Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
C5-Symmetric Chiral Corannulenes: Desymmetrization of Bowl Inversion Equilibrium via “Intramolecular” Hydrogen-Bonding Network
My Activity

Figure 1Loading Img
    Article

    C5-Symmetric Chiral Corannulenes: Desymmetrization of Bowl Inversion Equilibrium via “Intramolecular” Hydrogen-Bonding Network
    Click to copy article linkArticle link copied!

    View Author Information
    RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
    Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
    § Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2014, 136, 30, 10640–10644
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja505941b
    Published July 11, 2014
    Copyright © 2014 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Because of a rapid conformational inversion, bowl-shaped C5-symmetric corannulenes, though geometrically chiral, have not been directly resolved into their enantiomers. However, if this inversion equilibrium can be desymmetrized, chiral corannulenes enriched in either enantiomer can be obtained. We demonstrated this possibility using pentasubstituted corannulenes 4 and 5 carrying amide-appended thioalkyl side chains. Compound 4 displays chiroptical activity in a chiral hydrocarbon such as limonene. Because compound 5 carries a chiral center in the side chains, its enantiomers 5R and 5S show chiroptical activity even in achiral solvents such as CHCl3 and methylcyclohexane. In sharp contrast, when the side chains bear no amide functionality (1 and 2R), no chiroptical activity emerges even in limonene or with a chiral center in the side chains. Detailed investigations revealed that the peripheral amide units in 4 and 5 are hydrogen-bonded only “intramolecularly” along the corannulene periphery, affording cyclic amide networks with clockwise and anticlockwise geometries. Although this networking gives rise to four stereoisomers, only two, which are enantiomeric to one another, are suggested computationally to exist in the equilibrated system. In a chiral environment (chiral solvent or side chain), their thermodynamic stabilities are certainly unequal, so the bowl-inversion equilibrium can be desymmetrized. However, this is not the case when the system contains a protic solvent that can deteriorate the hydrogen-bonding network. When the enantiomeric purity of limonene as the solvent is varied, the chiroptical activity of the corannulene core changes nonlinearly with its enantiomeric excess (majority rule).

    Copyright © 2014 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Details of synthesis; analytical data obtained by mass spectrometry and NMR, IR, absorption, and CD spectroscopy; and results of DFT calculations. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 75 publications.

    1. David T. J. Morris, Steven M. Wales, Javier Echavarren, Matej Žabka, Giulia Marsico, John W. Ward, Natalie E. Pridmore, Jonathan Clayden. Dynamic and Persistent Cyclochirality in Hydrogen-Bonded Derivatives of Medium-Ring Triamines. Journal of the American Chemical Society 2023, 145 (34) , 19030-19041. https://doi.org/10.1021/jacs.3c06570
    2. Adriana Sacristán-Martín, Daniel Miguel, Alberto Diez-Varga, Héctor Barbero, Celedonio M. Álvarez. From Induced-Fit Assemblies to Ternary Inclusion Complexes with Fullerenes in Corannulene-Based Molecular Tweezers. The Journal of Organic Chemistry 2022, 87 (24) , 16691-16706. https://doi.org/10.1021/acs.joc.2c02345
    3. Paola Peluso, Bezhan Chankvetadze. Recognition in the Domain of Molecular Chirality: From Noncovalent Interactions to Separation of Enantiomers. Chemical Reviews 2022, 122 (16) , 13235-13400. https://doi.org/10.1021/acs.chemrev.1c00846
    4. Ehsan Raee, Bingqing Liu, Yuqing Yang, Trishool Namani, Yunpeng Cui, Nita Sahai, Xiaopeng Li, Tianbo Liu. Side Group of Hydrophobic Amino Acids Controls Chiral Discrimination among Chiral Counterions and Metal–Organic Cages. Nano Letters 2022, 22 (11) , 4421-4428. https://doi.org/10.1021/acs.nanolett.2c00908
    5. Pan Li, Zhongwei Sun, Jiaolong Chen, Yong Zuo, Chunyang Yu, Xiaoning Liu, Zhenyu Yang, Lihua Chen, Enguang Fu, Weihao Wang, Jiacheng Zhang, Zhiqiang Liu, Jinming Hu, Shaodong Zhang. Spontaneous Resolution of Racemic Cage-Catenanes via Diastereomeric Enrichment at the Molecular Level and Subsequent Narcissistic Self-Sorting at the Supramolecular Level. Journal of the American Chemical Society 2022, 144 (3) , 1342-1350. https://doi.org/10.1021/jacs.1c11452
    6. Yuhao Liu, Lingmei Liu, Xu Chen, Yan Liu, Yu Han, Yong Cui. Single-Crystalline Ultrathin 2D Porous Nanosheets of Chiral Metal–Organic Frameworks. Journal of the American Chemical Society 2021, 143 (9) , 3509-3518. https://doi.org/10.1021/jacs.0c13005
    7. Jiancheng Luo, Songtao Ye, Putu Ustriyana, Benqian Wei, Jiahui Chen, Ehsan Raee, Yinghe Hu, Yuqing Yang, Yifan Zhou, Chrys Wesdemiotis, Nita Sahai, Tianbo Liu. Unraveling Chiral Selection in the Self-assembly of Chiral Fullerene Macroions: Effects of Small Chiral Components Including Counterions, Co-ions, or Neutral Molecules. Langmuir 2020, 36 (17) , 4702-4710. https://doi.org/10.1021/acs.langmuir.0c00611
    8. Zeus A. De los Santos, Christian Wolf. Optical Terpene and Terpenoid Sensing: Chiral Recognition, Determination of Enantiomeric Composition and Total Concentration Analysis with Late Transition Metal Complexes. Journal of the American Chemical Society 2020, 142 (9) , 4121-4125. https://doi.org/10.1021/jacs.9b13910
    9. Andrey Yu. Rogachev, Shuyang Liu, Qi Xu, Jingbai Li, Zheng Zhou, Sarah N. Spisak, Zheng Wei, Marina A. Petrukhina. Placing Metal in the Bowl: Does Rim Alkylation Matter?. Organometallics 2019, 38 (2) , 552-566. https://doi.org/10.1021/acs.organomet.8b00837
    10. Toshiyuki Sasaki, Mikiji Miyata, Hisako Sato. Helicity and Topological Chirality in Hydrogen-Bonded Supermolecules Characterized by Advanced Graph Set Analysis and Solid-State Vibrational Circular Dichroism Spectroscopy. Crystal Growth & Design 2018, 18 (8) , 4621-4627. https://doi.org/10.1021/acs.cgd.8b00599
    11. Katsuhiro Maeda, Daisuke Hirose, Natsuki Okoshi, Kouhei Shimomura, Yuya Wada, Tomoyuki Ikai, Shigeyoshi Kanoh, Eiji Yashima. Direct Detection of Hardly Detectable Hidden Chirality of Hydrocarbons and Deuterated Isotopomers by a Helical Polyacetylene through Chiral Amplification and Memory. Journal of the American Chemical Society 2018, 140 (9) , 3270-3276. https://doi.org/10.1021/jacs.7b10981
    12. Fu Huang, Lishuang Ma, Yanke Che, Hua Jiang, Xuebo Chen, and Ying Wang . Corannulene-Based Coordination Cage with Helical Bias. The Journal of Organic Chemistry 2018, 83 (2) , 733-739. https://doi.org/10.1021/acs.joc.7b02709
    13. Heekyoung Choi, Kang Jin Cho, Hyowon Seo, Junho Ahn, Jinying Liu, Shim Sung Lee, Hyungjun Kim, Chuanliang Feng, and Jong Hwa Jung . Transfer and Dynamic Inversion of Coassembled Supramolecular Chirality through 2D-Sheet to Rolled-Up Tubular Structure. Journal of the American Chemical Society 2017, 139 (49) , 17711-17714. https://doi.org/10.1021/jacs.7b09760
    14. Eiji Yashima, Naoki Ousaka, Daisuke Taura, Kouhei Shimomura, Tomoyuki Ikai, and Katsuhiro Maeda . Supramolecular Helical Systems: Helical Assemblies of Small Molecules, Foldamers, and Polymers with Chiral Amplification and Their Functions. Chemical Reviews 2016, 116 (22) , 13752-13990. https://doi.org/10.1021/acs.chemrev.6b00354
    15. Andreas T. Haedler, Stefan C. J. Meskers, R. Helen Zha, Milan Kivala, Hans-Werner Schmidt, and E. W. Meijer . Pathway Complexity in the Enantioselective Self-Assembly of Functional Carbonyl-Bridged Triarylamine Trisamides. Journal of the American Chemical Society 2016, 138 (33) , 10539-10545. https://doi.org/10.1021/jacs.6b05184
    16. Takao Fujikawa, Dorin V. Preda, Yasutomo Segawa, Kenichiro Itami, and Lawrence T. Scott . Corannulene–Helicene Hybrids: Chiral π-Systems Comprising Both Bowl and Helical Motifs. Organic Letters 2016, 18 (16) , 3992-3995. https://doi.org/10.1021/acs.orglett.6b01801
    17. Soichiro Ogi, Vladimir Stepanenko, Johannes Thein, and Frank Würthner . Impact of Alkyl Spacer Length on Aggregation Pathways in Kinetically Controlled Supramolecular Polymerization. Journal of the American Chemical Society 2016, 138 (2) , 670-678. https://doi.org/10.1021/jacs.5b11674
    18. Keisuke Matsuyama, Jun Matsumoto, Shogo Yamamoto, Keisuke Nagasaki, Yoshihisa Inoue, Masaki Nishijima, and Tadashi Mori . pH-Independent Charge Resonance Mechanism for UV Protective Functions of Shinorine and Related Mycosporine-like Amino Acids. The Journal of Physical Chemistry A 2015, 119 (51) , 12722-12729. https://doi.org/10.1021/acs.jpca.5b09988
    19. Chunmiao Ma, Qingcheng Cao, Lu Yu, Zhao Ma, Quan Gan. Chirality Interplay between the Interior and Exterior of Metal–Organic Cages. Angewandte Chemie International Edition 2024, 63 (37) https://doi.org/10.1002/anie.202410731
    20. Chunmiao Ma, Qingcheng Cao, Lu Yu, Zhao Ma, Quan Gan. Chirality Interplay between the Interior and Exterior of Metal–Organic Cages. Angewandte Chemie 2024, 136 (37) https://doi.org/10.1002/ange.202410731
    21. Sairathna Choppella, Sheik Haseena, Mahesh Kumar Ravva. Computational design of efficient corannulene-based Non-Fullerene acceptors for organic solar cells applications. Journal of Photochemistry and Photobiology A: Chemistry 2024, 448 , 115332. https://doi.org/10.1016/j.jphotochem.2023.115332
    22. Zhijian Chen, Zhaoying Chen. Functional supramolecular aggregates based on BODIPY and aza-BODIPY dyes: control over the pathway complexity. Organic Chemistry Frontiers 2023, 10 (10) , 2581-2602. https://doi.org/10.1039/D3QO00148B
    23. David T.J. Morris, Jonathan Clayden. Hydrogen Bond Chains in Foldamers and Dynamic Foldamers. 2023, 479-520. https://doi.org/10.1002/9783527834914.ch15
    24. Yong Zuo, Xiaoning Liu, Enguang Fu, Shaodong Zhang. A Pair of Interconverting Cages Formed from Achiral Precursors Spontaneously Resolve into Homochiral Conformers. Angewandte Chemie 2023, 135 (14) https://doi.org/10.1002/ange.202217225
    25. Yong Zuo, Xiaoning Liu, Enguang Fu, Shaodong Zhang. A Pair of Interconverting Cages Formed from Achiral Precursors Spontaneously Resolve into Homochiral Conformers. Angewandte Chemie International Edition 2023, 62 (14) https://doi.org/10.1002/anie.202217225
    26. Naoya Okada, Soichiro Nakatsuka, Ryosuke Kawasumi, Hajime Gotoh, Nobuhiro Yasuda, Takuji Hatakeyama. Synthesis and Late‐Stage Diversification of BN‐Embedded Dibenzocorannulenes as Efficient Fluorescence Organic Light‐Emitting Diode Emitters. Chemistry – A European Journal 2023, 29 (5) https://doi.org/10.1002/chem.202202627
    27. Zheng‐Fei Liu, Jiahuan Ren, Pan Li, Li‐Ya Niu, Qing Liao, Shaodong Zhang, Qing‐Zheng Yang. Circularly Polarized Laser Emission from Homochiral Superstructures based on Achiral Molecules with Conformal Flexibility. Angewandte Chemie 2023, 135 (2) https://doi.org/10.1002/ange.202214211
    28. Zheng‐Fei Liu, Jiahuan Ren, Pan Li, Li‐Ya Niu, Qing Liao, Shaodong Zhang, Qing‐Zheng Yang. Circularly Polarized Laser Emission from Homochiral Superstructures based on Achiral Molecules with Conformal Flexibility. Angewandte Chemie International Edition 2023, 62 (2) https://doi.org/10.1002/anie.202214211
    29. Piet W.N.M. van Leeuwen, Zoraida Freixa, Israel Cano. An introduction to chirality. 2023, 1-96. https://doi.org/10.1016/bs.acat.2023.10.001
    30. Koki Kise, Shota Ooi, Hayate Saito, Hideki Yorimitsu, Atsuhiro Osuka, Takayuki Tanaka. Five‐Fold Symmetric Pentaindolo‐ and Pentakis(benzoindolo)Corannulenes: Unique Structural Dynamics Derived from the Combination of Helical and Bowl Inversions. Angewandte Chemie 2022, 134 (1) https://doi.org/10.1002/ange.202112589
    31. Koki Kise, Shota Ooi, Hayate Saito, Hideki Yorimitsu, Atsuhiro Osuka, Takayuki Tanaka. Five‐Fold Symmetric Pentaindolo‐ and Pentakis(benzoindolo)Corannulenes: Unique Structural Dynamics Derived from the Combination of Helical and Bowl Inversions. Angewandte Chemie International Edition 2022, 61 (1) https://doi.org/10.1002/anie.202112589
    32. Tianjian Guo, Ansu Li, Jun Xu, Kim K. Baldridge, Jay Siegel. Enantiopure C 5 Pentaindenocorannulenes: Chiral Graphenoid Materials. Angewandte Chemie 2021, 133 (49) , 26013-26018. https://doi.org/10.1002/ange.202109946
    33. Tianjian Guo, Ansu Li, Jun Xu, Kim K. Baldridge, Jay Siegel. Enantiopure C 5 Pentaindenocorannulenes: Chiral Graphenoid Materials. Angewandte Chemie International Edition 2021, 60 (49) , 25809-25814. https://doi.org/10.1002/anie.202109946
    34. Oleksandr Shyshov, Shyamkumar Vadakket Haridas, Luca Pesce, Haoyuan Qi, Andrea Gardin, Davide Bochicchio, Ute Kaiser, Giovanni M. Pavan, Max von Delius. Living supramolecular polymerization of fluorinated cyclohexanes. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-23370-y
    35. Will R Henderson, Ronald K Castellano. Supramolecular polymerization of chiral molecules devoid of chiral centers. Polymer International 2021, 70 (7) , 897-910. https://doi.org/10.1002/pi.6111
    36. Kazunori Sugiyasu. Kinetically Controlled Supramolecular Polymerization. 2021, 131-164. https://doi.org/10.1002/9783527821990.ch5
    37. Koki Kise, Shota Ooi, Atsuhiro Osuka, Takayuki Tanaka. Five‐fold‐symmetric Pentabromo‐ and Pentaiodo‐corannulenes: Useful Precursors of Heteroatom‐substituted Corannulenes. Asian Journal of Organic Chemistry 2021, 10 (3) , 537-540. https://doi.org/10.1002/ajoc.202000688
    38. Marcin L. Ślęczkowski, Mathijs F. J. Mabesoone, Piotr Ślęczkowski, Anja R. A. Palmans, E. W. Meijer. Competition between chiral solvents and chiral monomers in the helical bias of supramolecular polymers. Nature Chemistry 2021, 13 (2) , 200-207. https://doi.org/10.1038/s41557-020-00583-0
    39. Viktor Barát, Mihaiela C. Stuparu. Corannulene Chalcogenides. Chemistry – An Asian Journal 2021, 16 (1) , 20-29. https://doi.org/10.1002/asia.202001140
    40. Jean-Luc Bégin, Maye Alsaawy, Ravi Bhardwaj. Chiral discrimination by recollision enhanced femtosecond laser mass spectrometry. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-71069-9
    41. Xiaosheng Yan, Qian Wang, Xuanxuan Chen, Yun‐Bao Jiang. Supramolecular Chiral Aggregates Exhibiting Nonlinear CD–ee Dependence. Advanced Materials 2020, 32 (41) https://doi.org/10.1002/adma.201905667
    42. P.K. Hashim, Julian Bergueiro, E.W. Meijer, Takuzo Aida. Supramolecular Polymerization: A Conceptual Expansion for Innovative Materials. Progress in Polymer Science 2020, 105 , 101250. https://doi.org/10.1016/j.progpolymsci.2020.101250
    43. Takuzo Aida. On Supramolecular Polymerization: Interview with Takuzo Aida. Advanced Materials 2020, 32 (20) https://doi.org/10.1002/adma.201905445
    44. Yoshiaki Shoji, Junki Kashida, Takanori Fukushima. Organic Transformations Using Electron-Deficient Boron Compounds. Journal of Synthetic Organic Chemistry, Japan 2020, 78 (3) , 190-203. https://doi.org/10.5059/yukigoseikyokaishi.78.190
    45. Jingbai Li, Andrey Yu. Rogachev. Homolytic Versus Heterolytic Bond Breaking in Functionalized [R‐C 20 H 10 ] + Systems. Journal of Computational Chemistry 2020, 41 (2) , 88-96. https://doi.org/10.1002/jcc.26065
    46. Tadashi Mori. Propeller Chirality: Circular Dichroism and Circularly Polarized Luminescence. 2020, 151-175. https://doi.org/10.1007/978-981-15-2309-0_7
    47. Marius Wehner, Frank Würthner. Supramolecular polymerization through kinetic pathway control and living chain growth. Nature Reviews Chemistry 2020, 4 (1) , 38-53. https://doi.org/10.1038/s41570-019-0153-8
    48. Wenge Jiang, Dimitra Athanasiadou, Shaodong Zhang, Raffaella Demichelis, Katarzyna B. Koziara, Paolo Raiteri, Valentin Nelea, Wenbo Mi, Jun-An Ma, Julian D. Gale, Marc D. McKee. Homochirality in biomineral suprastructures induced by assembly of single-enantiomer amino acids from a nonracemic mixture. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-10383-x
    49. Xiaosheng Yan, Kunshan Zou, Jinlian Cao, Xiaorui Li, Zhixing Zhao, Zhao Li, Anan Wu, Wanzhen Liang, Yirong Mo, Yunbao Jiang. Single-handed supramolecular double helix of homochiral bis(N-amidothiourea) supported by double crossed C−I···S halogen bonds. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-11539-5
    50. Haoyang Jia, Jiezhong Shi, Weibin Ren, Jiang Zhao, Yuanchen Dong, Dongsheng Liu. Controllable supramolecular “ring opening” polymerization based on DNA duplex. Polymer 2019, 171 , 121-126. https://doi.org/10.1016/j.polymer.2019.03.025
    51. Axel Haupt, Dieter Lentz. Corannulenes with Electron‐Withdrawing Substituents: Synthetic Approaches and Resulting Structural and Electronic Properties. Chemistry – A European Journal 2019, 25 (14) , 3440-3454. https://doi.org/10.1002/chem.201803927
    52. Jens C. Markwart, Frederik R. Wurm. The 2-acetylthioethyl ester group: A versatile protective group for P-OH-groups. Tetrahedron 2018, 74 (52) , 7426-7430. https://doi.org/10.1016/j.tet.2018.11.002
    53. Yuki Shimizu, Yoshiaki Shoji, Daisuke Hashizume, Yuuya Nagata, Takanori Fukushima. Sensing the chirality of various organic solvents by helically arranged π-blades. Chemical Communications 2018, 54 (87) , 12314-12317. https://doi.org/10.1039/C8CC06277C
    54. Ashmeet Singh, Jojo P. Joseph, Deepika Gupta, Indranil Sarkar, Asish Pal. Pathway driven self-assembly and living supramolecular polymerization in an amyloid-inspired peptide amphiphile. Chemical Communications 2018, 54 (76) , 10730-10733. https://doi.org/10.1039/C8CC06266H
    55. Zehuan Huang, Bo Qin, Linghui Chen, Jiang‐Fei Xu, Charl F. J. Faul, Xi Zhang. Supramolecular Polymerization from Controllable Fabrication to Living Polymerization. Macromolecular Rapid Communications 2017, 38 (17) https://doi.org/10.1002/marc.201700312
    56. Kuppusamy Kanagaraj, Kangjie Lin, Wanhua Wu, Guowei Gao, Zhihui Zhong, Dan Su, Cheng Yang. Chiral Buckybowl Molecules. Symmetry 2017, 9 (9) , 174. https://doi.org/10.3390/sym9090174
    57. Shikha Dhiman, Ankit Jain, Subi J. George. Transient Helicity: Fuel‐Driven Temporal Control over Conformational Switching in a Supramolecular Polymer. Angewandte Chemie 2017, 129 (5) , 1349-1353. https://doi.org/10.1002/ange.201610946
    58. Shikha Dhiman, Ankit Jain, Subi J. George. Transient Helicity: Fuel‐Driven Temporal Control over Conformational Switching in a Supramolecular Polymer. Angewandte Chemie International Edition 2017, 56 (5) , 1329-1333. https://doi.org/10.1002/anie.201610946
    59. Pol Besenius. Controlling supramolecular polymerization through multicomponent self‐assembly. Journal of Polymer Science Part A: Polymer Chemistry 2017, 55 (1) , 34-78. https://doi.org/10.1002/pola.28385
    60. Yu‐Min Liu, Dan Xia, Bo‐Wei Li, Qian‐Yan Zhang, Tsuneaki Sakurai, Yuan‐Zhi Tan, Shu Seki, Su‐Yuan Xie, Lan‐Sun Zheng. Functional Sulfur‐Doped Buckybowls and Their Concave–Convex Supramolecular Assembly with Fullerenes. Angewandte Chemie 2016, 128 (42) , 13241-13245. https://doi.org/10.1002/ange.201606383
    61. Yu‐Min Liu, Dan Xia, Bo‐Wei Li, Qian‐Yan Zhang, Tsuneaki Sakurai, Yuan‐Zhi Tan, Shu Seki, Su‐Yuan Xie, Lan‐Sun Zheng. Functional Sulfur‐Doped Buckybowls and Their Concave–Convex Supramolecular Assembly with Fullerenes. Angewandte Chemie International Edition 2016, 55 (42) , 13047-13051. https://doi.org/10.1002/anie.201606383
    62. Jingbai Li, Giovana da Silva Ramos, Andrey Yu Rogachev. Stability of functionalized corannulene cations [R‐C 20 H 10 ] + : An influence of the nature of R‐Group. Journal of Computational Chemistry 2016, 37 (25) , 2266-2278. https://doi.org/10.1002/jcc.24444
    63. Wenjie Zhang, Guo Wei, Ziyu Wang, Jing Ma, Chengjian Zhu, Yixiang Cheng. Highly enantioselective recognition of alaninol via the chiral BINAM-based fluorescence polymer sensor. Polymer 2016, 101 , 93-97. https://doi.org/10.1016/j.polymer.2016.08.061
    64. Rui Chen, Ru-Qiang Lu, Pei-Chen Shi, Xiao-Yu Cao. Corannulene derivatives for organic electronics: From molecular engineering to applications. Chinese Chemical Letters 2016, 27 (8) , 1175-1183. https://doi.org/10.1016/j.cclet.2016.06.033
    65. Xu Li, Feiyu Kang, Michio Inagaki. Buckybowls: Corannulene and Its Derivatives. Small 2016, 12 (24) , 3206-3223. https://doi.org/10.1002/smll.201503950
    66. Jingbai Li, Andrey Yu. Rogachev. Aromatic stabilization of functionalized corannulene cations. Physical Chemistry Chemical Physics 2016, 18 (17) , 11781-11791. https://doi.org/10.1039/C5CP07002C
    67. Shuhei Higashibayashi, Hidehiro Sakurai. Growing Buckybowl Chemistry. 2015, 61-84. https://doi.org/10.1002/9783527689545.ch3
    68. Cristina Dubceac, Alexander S. Filatov, Alexander V. Zabula, Andrey Yu. Rogachev, Marina A. Petrukhina. Functionalized Corannulene Carbocations: A Structural Overview. Chemistry – A European Journal 2015, 21 (41) , 14268-14279. https://doi.org/10.1002/chem.201500697
    69. Rahul Dev Mukhopadhyay, Ayyappanpillai Ajayaghosh. Living supramolecular polymerization. Science 2015, 349 (6245) , 241-242. https://doi.org/10.1126/science.aac7422
    70. Renren Deng, Xiaogang Liu. Chain growth in control. Nature Chemistry 2015, 7 (6) , 472-473. https://doi.org/10.1038/nchem.2265
    71. Kazunari Nakajima, Yuya Ashida, Sunao Nojima, Yoshiaki Nishibayashi. Radical Addition to Corannulene Mediated by Visible-light-photoredox Catalysts. Chemistry Letters 2015, 44 (4) , 545-547. https://doi.org/10.1246/cl.150019
    72. Jiheong Kang, Daigo Miyajima, Tadashi Mori, Yoshihisa Inoue, Yoshimitsu Itoh, Takuzo Aida. A rational strategy for the realization of chain-growth supramolecular polymerization. Science 2015, 347 (6222) , 646-651. https://doi.org/10.1126/science.aaa4249
    73. Rui Chen, Ru-Qiang Lu, Ke Shi, Fan Wu, Hong-Xun Fang, Zhe-Xuan Niu, Xiao-Yun Yan, Ming Luo, Xin-Chang Wang, Chi-Yuan Yang, Xiao-Ye Wang, Binbin Xu, Haiping Xia, Jian Pei, Xiao-Yu Cao. Corannulene derivatives with low LUMO levels and dense convex–concave packing for n-channel organic field-effect transistors. Chemical Communications 2015, 51 (72) , 13768-13771. https://doi.org/10.1039/C5CC03550C
    74. Li Wang, Wen-Yong Wang, Xin-Yan Fang, Chang-Li Zhu, Yong-Qing Qiu. Third order NLO properties of corannulene and its Li-doped dimers: effect of concave–convex and convex–convex structures. RSC Advances 2015, 5 (97) , 79783-79791. https://doi.org/10.1039/C5RA09864E
    75. Hiroyuki Miyake. Supramolecular Chirality in Dynamic Coordination Chemistry. Symmetry 2014, 6 (4) , 880-895. https://doi.org/10.3390/sym6040880

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2014, 136, 30, 10640–10644
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja505941b
    Published July 11, 2014
    Copyright © 2014 American Chemical Society

    Article Views

    6016

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.