C5-Symmetric Chiral Corannulenes: Desymmetrization of Bowl Inversion Equilibrium via “Intramolecular” Hydrogen-Bonding NetworkClick to copy article linkArticle link copied!
- Jiheong Kang
- Daigo Miyajima
- Yoshimitsu Itoh
- Tadashi Mori
- Hiroki Tanaka
- Masahito Yamauchi
- Yoshihisa Inoue
- Soichiro Harada
- Takuzo Aida
Abstract
Because of a rapid conformational inversion, bowl-shaped C5-symmetric corannulenes, though geometrically chiral, have not been directly resolved into their enantiomers. However, if this inversion equilibrium can be desymmetrized, chiral corannulenes enriched in either enantiomer can be obtained. We demonstrated this possibility using pentasubstituted corannulenes 4 and 5 carrying amide-appended thioalkyl side chains. Compound 4 displays chiroptical activity in a chiral hydrocarbon such as limonene. Because compound 5 carries a chiral center in the side chains, its enantiomers 5R and 5S show chiroptical activity even in achiral solvents such as CHCl3 and methylcyclohexane. In sharp contrast, when the side chains bear no amide functionality (1 and 2R), no chiroptical activity emerges even in limonene or with a chiral center in the side chains. Detailed investigations revealed that the peripheral amide units in 4 and 5 are hydrogen-bonded only “intramolecularly” along the corannulene periphery, affording cyclic amide networks with clockwise and anticlockwise geometries. Although this networking gives rise to four stereoisomers, only two, which are enantiomeric to one another, are suggested computationally to exist in the equilibrated system. In a chiral environment (chiral solvent or side chain), their thermodynamic stabilities are certainly unequal, so the bowl-inversion equilibrium can be desymmetrized. However, this is not the case when the system contains a protic solvent that can deteriorate the hydrogen-bonding network. When the enantiomeric purity of limonene as the solvent is varied, the chiroptical activity of the corannulene core changes nonlinearly with its enantiomeric excess (majority rule).
Cited By
This article is cited by 75 publications.
- David T. J. Morris, Steven M. Wales, Javier Echavarren, Matej Žabka, Giulia Marsico, John W. Ward, Natalie E. Pridmore, Jonathan Clayden. Dynamic and Persistent Cyclochirality in Hydrogen-Bonded Derivatives of Medium-Ring Triamines. Journal of the American Chemical Society 2023, 145
(34)
, 19030-19041. https://doi.org/10.1021/jacs.3c06570
- Adriana Sacristán-Martín, Daniel Miguel, Alberto Diez-Varga, Héctor Barbero, Celedonio M. Álvarez. From Induced-Fit Assemblies to Ternary Inclusion Complexes with Fullerenes in Corannulene-Based Molecular Tweezers. The Journal of Organic Chemistry 2022, 87
(24)
, 16691-16706. https://doi.org/10.1021/acs.joc.2c02345
- Paola Peluso, Bezhan Chankvetadze. Recognition in the Domain of Molecular Chirality: From Noncovalent Interactions to Separation of Enantiomers. Chemical Reviews 2022, 122
(16)
, 13235-13400. https://doi.org/10.1021/acs.chemrev.1c00846
- Ehsan Raee, Bingqing Liu, Yuqing Yang, Trishool Namani, Yunpeng Cui, Nita Sahai, Xiaopeng Li, Tianbo Liu. Side Group of Hydrophobic Amino Acids Controls Chiral Discrimination among Chiral Counterions and Metal–Organic Cages. Nano Letters 2022, 22
(11)
, 4421-4428. https://doi.org/10.1021/acs.nanolett.2c00908
- Pan Li, Zhongwei Sun, Jiaolong Chen, Yong Zuo, Chunyang Yu, Xiaoning Liu, Zhenyu Yang, Lihua Chen, Enguang Fu, Weihao Wang, Jiacheng Zhang, Zhiqiang Liu, Jinming Hu, Shaodong Zhang. Spontaneous Resolution of Racemic Cage-Catenanes via Diastereomeric Enrichment at the Molecular Level and Subsequent Narcissistic Self-Sorting at the Supramolecular Level. Journal of the American Chemical Society 2022, 144
(3)
, 1342-1350. https://doi.org/10.1021/jacs.1c11452
- Yuhao Liu, Lingmei Liu, Xu Chen, Yan Liu, Yu Han, Yong Cui. Single-Crystalline Ultrathin 2D Porous Nanosheets of Chiral Metal–Organic Frameworks. Journal of the American Chemical Society 2021, 143
(9)
, 3509-3518. https://doi.org/10.1021/jacs.0c13005
- Jiancheng Luo, Songtao Ye, Putu Ustriyana, Benqian Wei, Jiahui Chen, Ehsan Raee, Yinghe Hu, Yuqing Yang, Yifan Zhou, Chrys Wesdemiotis, Nita Sahai, Tianbo Liu. Unraveling Chiral Selection in the Self-assembly of Chiral Fullerene Macroions: Effects of Small Chiral Components Including Counterions, Co-ions, or Neutral Molecules. Langmuir 2020, 36
(17)
, 4702-4710. https://doi.org/10.1021/acs.langmuir.0c00611
- Zeus A. De los Santos, Christian Wolf. Optical Terpene and Terpenoid Sensing: Chiral Recognition, Determination of Enantiomeric Composition and Total Concentration Analysis with Late Transition Metal Complexes. Journal of the American Chemical Society 2020, 142
(9)
, 4121-4125. https://doi.org/10.1021/jacs.9b13910
- Andrey Yu. Rogachev, Shuyang Liu, Qi Xu, Jingbai Li, Zheng Zhou, Sarah N. Spisak, Zheng Wei, Marina A. Petrukhina. Placing Metal in the Bowl: Does Rim Alkylation Matter?. Organometallics 2019, 38
(2)
, 552-566. https://doi.org/10.1021/acs.organomet.8b00837
- Toshiyuki Sasaki, Mikiji Miyata, Hisako Sato. Helicity and Topological Chirality in Hydrogen-Bonded Supermolecules Characterized by Advanced Graph Set Analysis and Solid-State Vibrational Circular Dichroism Spectroscopy. Crystal Growth & Design 2018, 18
(8)
, 4621-4627. https://doi.org/10.1021/acs.cgd.8b00599
- Katsuhiro Maeda, Daisuke Hirose, Natsuki Okoshi, Kouhei Shimomura, Yuya Wada, Tomoyuki Ikai, Shigeyoshi Kanoh, Eiji Yashima. Direct Detection of Hardly Detectable Hidden Chirality of Hydrocarbons and Deuterated Isotopomers by a Helical Polyacetylene through Chiral Amplification and Memory. Journal of the American Chemical Society 2018, 140
(9)
, 3270-3276. https://doi.org/10.1021/jacs.7b10981
- Fu Huang, Lishuang Ma, Yanke Che, Hua Jiang, Xuebo Chen, and Ying Wang . Corannulene-Based Coordination Cage with Helical Bias. The Journal of Organic Chemistry 2018, 83
(2)
, 733-739. https://doi.org/10.1021/acs.joc.7b02709
- Heekyoung Choi, Kang Jin Cho, Hyowon Seo, Junho Ahn, Jinying Liu, Shim Sung Lee, Hyungjun Kim, Chuanliang Feng, and Jong Hwa Jung . Transfer and Dynamic Inversion of Coassembled Supramolecular Chirality through 2D-Sheet to Rolled-Up Tubular Structure. Journal of the American Chemical Society 2017, 139
(49)
, 17711-17714. https://doi.org/10.1021/jacs.7b09760
- Eiji Yashima, Naoki Ousaka, Daisuke Taura, Kouhei Shimomura, Tomoyuki Ikai, and Katsuhiro Maeda . Supramolecular Helical Systems: Helical Assemblies of Small Molecules, Foldamers, and Polymers with Chiral Amplification and Their Functions. Chemical Reviews 2016, 116
(22)
, 13752-13990. https://doi.org/10.1021/acs.chemrev.6b00354
- Andreas T. Haedler, Stefan C. J. Meskers, R. Helen Zha, Milan Kivala, Hans-Werner Schmidt, and E. W. Meijer . Pathway Complexity in the Enantioselective Self-Assembly of Functional Carbonyl-Bridged Triarylamine Trisamides. Journal of the American Chemical Society 2016, 138
(33)
, 10539-10545. https://doi.org/10.1021/jacs.6b05184
- Takao Fujikawa, Dorin V. Preda, Yasutomo Segawa, Kenichiro Itami, and Lawrence T. Scott . Corannulene–Helicene Hybrids: Chiral π-Systems Comprising Both Bowl and Helical Motifs. Organic Letters 2016, 18
(16)
, 3992-3995. https://doi.org/10.1021/acs.orglett.6b01801
- Soichiro Ogi, Vladimir Stepanenko, Johannes Thein, and Frank Würthner . Impact of Alkyl Spacer Length on Aggregation Pathways in Kinetically Controlled Supramolecular Polymerization. Journal of the American Chemical Society 2016, 138
(2)
, 670-678. https://doi.org/10.1021/jacs.5b11674
- Keisuke Matsuyama, Jun Matsumoto, Shogo Yamamoto, Keisuke Nagasaki, Yoshihisa Inoue, Masaki Nishijima, and Tadashi Mori . pH-Independent Charge Resonance Mechanism for UV Protective Functions of Shinorine and Related Mycosporine-like Amino Acids. The Journal of Physical Chemistry A 2015, 119
(51)
, 12722-12729. https://doi.org/10.1021/acs.jpca.5b09988
- Chunmiao Ma, Qingcheng Cao, Lu Yu, Zhao Ma, Quan Gan. Chirality Interplay between the Interior and Exterior of Metal–Organic Cages. Angewandte Chemie International Edition 2024, 63
(37)
https://doi.org/10.1002/anie.202410731
- Chunmiao Ma, Qingcheng Cao, Lu Yu, Zhao Ma, Quan Gan. Chirality Interplay between the Interior and Exterior of Metal–Organic Cages. Angewandte Chemie 2024, 136
(37)
https://doi.org/10.1002/ange.202410731
- Sairathna Choppella, Sheik Haseena, Mahesh Kumar Ravva. Computational design of efficient corannulene-based Non-Fullerene acceptors for organic solar cells applications. Journal of Photochemistry and Photobiology A: Chemistry 2024, 448 , 115332. https://doi.org/10.1016/j.jphotochem.2023.115332
- Zhijian Chen, Zhaoying Chen. Functional supramolecular aggregates based on BODIPY and aza-BODIPY dyes: control over the pathway complexity. Organic Chemistry Frontiers 2023, 10
(10)
, 2581-2602. https://doi.org/10.1039/D3QO00148B
- David T.J. Morris, Jonathan Clayden. Hydrogen Bond Chains in Foldamers and Dynamic Foldamers. 2023, 479-520. https://doi.org/10.1002/9783527834914.ch15
- Yong Zuo, Xiaoning Liu, Enguang Fu, Shaodong Zhang. A Pair of Interconverting Cages Formed from Achiral Precursors Spontaneously Resolve into Homochiral Conformers. Angewandte Chemie 2023, 135
(14)
https://doi.org/10.1002/ange.202217225
- Yong Zuo, Xiaoning Liu, Enguang Fu, Shaodong Zhang. A Pair of Interconverting Cages Formed from Achiral Precursors Spontaneously Resolve into Homochiral Conformers. Angewandte Chemie International Edition 2023, 62
(14)
https://doi.org/10.1002/anie.202217225
- Naoya Okada, Soichiro Nakatsuka, Ryosuke Kawasumi, Hajime Gotoh, Nobuhiro Yasuda, Takuji Hatakeyama. Synthesis and Late‐Stage Diversification of BN‐Embedded Dibenzocorannulenes as Efficient Fluorescence Organic Light‐Emitting Diode Emitters. Chemistry – A European Journal 2023, 29
(5)
https://doi.org/10.1002/chem.202202627
- Zheng‐Fei Liu, Jiahuan Ren, Pan Li, Li‐Ya Niu, Qing Liao, Shaodong Zhang, Qing‐Zheng Yang. Circularly Polarized Laser Emission from Homochiral Superstructures based on Achiral Molecules with Conformal Flexibility. Angewandte Chemie 2023, 135
(2)
https://doi.org/10.1002/ange.202214211
- Zheng‐Fei Liu, Jiahuan Ren, Pan Li, Li‐Ya Niu, Qing Liao, Shaodong Zhang, Qing‐Zheng Yang. Circularly Polarized Laser Emission from Homochiral Superstructures based on Achiral Molecules with Conformal Flexibility. Angewandte Chemie International Edition 2023, 62
(2)
https://doi.org/10.1002/anie.202214211
- Piet W.N.M. van Leeuwen, Zoraida Freixa, Israel Cano. An introduction to chirality. 2023, 1-96. https://doi.org/10.1016/bs.acat.2023.10.001
- Koki Kise, Shota Ooi, Hayate Saito, Hideki Yorimitsu, Atsuhiro Osuka, Takayuki Tanaka. Five‐Fold Symmetric Pentaindolo‐ and Pentakis(benzoindolo)Corannulenes: Unique Structural Dynamics Derived from the Combination of Helical and Bowl Inversions. Angewandte Chemie 2022, 134
(1)
https://doi.org/10.1002/ange.202112589
- Koki Kise, Shota Ooi, Hayate Saito, Hideki Yorimitsu, Atsuhiro Osuka, Takayuki Tanaka. Five‐Fold Symmetric Pentaindolo‐ and Pentakis(benzoindolo)Corannulenes: Unique Structural Dynamics Derived from the Combination of Helical and Bowl Inversions. Angewandte Chemie International Edition 2022, 61
(1)
https://doi.org/10.1002/anie.202112589
- Tianjian Guo, Ansu Li, Jun Xu, Kim K. Baldridge, Jay Siegel. Enantiopure
C
5
Pentaindenocorannulenes: Chiral Graphenoid Materials. Angewandte Chemie 2021, 133
(49)
, 26013-26018. https://doi.org/10.1002/ange.202109946
- Tianjian Guo, Ansu Li, Jun Xu, Kim K. Baldridge, Jay Siegel. Enantiopure
C
5
Pentaindenocorannulenes: Chiral Graphenoid Materials. Angewandte Chemie International Edition 2021, 60
(49)
, 25809-25814. https://doi.org/10.1002/anie.202109946
- Oleksandr Shyshov, Shyamkumar Vadakket Haridas, Luca Pesce, Haoyuan Qi, Andrea Gardin, Davide Bochicchio, Ute Kaiser, Giovanni M. Pavan, Max von Delius. Living supramolecular polymerization of fluorinated cyclohexanes. Nature Communications 2021, 12
(1)
https://doi.org/10.1038/s41467-021-23370-y
- Will R Henderson, Ronald K Castellano. Supramolecular polymerization of chiral molecules devoid of chiral centers. Polymer International 2021, 70
(7)
, 897-910. https://doi.org/10.1002/pi.6111
- Kazunori Sugiyasu. Kinetically Controlled Supramolecular Polymerization. 2021, 131-164. https://doi.org/10.1002/9783527821990.ch5
- Koki Kise, Shota Ooi, Atsuhiro Osuka, Takayuki Tanaka. Five‐fold‐symmetric Pentabromo‐ and Pentaiodo‐corannulenes: Useful Precursors of Heteroatom‐substituted Corannulenes. Asian Journal of Organic Chemistry 2021, 10
(3)
, 537-540. https://doi.org/10.1002/ajoc.202000688
- Marcin L. Ślęczkowski, Mathijs F. J. Mabesoone, Piotr Ślęczkowski, Anja R. A. Palmans, E. W. Meijer. Competition between chiral solvents and chiral monomers in the helical bias of supramolecular polymers. Nature Chemistry 2021, 13
(2)
, 200-207. https://doi.org/10.1038/s41557-020-00583-0
- Viktor Barát, Mihaiela C. Stuparu. Corannulene Chalcogenides. Chemistry – An Asian Journal 2021, 16
(1)
, 20-29. https://doi.org/10.1002/asia.202001140
- Jean-Luc Bégin, Maye Alsaawy, Ravi Bhardwaj. Chiral discrimination by recollision enhanced femtosecond laser mass spectrometry. Scientific Reports 2020, 10
(1)
https://doi.org/10.1038/s41598-020-71069-9
- Xiaosheng Yan, Qian Wang, Xuanxuan Chen, Yun‐Bao Jiang. Supramolecular Chiral Aggregates Exhibiting Nonlinear CD–ee Dependence. Advanced Materials 2020, 32
(41)
https://doi.org/10.1002/adma.201905667
- P.K. Hashim, Julian Bergueiro, E.W. Meijer, Takuzo Aida. Supramolecular Polymerization: A Conceptual Expansion for Innovative Materials. Progress in Polymer Science 2020, 105 , 101250. https://doi.org/10.1016/j.progpolymsci.2020.101250
- Takuzo Aida. On Supramolecular Polymerization: Interview with Takuzo Aida. Advanced Materials 2020, 32
(20)
https://doi.org/10.1002/adma.201905445
- Yoshiaki Shoji, Junki Kashida, Takanori Fukushima. Organic Transformations Using Electron-Deficient Boron Compounds. Journal of Synthetic Organic Chemistry, Japan 2020, 78
(3)
, 190-203. https://doi.org/10.5059/yukigoseikyokaishi.78.190
- Jingbai Li, Andrey Yu. Rogachev. Homolytic Versus Heterolytic Bond Breaking in Functionalized [R‐C
20
H
10
]
+
Systems. Journal of Computational Chemistry 2020, 41
(2)
, 88-96. https://doi.org/10.1002/jcc.26065
- Tadashi Mori. Propeller Chirality: Circular Dichroism and Circularly Polarized Luminescence. 2020, 151-175. https://doi.org/10.1007/978-981-15-2309-0_7
- Marius Wehner, Frank Würthner. Supramolecular polymerization through kinetic pathway control and living chain growth. Nature Reviews Chemistry 2020, 4
(1)
, 38-53. https://doi.org/10.1038/s41570-019-0153-8
- Wenge Jiang, Dimitra Athanasiadou, Shaodong Zhang, Raffaella Demichelis, Katarzyna B. Koziara, Paolo Raiteri, Valentin Nelea, Wenbo Mi, Jun-An Ma, Julian D. Gale, Marc D. McKee. Homochirality in biomineral suprastructures induced by assembly of single-enantiomer amino acids from a nonracemic mixture. Nature Communications 2019, 10
(1)
https://doi.org/10.1038/s41467-019-10383-x
- Xiaosheng Yan, Kunshan Zou, Jinlian Cao, Xiaorui Li, Zhixing Zhao, Zhao Li, Anan Wu, Wanzhen Liang, Yirong Mo, Yunbao Jiang. Single-handed supramolecular double helix of homochiral bis(N-amidothiourea) supported by double crossed C−I···S halogen bonds. Nature Communications 2019, 10
(1)
https://doi.org/10.1038/s41467-019-11539-5
- Haoyang Jia, Jiezhong Shi, Weibin Ren, Jiang Zhao, Yuanchen Dong, Dongsheng Liu. Controllable supramolecular “ring opening” polymerization based on DNA duplex. Polymer 2019, 171 , 121-126. https://doi.org/10.1016/j.polymer.2019.03.025
- Axel Haupt, Dieter Lentz. Corannulenes with Electron‐Withdrawing Substituents: Synthetic Approaches and Resulting Structural and Electronic Properties. Chemistry – A European Journal 2019, 25
(14)
, 3440-3454. https://doi.org/10.1002/chem.201803927
- Jens C. Markwart, Frederik R. Wurm. The 2-acetylthioethyl ester group: A versatile protective group for P-OH-groups. Tetrahedron 2018, 74
(52)
, 7426-7430. https://doi.org/10.1016/j.tet.2018.11.002
- Yuki Shimizu, Yoshiaki Shoji, Daisuke Hashizume, Yuuya Nagata, Takanori Fukushima. Sensing the chirality of various organic solvents by helically arranged π-blades. Chemical Communications 2018, 54
(87)
, 12314-12317. https://doi.org/10.1039/C8CC06277C
- Ashmeet Singh, Jojo P. Joseph, Deepika Gupta, Indranil Sarkar, Asish Pal. Pathway driven self-assembly and living supramolecular polymerization in an amyloid-inspired peptide amphiphile. Chemical Communications 2018, 54
(76)
, 10730-10733. https://doi.org/10.1039/C8CC06266H
- Zehuan Huang, Bo Qin, Linghui Chen, Jiang‐Fei Xu, Charl F. J. Faul, Xi Zhang. Supramolecular Polymerization from Controllable Fabrication to Living Polymerization. Macromolecular Rapid Communications 2017, 38
(17)
https://doi.org/10.1002/marc.201700312
- Kuppusamy Kanagaraj, Kangjie Lin, Wanhua Wu, Guowei Gao, Zhihui Zhong, Dan Su, Cheng Yang. Chiral Buckybowl Molecules. Symmetry 2017, 9
(9)
, 174. https://doi.org/10.3390/sym9090174
- Shikha Dhiman, Ankit Jain, Subi J. George. Transient Helicity: Fuel‐Driven Temporal Control over Conformational Switching in a Supramolecular Polymer. Angewandte Chemie 2017, 129
(5)
, 1349-1353. https://doi.org/10.1002/ange.201610946
- Shikha Dhiman, Ankit Jain, Subi J. George. Transient Helicity: Fuel‐Driven Temporal Control over Conformational Switching in a Supramolecular Polymer. Angewandte Chemie International Edition 2017, 56
(5)
, 1329-1333. https://doi.org/10.1002/anie.201610946
- Pol Besenius. Controlling supramolecular polymerization through multicomponent self‐assembly. Journal of Polymer Science Part A: Polymer Chemistry 2017, 55
(1)
, 34-78. https://doi.org/10.1002/pola.28385
- Yu‐Min Liu, Dan Xia, Bo‐Wei Li, Qian‐Yan Zhang, Tsuneaki Sakurai, Yuan‐Zhi Tan, Shu Seki, Su‐Yuan Xie, Lan‐Sun Zheng. Functional Sulfur‐Doped Buckybowls and Their Concave–Convex Supramolecular Assembly with Fullerenes. Angewandte Chemie 2016, 128
(42)
, 13241-13245. https://doi.org/10.1002/ange.201606383
- Yu‐Min Liu, Dan Xia, Bo‐Wei Li, Qian‐Yan Zhang, Tsuneaki Sakurai, Yuan‐Zhi Tan, Shu Seki, Su‐Yuan Xie, Lan‐Sun Zheng. Functional Sulfur‐Doped Buckybowls and Their Concave–Convex Supramolecular Assembly with Fullerenes. Angewandte Chemie International Edition 2016, 55
(42)
, 13047-13051. https://doi.org/10.1002/anie.201606383
- Jingbai Li, Giovana da Silva Ramos, Andrey Yu Rogachev. Stability of functionalized corannulene cations [R‐C
20
H
10
]
+
: An influence of the nature of R‐Group. Journal of Computational Chemistry 2016, 37
(25)
, 2266-2278. https://doi.org/10.1002/jcc.24444
- Wenjie Zhang, Guo Wei, Ziyu Wang, Jing Ma, Chengjian Zhu, Yixiang Cheng. Highly enantioselective recognition of alaninol via the chiral BINAM-based fluorescence polymer sensor. Polymer 2016, 101 , 93-97. https://doi.org/10.1016/j.polymer.2016.08.061
- Rui Chen, Ru-Qiang Lu, Pei-Chen Shi, Xiao-Yu Cao. Corannulene derivatives for organic electronics: From molecular engineering to applications. Chinese Chemical Letters 2016, 27
(8)
, 1175-1183. https://doi.org/10.1016/j.cclet.2016.06.033
- Xu Li, Feiyu Kang, Michio Inagaki. Buckybowls: Corannulene and Its Derivatives. Small 2016, 12
(24)
, 3206-3223. https://doi.org/10.1002/smll.201503950
- Jingbai Li, Andrey Yu. Rogachev. Aromatic stabilization of functionalized corannulene cations. Physical Chemistry Chemical Physics 2016, 18
(17)
, 11781-11791. https://doi.org/10.1039/C5CP07002C
- Shuhei Higashibayashi, Hidehiro Sakurai. Growing Buckybowl Chemistry. 2015, 61-84. https://doi.org/10.1002/9783527689545.ch3
- Cristina Dubceac, Alexander S. Filatov, Alexander V. Zabula, Andrey Yu. Rogachev, Marina A. Petrukhina. Functionalized Corannulene Carbocations: A Structural Overview. Chemistry – A European Journal 2015, 21
(41)
, 14268-14279. https://doi.org/10.1002/chem.201500697
- Rahul Dev Mukhopadhyay, Ayyappanpillai Ajayaghosh. Living supramolecular polymerization. Science 2015, 349
(6245)
, 241-242. https://doi.org/10.1126/science.aac7422
- Renren Deng, Xiaogang Liu. Chain growth in control. Nature Chemistry 2015, 7
(6)
, 472-473. https://doi.org/10.1038/nchem.2265
- Kazunari Nakajima, Yuya Ashida, Sunao Nojima, Yoshiaki Nishibayashi. Radical Addition to Corannulene Mediated by Visible-light-photoredox Catalysts. Chemistry Letters 2015, 44
(4)
, 545-547. https://doi.org/10.1246/cl.150019
- Jiheong Kang, Daigo Miyajima, Tadashi Mori, Yoshihisa Inoue, Yoshimitsu Itoh, Takuzo Aida. A rational strategy for the realization of chain-growth supramolecular polymerization. Science 2015, 347
(6222)
, 646-651. https://doi.org/10.1126/science.aaa4249
- Rui Chen, Ru-Qiang Lu, Ke Shi, Fan Wu, Hong-Xun Fang, Zhe-Xuan Niu, Xiao-Yun Yan, Ming Luo, Xin-Chang Wang, Chi-Yuan Yang, Xiao-Ye Wang, Binbin Xu, Haiping Xia, Jian Pei, Xiao-Yu Cao. Corannulene derivatives with low LUMO levels and dense convex–concave packing for n-channel organic field-effect transistors. Chemical Communications 2015, 51
(72)
, 13768-13771. https://doi.org/10.1039/C5CC03550C
- Li Wang, Wen-Yong Wang, Xin-Yan Fang, Chang-Li Zhu, Yong-Qing Qiu. Third order NLO properties of corannulene and its Li-doped dimers: effect of concave–convex and convex–convex structures. RSC Advances 2015, 5
(97)
, 79783-79791. https://doi.org/10.1039/C5RA09864E
- Hiroyuki Miyake. Supramolecular Chirality in Dynamic Coordination Chemistry. Symmetry 2014, 6
(4)
, 880-895. https://doi.org/10.3390/sym6040880
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.