L. Watson, Nicholas Rolston, Kevin A. Bush, Tomas Leijtens, Michael D. McGehee, and Reinhold H. Dauskardt . Cross-Linkable, Solvent-Resistant Fullerene Contacts for Robust and Efficient Perovskite Solar Cells with Increased JSC and VOC. ACS Applied Materials & Interfaces 2016, 8 (39) , 25896-25904. https://doi.org/10.1021/acsami.6b06164
    81. Naoki Ishida, Atsushi Wakamiya, and Akinori Saeki . Quantifying Hole Transfer Yield from Perovskite to Polymer Layer: Statistical Correlation of Solar Cell Outputs with Kinetic and Energetic Properties. ACS Photonics 2016, 3 (9) , 1678-1688. https://doi.org/10.1021/acsphotonics.6b00331
    82. Shen Wang, Mahsa Sina, Pritesh Parikh, Taylor Uekert, Brian Shahbazian, Arun Devaraj, and Ying Shirley Meng . Role of 4-tert-Butylpyridine as a Hole Transport Layer Morphological Controller in Perovskite Solar Cells. Nano Letters 2016, 16 (9) , 5594-5600. https://doi.org/10.1021/acs.nanolett.6b02158
    83. Rebecca A. Belisle, Pratham Jain, Rohit Prasanna, Tomas Leijtens, and Michael D. McGehee . Minimal Effect of the Hole-Transport Material Ionization Potential on the Open-Circuit Voltage of Perovskite Solar Cells. ACS Energy Letters 2016, 1 (3) , 556-560. https://doi.org/10.1021/acsenergylett.6b00270
    84. Neha Arora, Simonetta Orlandi, M. Ibrahim Dar, Sadig Aghazada, Gwénolé Jacopin, Marco Cavazzini, Edoardo Mosconi, Paul Gratia, Filippo De Angelis, Gianluca Pozzi, Michael Graetzel, and Mohammad Khaja Nazeeruddin . High Open-Circuit Voltage: Fabrication of Formamidinium Lead Bromide Perovskite Solar Cells Using Fluorene–Dithiophene Derivatives as Hole-Transporting Materials. ACS Energy Letters 2016, 1 (1) , 107-112. https://doi.org/10.1021/acsenergylett.6b00077
    85. Mei Gao, Jegadesan Subbiah, Paul B. Geraghty, Ming Chen, Balaji Purushothaman, Xiwen Chen, Tianshi Qin, Doojin Vak, Fiona H. Scholes, Scott E. Watkins, Melissa Skidmore, Gerard J. Wilson, Andrew B. Holmes, David J. Jones, and Wallace W. H. Wong . Development of a High-Performance Donor–Acceptor Conjugated Polymer: Synergy in Materials and Device Optimization. Chemistry of Materials 2016, 28 (10) , 3481-3487. https://doi.org/10.1021/acs.chemmater.6b01194
    86. Hu Chen, Daniel Bryant, Joel Troughton, Mindaugas Kirkus, Marios Neophytou, Xiaohe Miao, James R. Durrant, and Iain McCulloch . One-Step Facile Synthesis of a Simple Hole Transport Material for Efficient Perovskite Solar Cells. Chemistry of Materials 2016, 28 (8) , 2515-2518. https://doi.org/10.1021/acs.chemmater.6b00858
    87. Alice Corani, Ming-Hsien Li, Po-Shen Shen, Peter Chen, Tzung-Fang Guo, Amal El Nahhas, Kaibo Zheng, Arkady Yartsev, Villy Sundström, and Carlito S. Ponseca, Jr. . Ultrafast Dynamics of Hole Injection and Recombination in Organometal Halide Perovskite Using Nickel Oxide as p-Type Contact Electrode. The Journal of Physical Chemistry Letters 2016, 7 (7) , 1096-1101. https://doi.org/10.1021/acs.jpclett.6b00238
    88. Brandon W. Lavery, Sudesh Kumari, Hannah Konermann, Gabriel L. Draper, Joshua Spurgeon, and Thad Druffel . Intense Pulsed Light Sintering of CH3NH3PbI3 Solar Cells. ACS Applied Materials & Interfaces 2016, 8 (13) , 8419-8426. https://doi.org/10.1021/acsami.5b10166
    89. Tomas Leijtens, Tommaso Giovenzana, Severin N. Habisreutinger, Jonathan S. Tinkham, Nakita K. Noel, Brett A. Kamino, Golnaz Sadoughi, Alan Sellinger, and Henry J. Snaith . Hydrophobic Organic Hole Transporters for Improved Moisture Resistance in Metal Halide Perovskite Solar Cells. ACS Applied Materials & Interfaces 2016, 8 (9) , 5981-5989. https://doi.org/10.1021/acsami.5b10093
    90. Ahmed L. Abdelhady, Makhsud I. Saidaminov, Banavoth Murali, Valerio Adinolfi, Oleksandr Voznyy, Khabiboulakh Katsiev, Erkki Alarousu, Riccardo Comin, Ibrahim Dursun, Lutfan Sinatra, Edward H. Sargent, Omar F. Mohammed, and Osman M. Bakr . Heterovalent Dopant Incorporation for Bandgap and Type Engineering of Perovskite Crystals. The Journal of Physical Chemistry Letters 2016, 7 (2) , 295-301. https://doi.org/10.1021/acs.jpclett.5b02681
    91. Carlito S. Ponseca, Jr., Eline M. Hutter, Piotr Piatkowski, Boiko Cohen, Torbjörn Pascher, Abderrazzak Douhal, Arkady Yartsev, Villy Sundström, and Tom J. Savenije . Mechanism of Charge Transfer and Recombination Dynamics in Organo Metal Halide Perovskites and Organic Electrodes, PCBM, and Spiro-OMeTAD: Role of Dark Carriers. Journal of the American Chemical Society 2015, 137 (51) , 16043-16048. https://doi.org/10.1021/jacs.5b08770
    92. Shen Wang, Wen Yuan, and Ying Shirley Meng . Spectrum-Dependent Spiro-OMeTAD Oxidization Mechanism in Perovskite Solar Cells. ACS Applied Materials & Interfaces 2015, 7 (44) , 24791-24798. https://doi.org/10.1021/acsami.5b07703
    93. Giles E. Eperon, Severin N. Habisreutinger, Tomas Leijtens, Bardo J. Bruijnaers, Jacobus J. van Franeker, Dane W. deQuilettes, Sandeep Pathak, Rebecca J. Sutton, Giulia Grancini, David S. Ginger, Rene A. J. Janssen, Annamaria Petrozza, and Henry J. Snaith . The Importance of Moisture in Hybrid Lead Halide Perovskite Thin Film Fabrication. ACS Nano 2015, 9 (9) , 9380-9393. https://doi.org/10.1021/acsnano.5b03626
    94. Katherine E. Roelofs, Steven M. Herron, and Stacey F. Bent . Increased Quantum Dot Loading by pH Control Reduces Interfacial Recombination in Quantum-Dot-Sensitized Solar Cells. ACS Nano 2015, 9 (8) , 8321-8334. https://doi.org/10.1021/acsnano.5b02853
    95. Simonetta Orlandi, Gianluca Pozzi, and Marco Cavazzini , Daniela Minudri, Miguel Gervaldo, Luis Otero, and Fernando Fungo . Synthesis and Properties of an Electropolymer Obtained from a Dimeric Donor/Acceptor System with a 4,4′-Spirobi[cyclopenta[2,1-b:3,4-b′]dithiophene] Core. Macromolecules 2015, 48 (13) , 4364-4372. https://doi.org/10.1021/acs.macromol.5b00845
    96. Sanjib Das, Bin Yang, Gong Gu, Pooran C. Joshi, Ilia N. Ivanov, Christopher M. Rouleau, Tolga Aytug, David B. Geohegan, and Kai Xiao . High-Performance Flexible Perovskite Solar Cells by Using a Combination of Ultrasonic Spray-Coating and Low Thermal Budget Photonic Curing. ACS Photonics 2015, 2 (6) , 680-686. https://doi.org/10.1021/acsphotonics.5b00119
    97. Timothy W. Jones, Noel W. Duffy, and Gregory J. Wilson . Efficient All-Printable Solid-State Dye-Sensitized Solar Cell Based on a Low-Resistivity Carbon Composite Counter Electrode and Highly Doped Hole Transport Material. The Journal of Physical Chemistry C 2015, 119 (21) , 11410-11418. https://doi.org/10.1021/acs.jpcc.5b01711
    98. Oscar A. Jaramillo-Quintero, Rafael S. Sanchez, Marina Rincon, and Ivan Mora-Sero . Bright Visible-Infrared Light Emitting Diodes Based on Hybrid Halide Perovskite with Spiro-OMeTAD as a Hole-Injecting Layer. The Journal of Physical Chemistry Letters 2015, 6 (10) , 1883-1890. https://doi.org/10.1021/acs.jpclett.5b00732
    99. Zafer Hawash, Luis K. Ono, Sonia R. Raga, Michael V. Lee, and Yabing Qi . Air-Exposure Induced Dopant Redistribution and Energy Level Shifts in Spin-Coated Spiro-MeOTAD Films. Chemistry of Materials 2015, 27 (2) , 562-569. https://doi.org/10.1021/cm504022q
    100. Eva L. Unger, Andrea R. Bowring, Christopher J. Tassone, Vanessa L. Pool, Aryeh Gold-Parker, Rongrong Cheacharoen, Kevin H. Stone, Eric T. Hoke, Michael F. Toney, and Michael D. McGehee . Chloride in Lead Chloride-Derived Organo-Metal Halides for Perovskite-Absorber Solar Cells. Chemistry of Materials 2014, 26 (24) , 7158-7165. https://doi.org/10.1021/cm503828b
    Load more citations

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2014, 136, 31, 10996–11001
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja504539w
    Published July 22, 2014
    Copyright © 2014 American Chemical Society

    Article Views

    13k

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.