ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Highly Active Mixed-Metal Nanosheet Water Oxidation Catalysts Made by Pulsed-Laser Ablation in Liquids

View Author Information
Beckman Institute and Division of Chemistry and Chemical Engineering, California Institute of Technology, M/C 139-74, Pasadena, California 91125, United States
Cite this: J. Am. Chem. Soc. 2014, 136, 38, 13118–13121
Publication Date (Web):September 8, 2014
https://doi.org/10.1021/ja506087h
Copyright © 2014 American Chemical Society

    Article Views

    6953

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Surfactant-free mixed-metal hydroxide water oxidation nanocatalysts were synthesized by pulsed-laser ablation in liquids. In a series of [Ni-Fe]-layered double hydroxides with intercalated nitrate and water, [Ni1–xFex(OH)2](NO3)y(OH)xy·nH2O, higher activity was observed as the amount of Fe decreased to 22%. Addition of Ti4+ and La3+ ions further enhanced electrocatalysis, with a lowest overpotential of 260 mV at 10 mA cm–2. Electrocatalytic water oxidation activity increased with the relative proportion of a 405.1 eV N 1s (XPS binding energy) species in the nanosheets.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    General experimental conditions and apparatus; physical and electrochemical characterization. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 268 publications.

    1. Octavio Lopez, Alexis Magaña, Jibo Zhang, Hamed Mehrabi, Bryan M. Hunter. Effects of Liquid Environments on the Distribution of Hafnium Oxide and Hafnium Carbide Nanoparticles from Pulsed-Laser Synthesis: Implications for High-Melting Ceramics. ACS Applied Nano Materials 2024, 7 (5) , 5085-5092. https://doi.org/10.1021/acsanm.3c05879
    2. Yonggui Zhao, Devi Prasad Adiyeri Saseendran, Chong Huang, Carlos A. Triana, Walker R. Marks, Hang Chen, Han Zhao, Greta R. Patzke. Oxygen Evolution/Reduction Reaction Catalysts: From In Situ Monitoring and Reaction Mechanisms to Rational Design. Chemical Reviews 2023, 123 (9) , 6257-6358. https://doi.org/10.1021/acs.chemrev.2c00515
    3. Chae Eun Park, Gyoung Hwa Jeong, Jayaraman Theerthagiri, Hyeyeon Lee, Myong Yong Choi. Moving beyond Ti2C3Tx MXene to Pt-Decorated TiO2@TiC Core–Shell via Pulsed Laser in Reshaping Modification for Accelerating Hydrogen Evolution Kinetics. ACS Nano 2023, 17 (8) , 7539-7549. https://doi.org/10.1021/acsnano.2c12638
    4. Seongwon Woo, Jooyoung Lee, Hwiso Lee, Nayoung Kwon, Byungkwon Lim. Binary Layered Double Hydroxide Electrode Array Synthesized via Metal Alloy Corrosion for Oxygen Evolution Reaction. ACS Applied Energy Materials 2022, 5 (9) , 10883-10890. https://doi.org/10.1021/acsaem.2c01523
    5. Xiaoyong Mo, Xutao Gao, Armida V. Gillado, Hsuan-Yu Chen, Yong Chen, Zhengxiao Guo, Heng-Liang Wu, Edmund C. M. Tse. Direct 3D Printing of Binder-Free Bimetallic Nanomaterials as Integrated Electrodes for Glycerol Oxidation with High Selectivity for Valuable C3 Products. ACS Nano 2022, 16 (8) , 12202-12213. https://doi.org/10.1021/acsnano.2c02865
    6. Min Fu, Wei Chen, Hao Yu, Meng Gao, Qingyun Liu. General Synthesis of Two-Dimensional Porous Metal Oxides/Hydroxides for Microwave Absorbing Applications. Inorganic Chemistry 2022, 61 (1) , 678-687. https://doi.org/10.1021/acs.inorgchem.1c03430
    7. Ching-Wen Liao, Sheng-Yu Chen, Liang-Ching Hsu, Chia-Wei Lin, Jeng-Lung Chen, Chun-Hong Kuo, Yu-Hsu Chang. Insights into Electrocatalytic Oxygen Evolution over Hierarchical FeCo2S4 Nanospheres. ACS Sustainable Chemistry & Engineering 2022, 10 (1) , 431-440. https://doi.org/10.1021/acssuschemeng.1c06658
    8. Zhichao Gong, Rui Liu, Haisheng Gong, Gonglan Ye, Jingjing Liu, Juncai Dong, Jiangwen Liao, Minmin Yan, Jianbin Liu, Kang Huang, Lingli Xing, Junfei Liang, Yongmin He, Huilong Fei. Constructing a Graphene-Encapsulated Amorphous/Crystalline Heterophase NiFe Alloy by Microwave Thermal Shock for Boosting the Oxygen Evolution Reaction. ACS Catalysis 2021, 11 (19) , 12284-12292. https://doi.org/10.1021/acscatal.1c03333
    9. Ryland C. Forsythe, Connor P. Cox, Madeleine K. Wilsey, Astrid M. Müller. Pulsed Laser in Liquids Made Nanomaterials for Catalysis. Chemical Reviews 2021, 121 (13) , 7568-7637. https://doi.org/10.1021/acs.chemrev.0c01069
    10. Cheng-Zong Yuan, Kwan San Hui, Hong Yin, Siqi Zhu, Jintao Zhang, Xi-Lin Wu, Xiaoting Hong, Wei Zhou, Xi Fan, Feng Bin, Fuming Chen, Kwun Nam Hui. Regulating Intrinsic Electronic Structures of Transition-Metal-Based Catalysts and the Potential Applications for Electrocatalytic Water Splitting. ACS Materials Letters 2021, 3 (6) , 752-780. https://doi.org/10.1021/acsmaterialslett.0c00549
    11. Jawayria Mujtaba, Le He, Hongqin Zhu, Zhijia Xiao, Gaoshan Huang, Alexander A. Solovev, Yongfeng Mei. Co9S8 Nanoparticles for Hydrogen Evolution. ACS Applied Nano Materials 2021, 4 (2) , 1776-1785. https://doi.org/10.1021/acsanm.0c03171
    12. Qixin Xu, Weiwei Qin, Jin-Feng Chu. Novel Co3(1–x)Fe3xV2O8 Nanoparticles as Highly Active and Noble-Metal-Free Electrocatalysts for Oxygen Evolution Reaction. Energy & Fuels 2020, 34 (11) , 15019-15025. https://doi.org/10.1021/acs.energyfuels.0c02325
    13. Teppei Nishi, Shunsuke Sato, Takeo Arai, Yusuke Akimoto, Kosuke Kitazumi, Satoru Kosaka, Naoko Takahashi, Yusaku F. Nishimura, Yoriko Matsuoka, Takeshi Morikawa. Low-Overpotential Electrochemical Water Oxidation Catalyzed by CuO Derived from 2 nm-Sized Cu2(NO3)(OH)3 Nanoparticles Generated by Laser Ablation at the Air–Liquid Interface. ACS Applied Energy Materials 2020, 3 (9) , 8383-8392. https://doi.org/10.1021/acsaem.0c01014
    14. Lucia Fagiolari, Marzia Bini, Ferdinando Costantino, Giordano Gatto, A. Jeremy Kropf, Fabio Marmottini, Morena Nocchetti, Evan C. Wegener, Francesco Zaccaria, Massimiliano Delferro, Riccardo Vivani, Alceo Macchioni. Iridium-Doped Nanosized Zn–Al Layered Double Hydroxides as Efficient Water Oxidation Catalysts. ACS Applied Materials & Interfaces 2020, 12 (29) , 32736-32745. https://doi.org/10.1021/acsami.0c07925
    15. Sotoudeh Sedaghat, Chad R. Piepenburg, Amin Zareei, Zhimin Qi, Samuel Peana, Haiyan Wang, Rahim Rahimi. Laser-Induced Mesoporous Nickel Oxide as a Highly Sensitive Nonenzymatic Glucose Sensor. ACS Applied Nano Materials 2020, 3 (6) , 5260-5270. https://doi.org/10.1021/acsanm.0c00659
    16. Mahesh Datt Bhatt, Jin Yong Lee. Advancement of Platinum (Pt)-Free (Non-Pt Precious Metals) and/or Metal-Free (Non-Precious-Metals) Electrocatalysts in Energy Applications: A Review and Perspectives. Energy & Fuels 2020, 34 (6) , 6634-6695. https://doi.org/10.1021/acs.energyfuels.0c00953
    17. Mallory G. John, Katharine Moore Tibbetts. Mechanism of Nickel Phyllosilicate Formation by Laser Ablation in Liquid. The Journal of Physical Chemistry C 2020, 124 (24) , 13273-13282. https://doi.org/10.1021/acs.jpcc.0c03732
    18. Noor-Ul-Ain Babar, Khurram Saleem Joya. Spray-Coated Thin-Film Ni-Oxide Nanoflakes as Single Electrocatalysts for Oxygen Evolution and Hydrogen Generation from Water Splitting. ACS Omega 2020, 5 (19) , 10641-10650. https://doi.org/10.1021/acsomega.9b02960
    19. Ştefan Neaţu, Florentina Neaţu, Victor C. Diculescu, Mihaela M. Trandafir, Nicoleta Petrea, Simona Somacescu, Frank Krumeich, Julian T. C. Wennmacher, Amy J. Knorpp, Jeroen A. van Bokhoven, Mihaela Florea. Undoped SnO2 as a Support for Ni Species to Boost Oxygen Generation through Alkaline Water Electrolysis. ACS Applied Materials & Interfaces 2020, 12 (16) , 18407-18420. https://doi.org/10.1021/acsami.9b19541
    20. Elise Duquesne, Stéphanie Betelu, Cyrille Bazin, Alain Seron, Ioannis Ignatiadis, Hubert Perrot, Ozlem Sel, Catherine Debiemme-Chouvy. Insights into Redox Reactions and Ionic Transfers in Nickel/Iron Layered Double Hydroxide in Potassium Hydroxide. The Journal of Physical Chemistry C 2020, 124 (5) , 3037-3049. https://doi.org/10.1021/acs.jpcc.9b09699
    21. Guillermo González-Rubio, Thais Milagres de Oliveira, Wiebke Albrecht, Pablo Díaz-Núñez, Juan Carlos Castro-Palacio, Alejandro Prada, Rafael I. González, Leonardo Scarabelli, Luis Bañares, Antonio Rivera, Luis M. Liz-Marzán, Ovidio Peña-Rodríguez, Sara Bals, Andrés Guerrero-Martínez. Formation of Hollow Gold Nanocrystals by Nanosecond Laser Irradiation. The Journal of Physical Chemistry Letters 2020, 11 (3) , 670-677. https://doi.org/10.1021/acs.jpclett.9b03574
    22. Richard I. Sayler, Bryan M. Hunter, Wen Fu, Harry B. Gray, R. David Britt. EPR Spectroscopy of Iron- and Nickel-Doped [ZnAl]-Layered Double Hydroxides: Modeling Active Sites in Heterogeneous Water Oxidation Catalysts. Journal of the American Chemical Society 2020, 142 (4) , 1838-1845. https://doi.org/10.1021/jacs.9b10273
    23. Xiaoyong Mo, K. C. Chan, Edmund C. M. Tse. A Scalable Laser-Assisted Method to Produce Active and Robust Graphene-Supported Nanoparticle Electrocatalysts. Chemistry of Materials 2019, 31 (19) , 8230-8238. https://doi.org/10.1021/acs.chemmater.9b03669
    24. Siqi Niu, Yanchun Sun, Guoji Sun, Dmitrii Rakov, Yuzhi Li, Yan Ma, Jiayu Chu, Ping Xu. Stepwise Electrochemical Construction of FeOOH/Ni(OH)2 on Ni Foam for Enhanced Electrocatalytic Oxygen Evolution. ACS Applied Energy Materials 2019, 2 (5) , 3927-3935. https://doi.org/10.1021/acsaem.9b00785
    25. Yaowen Zhang, Shaoping Wei, Yanjun Lin, Guoli Fan, Feng Li. Dispersing Metallic Platinum on Green Rust Enables Effective and Selective Hydrogenation of Carbonyl Group in Cinnamaldehyde. ACS Omega 2018, 3 (10) , 12778-12787. https://doi.org/10.1021/acsomega.8b02114
    26. Marcus Lau, Sven Reichenberger, Ina Haxhiaj, Stephan Barcikowski, Astrid M. Müller. Mechanism of Laser-Induced Bulk and Surface Defect Generation in ZnO and TiO2 Nanoparticles: Effect on Photoelectrochemical Performance. ACS Applied Energy Materials 2018, 1 (10) , 5366-5385. https://doi.org/10.1021/acsaem.8b00977
    27. Lianna Dang, Hanfeng Liang, Junqiao Zhuo, Brandon K. Lamb, Hongyuan Sheng, Yang Yang, Song Jin. Direct Synthesis and Anion Exchange of Noncarbonate-Intercalated NiFe-Layered Double Hydroxides and the Influence on Electrocatalysis. Chemistry of Materials 2018, 30 (13) , 4321-4330. https://doi.org/10.1021/acs.chemmater.8b01334
    28. Joseph M. Barforoush, Tess E. Seuferling, Dylan T. Jantz, Kelly R. Song, Kevin C. Leonard. Insights into the Active Electrocatalytic Areas of Layered Double Hydroxide and Amorphous Nickel–Iron Oxide Oxygen Evolution Electrocatalysts. ACS Applied Energy Materials 2018, 1 (4) , 1415-1423. https://doi.org/10.1021/acsaem.8b00190
    29. Junyu Shen, Mei Wang, Liang Zhao, Jian Jiang, Hong Liu, Jinxuan Liu. Self-Supported Stainless Steel Nanocone Array Coated with a Layer of Ni–Fe Oxides/(Oxy)hydroxides as a Highly Active and Robust Electrode for Water Oxidation. ACS Applied Materials & Interfaces 2018, 10 (10) , 8786-8796. https://doi.org/10.1021/acsami.8b00498
    30. Jibo Zhang, Muqing Ren, Yilun Li, James M. Tour. In Situ Synthesis of Efficient Water Oxidation Catalysts in Laser-Induced Graphene. ACS Energy Letters 2018, 3 (3) , 677-683. https://doi.org/10.1021/acsenergylett.8b00042
    31. Adam S. Batchellor, Gihan Kwon, Forrest A. L. Laskowski, David M. Tiede, and Shannon W. Boettcher . Domain Structures of Ni and NiFe (Oxy)Hydroxide Oxygen-Evolution Catalysts from X-ray Pair Distribution Function Analysis. The Journal of Physical Chemistry C 2017, 121 (45) , 25421-25429. https://doi.org/10.1021/acs.jpcc.7b10306
    32. Jiheng Zhao, Lili Cai, Hong Li, Xinjian Shi, and Xiaolin Zheng . Stabilizing Silicon Photocathodes by Solution-Deposited Ni–Fe Layered Double Hydroxide for Efficient Hydrogen Evolution in Alkaline Media. ACS Energy Letters 2017, 2 (9) , 1939-1946. https://doi.org/10.1021/acsenergylett.7b00597
    33. Carlito S. Ponseca, Jr., Pavel Chábera, Jens Uhlig, Petter Persson, and Villy Sundström . Ultrafast Electron Dynamics in Solar Energy Conversion. Chemical Reviews 2017, 117 (16) , 10940-11024. https://doi.org/10.1021/acs.chemrev.6b00807
    34. Michaela Burke Stevens, Christina D. M. Trang, Lisa J. Enman, Jiang Deng, and Shannon W. Boettcher . Reactive Fe-Sites in Ni/Fe (Oxy)hydroxide Are Responsible for Exceptional Oxygen Electrocatalysis Activity. Journal of the American Chemical Society 2017, 139 (33) , 11361-11364. https://doi.org/10.1021/jacs.7b07117
    35. Cheng-Yu Shih, Maxim V. Shugaev, Chengping Wu, and Leonid V. Zhigilei . Generation of Subsurface Voids, Incubation Effect, and Formation of Nanoparticles in Short Pulse Laser Interactions with Bulk Metal Targets in Liquid: Molecular Dynamics Study. The Journal of Physical Chemistry C 2017, 121 (30) , 16549-16567. https://doi.org/10.1021/acs.jpcc.7b02301
    36. Jeremie Zaffran, Michaela Burke Stevens, Christina D. M. Trang, Michael Nagli, Mahran Shehadeh, Shannon W. Boettcher, and Maytal Caspary Toroker . Influence of Electrolyte Cations on Ni(Fe)OOH Catalyzed Oxygen Evolution Reaction. Chemistry of Materials 2017, 29 (11) , 4761-4767. https://doi.org/10.1021/acs.chemmater.7b00517
    37. Yun Pei Zhu, Chunxian Guo, Yao Zheng, and Shi-Zhang Qiao . Surface and Interface Engineering of Noble-Metal-Free Electrocatalysts for Efficient Energy Conversion Processes. Accounts of Chemical Research 2017, 50 (4) , 915-923. https://doi.org/10.1021/acs.accounts.6b00635
    38. Dongshi Zhang, Bilal Gökce, and Stephan Barcikowski . Laser Synthesis and Processing of Colloids: Fundamentals and Applications. Chemical Reviews 2017, 117 (5) , 3990-4103. https://doi.org/10.1021/acs.chemrev.6b00468
    39. Zhiqiang Wang, Sha Zeng, Weihong Liu, Xingwang Wang, Qingwen Li, Zhigang Zhao, and Fengxia Geng . Coupling Molecularly Ultrathin Sheets of NiFe-Layered Double Hydroxide on NiCo2O4 Nanowire Arrays for Highly Efficient Overall Water-Splitting Activity. ACS Applied Materials & Interfaces 2017, 9 (2) , 1488-1495. https://doi.org/10.1021/acsami.6b13075
    40. Gabriel Menendez Rodriguez, Alberto Bucci, Rachel Hutchinson, Gianfranco Bellachioma, Cristiano Zuccaccia, Stefano Giovagnoli, Hicham Idriss, and Alceo Macchioni . Extremely Active, Tunable, and pH-Responsive Iridium Water Oxidation Catalysts. ACS Energy Letters 2017, 2 (1) , 105-110. https://doi.org/10.1021/acsenergylett.6b00606
    41. Michaela Burke Stevens, Lisa J. Enman, Adam S. Batchellor, Monty R. Cosby, Ashlee E. Vise, Christina D. M. Trang, and Shannon W. Boettcher . Measurement Techniques for the Study of Thin Film Heterogeneous Water Oxidation Electrocatalysts. Chemistry of Materials 2017, 29 (1) , 120-140. https://doi.org/10.1021/acs.chemmater.6b02796
    42. Cong Zhang, Mingfei Shao, Lei Zhou, Zhenhua Li, Kaiming Xiao, and Min Wei . Hierarchical NiFe Layered Double Hydroxide Hollow Microspheres with Highly-Efficient Behavior toward Oxygen Evolution Reaction. ACS Applied Materials & Interfaces 2016, 8 (49) , 33697-33703. https://doi.org/10.1021/acsami.6b12100
    43. Bryan M. Hunter, Harry B. Gray, and Astrid M. Müller . Earth-Abundant Heterogeneous Water Oxidation Catalysts. Chemical Reviews 2016, 116 (22) , 14120-14136. https://doi.org/10.1021/acs.chemrev.6b00398
    44. Vicky Fidelsky and Maytal Caspary Toroker . Enhanced Water Oxidation Catalysis of Nickel Oxyhydroxide through the Addition of Vacancies. The Journal of Physical Chemistry C 2016, 120 (44) , 25405-25410. https://doi.org/10.1021/acs.jpcc.6b07931
    45. Yue Zhou, Cun-Ku Dong, Li−Li Han, Jing Yang, and Xi-Wen Du . Top-Down Preparation of Active Cobalt Oxide Catalyst. ACS Catalysis 2016, 6 (10) , 6699-6703. https://doi.org/10.1021/acscatal.6b02416
    46. Juan F. Callejas, Carlos G. Read, Christopher W. Roske, Nathan S. Lewis, and Raymond E. Schaak . Synthesis, Characterization, and Properties of Metal Phosphide Catalysts for the Hydrogen-Evolution Reaction. Chemistry of Materials 2016, 28 (17) , 6017-6044. https://doi.org/10.1021/acs.chemmater.6b02148
    47. Ryan G. Hadt, Dugan Hayes, Casey N. Brodsky, Andrew M. Ullman, Diego M. Casa, Mary H. Upton, Daniel G. Nocera, and Lin X. Chen . X-ray Spectroscopic Characterization of Co(IV) and Metal–Metal Interactions in Co4O4: Electronic Structure Contributions to the Formation of High-Valent States Relevant to the Oxygen Evolution Reaction. Journal of the American Chemical Society 2016, 138 (34) , 11017-11030. https://doi.org/10.1021/jacs.6b04663
    48. Carlos G. Read, Juan F. Callejas, Cameron F. Holder, and Raymond E. Schaak . General Strategy for the Synthesis of Transition Metal Phosphide Films for Electrocatalytic Hydrogen and Oxygen Evolution. ACS Applied Materials & Interfaces 2016, 8 (20) , 12798-12803. https://doi.org/10.1021/acsami.6b02352
    49. Mikaela Görlin, Petko Chernev, Jorge Ferreira de Araújo, Tobias Reier, Sören Dresp, Benjamin Paul, Ralph Krähnert, Holger Dau, and Peter Strasser . Oxygen Evolution Reaction Dynamics, Faradaic Charge Efficiency, and the Active Metal Redox States of Ni–Fe Oxide Water Splitting Electrocatalysts. Journal of the American Chemical Society 2016, 138 (17) , 5603-5614. https://doi.org/10.1021/jacs.6b00332
    50. Lisa J. Enman, Michaela S. Burke, Adam S. Batchellor, and Shannon W. Boettcher . Effects of Intentionally Incorporated Metal Cations on the Oxygen Evolution Electrocatalytic Activity of Nickel (Oxy)hydroxide in Alkaline Media. ACS Catalysis 2016, 6 (4) , 2416-2423. https://doi.org/10.1021/acscatal.5b02924
    51. Ela Nurlaela, Tatsuya Shinagawa, Muhammad Qureshi, Dattatray S. Dhawale, and Kazuhiro Takanabe . Temperature Dependence of Electrocatalytic and Photocatalytic Oxygen Evolution Reaction Rates Using NiFe Oxide. ACS Catalysis 2016, 6 (3) , 1713-1722. https://doi.org/10.1021/acscatal.5b02804
    52. Bo You, Nan Jiang, Meili Sheng, Margaret Winona Bhushan, and Yujie Sun . Hierarchically Porous Urchin-Like Ni2P Superstructures Supported on Nickel Foam as Efficient Bifunctional Electrocatalysts for Overall Water Splitting. ACS Catalysis 2016, 6 (2) , 714-721. https://doi.org/10.1021/acscatal.5b02193
    53. Thao T. H. Hoang and Andrew A. Gewirth . High Activity Oxygen Evolution Reaction Catalysts from Additive-Controlled Electrodeposited Ni and NiFe Films. ACS Catalysis 2016, 6 (2) , 1159-1164. https://doi.org/10.1021/acscatal.5b02365
    54. Douglas R. Kauffman, Dominic Alfonso, De Nyago Tafen, Jonathan Lekse, Congjun Wang, Xingyi Deng, Junseok Lee, Hoyoung Jang, Jun-sik Lee, Santosh Kumar, and Christopher Matranga . Electrocatalytic Oxygen Evolution with an Atomically Precise Nickel Catalyst. ACS Catalysis 2016, 6 (2) , 1225-1234. https://doi.org/10.1021/acscatal.5b02633
    55. Hyun S. Ahn and Allen J. Bard . Surface Interrogation Scanning Electrochemical Microscopy of Ni1–xFexOOH (0 < x < 0.27) Oxygen Evolving Catalyst: Kinetics of the “fast” Iron Sites. Journal of the American Chemical Society 2016, 138 (1) , 313-318. https://doi.org/10.1021/jacs.5b10977
    56. James D. Blakemore, Robert H. Crabtree, and Gary W. Brudvig . Molecular Catalysts for Water Oxidation. Chemical Reviews 2015, 115 (23) , 12974-13005. https://doi.org/10.1021/acs.chemrev.5b00122
    57. Adam S. Batchellor and Shannon W. Boettcher . Pulse-Electrodeposited Ni–Fe (Oxy)hydroxide Oxygen Evolution Electrocatalysts with High Geometric and Intrinsic Activities at Large Mass Loadings. ACS Catalysis 2015, 5 (11) , 6680-6689. https://doi.org/10.1021/acscatal.5b01551
    58. Isolda Roger and Mark D. Symes . Efficient Electrocatalytic Water Oxidation at Neutral and High pH by Adventitious Nickel at Nanomolar Concentrations. Journal of the American Chemical Society 2015, 137 (43) , 13980-13988. https://doi.org/10.1021/jacs.5b08139
    59. Xia Long, Guixia Li, Zilong Wang, HouYu Zhu, Teng Zhang, Shuang Xiao, Wenyue Guo, and Shihe Yang . Metallic Iron–Nickel Sulfide Ultrathin Nanosheets As a Highly Active Electrocatalyst for Hydrogen Evolution Reaction in Acidic Media. Journal of the American Chemical Society 2015, 137 (37) , 11900-11903. https://doi.org/10.1021/jacs.5b07728
    60. Jingjing Duan, Sheng Chen, Mietek Jaroniec, and Shi Zhang Qiao . Heteroatom-Doped Graphene-Based Materials for Energy-Relevant Electrocatalytic Processes. ACS Catalysis 2015, 5 (9) , 5207-5234. https://doi.org/10.1021/acscatal.5b00991
    61. Wei Chen, Haotian Wang, Yuzhang Li, Yayuan Liu, Jie Sun, Sanghan Lee, Jang-Soo Lee, and Yi Cui . In Situ Electrochemical Oxidation Tuning of Transition Metal Disulfides to Oxides for Enhanced Water Oxidation. ACS Central Science 2015, 1 (5) , 244-251. https://doi.org/10.1021/acscentsci.5b00227
    62. John R. Swierk, Shannon Klaus, Lena Trotochaud, Alexis T. Bell, and T. Don Tilley . Electrochemical Study of the Energetics of the Oxygen Evolution Reaction at Nickel Iron (Oxy)Hydroxide Catalysts. The Journal of Physical Chemistry C 2015, 119 (33) , 19022-19029. https://doi.org/10.1021/acs.jpcc.5b05861
    63. Hyung Ju Kim, David H. K. Jackson, Jechan Lee, Yingxin Guan, Thomas F. Kuech, and George W. Huber . Enhanced Activity and Stability of TiO2-Coated Cobalt/Carbon Catalysts for Electrochemical Water Oxidation. ACS Catalysis 2015, 5 (6) , 3463-3469. https://doi.org/10.1021/acscatal.5b00173
    64. Kai-Yang Niu, Feng Lin, Suho Jung, Liang Fang, Dennis Nordlund, Charles C. L. McCrory, Tsu-Chien Weng, Peter Ercius, Marca M. Doeff, and Haimei Zheng . Tuning Complex Transition Metal Hydroxide Nanostructures as Active Catalysts for Water Oxidation by a Laser–Chemical Route. Nano Letters 2015, 15 (4) , 2498-2503. https://doi.org/10.1021/acs.nanolett.5b00026
    65. Hamed Naderi-Samani, Reza Shoja Razavi. Synthesis of nanoparticles using pulsed laser. 2024https://doi.org/10.5772/intechopen.1004415
    66. Ziyi Meng, Madeleine K. Wilsey, Connor P. Cox, Astrid M. Müller. Complete electrocatalytic defluorination of perfluorooctane sulfonate in aqueous solution with nonprecious materials. Journal of Catalysis 2024, 431 , 115403. https://doi.org/10.1016/j.jcat.2024.115403
    67. Na Yao, Juan Zhu, Hongnan Jia, Hengjiang Cong, Wei Luo. Identification of in situ Generated Iron‐Vacancy Induced Oxygen Evolution Reaction Kinetics on Cobalt Iron Oxyhydroxide †. Chinese Journal of Chemistry 2024, 42 (4) , 343-350. https://doi.org/10.1002/cjoc.202300388
    68. Dibyendu Mukherjee. New Frontiers for Heterostructured Nanocomposites with Interfacial Functionalities Synthesized via Laser Ablation Synthesis in Solution (LASiS). 2024, 157-199. https://doi.org/10.1007/978-3-031-39470-6_5
    69. Fengzhan Si, Yan Zhang, Yue Liang, Xiaomin Kang, Jianwen Liu, Xian-Zhu Fu, Jing-Li Luo. NiFe-LDH nanosheets with high activity in three dimensions on NiFe foam electrode for water oxidation. International Journal of Hydrogen Energy 2024, 49 , 143-151. https://doi.org/10.1016/j.ijhydene.2023.07.024
    70. Chengdong Yang, Yun Gao, Tian Ma, Mingru Bai, Chao He, Xiancheng Ren, Xianglin Luo, Changzhu Wu, Shuang Li, Chong Cheng. Metal Alloys‐Structured Electrocatalysts: Metal–Metal Interactions, Coordination Microenvironments, and Structural Property–Reactivity Relationships. Advanced Materials 2023, 35 (51) https://doi.org/10.1002/adma.202301836
    71. Mao Sun, Jike Wang. Defective NiMn LDH prepared using hydrogen evolution coupled electrodeposition for highly efficient oxygen evolution reaction. Journal of Materials Chemistry A 2023, 11 (39) , 21420-21428. https://doi.org/10.1039/D3TA03473A
    72. Rongrong Dai, Chenyang Dai, Shujin Hou, Qijun He, Baogui Liu, Minghua Huang, Heqing Jiang, MoHua Li, Likun Pan, Zheng Guo, Jeonghun Kim, Minsu Han, Yusuke Yamauchi, Xingtao Xu. Opportunities and challenges of hydrotalcite-related electrocatalysts for seawater splitting: a systematic perspective from materials synthesis, characterization and application. Journal of Materials Chemistry A 2023, 11 (38) , 20383-20407. https://doi.org/10.1039/D3TA02524A
    73. Zexing He, Muhammad Ajmal, Minghui Zhang, Xiaokang Liu, Zhen‐Feng Huang, Chengxiang Shi, Ruijie Gao, Lun Pan, Xiangwen Zhang, Ji‐Jun Zou. Progress in Manipulating Dynamic Surface Reconstruction via Anion Modulation for Electrocatalytic Water Oxidation. Advanced Science 2023, 10 (29) https://doi.org/10.1002/advs.202304071
    74. América Higareda, Diana Laura Hernández-Arellano, Luis Carlos Ordoñez, Romeli Barbosa, Nicolas Alonso-Vante. Advanced Electrocatalysts for the Oxygen Evolution Reaction: From Single- to Multielement Materials. Catalysts 2023, 13 (10) , 1346. https://doi.org/10.3390/catal13101346
    75. Abdulrahman Faraj Alharbi, Abdulaziz A.M. Abahussain, Wael Wazeer, Heba El-Deeb, Abu Bakr Ahmed Amine Nassr. Stainless steel as gas evolving electrodes in water electrolysis: Enhancing the activity for hydrogen evolution reaction via electrodeposition of Co and CoP catalysts. International Journal of Hydrogen Energy 2023, 48 (80) , 31172-31186. https://doi.org/10.1016/j.ijhydene.2023.04.228
    76. Hao Sun, Boxuan Jin, Shuyi Cao, Jinghan Zhang, Tianhang Li, Xiaojing Liu, Guihua Liu, Jingde Li. CeO2 decorated bimetallic phosphide nanosheet as efficient catalyst towards water splitting reaction. Journal of Electroanalytical Chemistry 2023, 943 , 117591. https://doi.org/10.1016/j.jelechem.2023.117591
    77. Valentina Iacono, Mario Scuderi, Maria Laura Amoruso, Antonino Gulino, Francesco Ruffino, Salvo Mirabella. Pulsed laser ablation production of Ni/NiO nano electrocatalysts for oxygen evolution reaction. APL Energy 2023, 1 (1) https://doi.org/10.1063/5.0144600
    78. Yuchen Wang, Man Zhang, Yaoyu Liu, Zhikeng Zheng, Biying Liu, Meng Chen, Guoqing Guan, Kai Yan. Recent Advances on Transition‐Metal‐Based Layered Double Hydroxides Nanosheets for Electrocatalytic Energy Conversion. Advanced Science 2023, 10 (13) https://doi.org/10.1002/advs.202207519
    79. Teona Taseska, Wanqing Yu, Madeleine K. Wilsey, Connor P. Cox, Ziyi Meng, Soraya S. Ngarnim, Astrid M. Müller. Analysis of the Scale of Global Human Needs and Opportunities for Sustainable Catalytic Technologies. Topics in Catalysis 2023, 66 (5-8) , 338-374. https://doi.org/10.1007/s11244-023-01799-3
    80. Senyao Meng, Ge Li, Ping Wang, Miao He, Xiaohua Sun, Zhenxing Li. Rare earth-based MOFs for photo/electrocatalysis. Materials Chemistry Frontiers 2023, 7 (5) , 806-827. https://doi.org/10.1039/D2QM01201D
    81. Madeleine K. Wilsey, Kendra R. Watson, Omolade C. Fasusi, Brian P. Yegela, Connor P. Cox, Patrick R. Raffaelle, Likun Cai, Astrid M. Müller. Selective Hydroxylation of Carbon Fiber Paper for Long‐Lasting Hydrophilicity by a Green Chemistry Process. Advanced Materials Interfaces 2023, 10 (2) https://doi.org/10.1002/admi.202201684
    82. Jens Melder, Stefan Mebs, Florian Lessing, Holger Dau, Philipp Kurz. Tuning electrocatalytic water oxidation by MnO x through the incorporation of abundant metal cations. Sustainable Energy & Fuels 2022, 7 (1) , 92-105. https://doi.org/10.1039/D2SE01401G
    83. Jayaraman Theerthagiri, K. Karuppasamy, Seung Jun Lee, R. Shwetharani, Hyun-Seok Kim, S. K. Khadheer Pasha, Muthupandian Ashokkumar, Myong Yong Choi. Fundamentals and comprehensive insights on pulsed laser synthesis of advanced materials for diverse photo- and electrocatalytic applications. Light: Science & Applications 2022, 11 (1) https://doi.org/10.1038/s41377-022-00904-7
    84. Yang Li, Zhong Zheng, Jiujiang Yan, Bing Lu, Xiangyou Li. A Review on Pulsed Laser Preparation of Nanocomposites in Liquids and Their Applications in Photocatalysis. Catalysts 2022, 12 (12) , 1532. https://doi.org/10.3390/catal12121532
    85. Jizhao Zou, Haoyu Dong, Hongliang Wu, Junfeng Huang, Xierong Zeng, Yibo Dou, Yuechao Yao, Zhangjian Li. Laser-induced rapid construction of Co/N-doped honeycomb-like carbon networks as oxygen electrocatalyst used in zinc-air batteries. Carbon 2022, 200 , 462-471. https://doi.org/10.1016/j.carbon.2022.08.078
    86. Zheng Lin, Pengpeng Bu, Ye Xiao, Qiulu Gao, Peng Diao. β- and γ-NiFeOOH electrocatalysts for an efficient oxygen evolution reaction: an electrochemical activation energy aspect. Journal of Materials Chemistry A 2022, 10 (39) , 20847-20855. https://doi.org/10.1039/D2TA04688A
    87. Daniel A. Kurtz, Bryan M. Hunter. Forming O–O bonds. Joule 2022, 6 (10) , 2272-2292. https://doi.org/10.1016/j.joule.2022.09.004
    88. Wulyu Jiang, Alaa Y. Faid, Bruna Ferreira Gomes, Irina Galkina, Lu Xia, Carlos Manuel Silva Lobo, Morgane Desmau, Patrick Borowski, Heinrich Hartmann, Artjom Maljusch, Astrid Besmehn, Christina Roth, Svein Sunde, Werner Lehnert, Meital Shviro. Composition‐Dependent Morphology, Structure, and Catalytical Performance of Nickel–Iron Layered Double Hydroxide as Highly‐Efficient and Stable Anode Catalyst in Anion Exchange Membrane Water Electrolysis. Advanced Functional Materials 2022, 32 (38) https://doi.org/10.1002/adfm.202203520
    89. Wendi Yi, Haoqing Jiang, Gary J. Cheng. Mesoporous LDH Metastructure from Multiscale Assembly of Defective Nanodomains by Laser Shock for Oxygen Evolution Reaction. Small 2022, 18 (35) https://doi.org/10.1002/smll.202202403
    90. Qi Chen, Rong Zhu, Jiayi Wang, Kaishan Yu, Xiangxiang Sheng, Ziyi Xu, Yue Sun, Junyu Shen, Qijian Zhang. In-situ etching of stainless steel: NiFe2O4 octahedral nanoparticles for efficient electrocatalytic oxygen evolution reaction. Journal of Alloys and Compounds 2022, 911 , 165141. https://doi.org/10.1016/j.jallcom.2022.165141
    91. Lishuang Xu, Shuai Zhang, Licheng Huang, Ying Yang, Haiyan Tao, Jianmin Zhu, Chengyu Yang, Shuyang Li, Ruibo Jin, Xiangting Dong. A novel CoxNi1-xP/fs-Si self-supporting electrodes manufactured via femtosecond laser for highly efficient hydrogen evolution reaction. Surfaces and Interfaces 2022, 32 , 102173. https://doi.org/10.1016/j.surfin.2022.102173
    92. Zongkun Chen, Qiqi Fan, Minghua Huang, Helmut Cölfen. Synthesis of two-dimensional layered double hydroxides: a systematic overview. CrystEngComm 2022, 24 (26) , 4639-4655. https://doi.org/10.1039/D2CE00511E
    93. Yang Sha, Yudong Peng, Kun Huang, Lin Li, Zhu Liu. 3D Binder‐free Integrated Electrodes Prepared by Phase Separation and Laser Induction (PSLI) Method for Oxygen Electrocatalysis and Zinc–Air Battery. Advanced Energy Materials 2022, 12 (25) https://doi.org/10.1002/aenm.202200906
    94. Laysa M. Frias Batista, Ashish Nag, Victoria K. Meader, Katharine Moore Tibbetts. Generation of nanomaterials by reactive laser-synthesis in liquid. Science China Physics, Mechanics & Astronomy 2022, 65 (7) https://doi.org/10.1007/s11433-021-1835-x
    95. Marian Chatenet, Bruno G. Pollet, Dario R. Dekel, Fabio Dionigi, Jonathan Deseure, Pierre Millet, Richard D. Braatz, Martin Z. Bazant, Michael Eikerling, Iain Staffell, Paul Balcombe, Yang Shao-Horn, Helmut Schäfer. Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chemical Society Reviews 2022, 51 (11) , 4583-4762. https://doi.org/10.1039/D0CS01079K
    96. Yang Li, Shuhan Li, Zhenkun Zhu, Xiangyou Li, Jiaming Li, Qingmao Zhang. Constructing a hybrid high-performance photocatalyst by selective laser precisely heating in nanoscale. Applied Surface Science 2022, 588 , 152946. https://doi.org/10.1016/j.apsusc.2022.152946
    97. Swen Zerebecki, Soma Salamon, Joachim Landers, Yuke Yang, Yujin Tong, Eko Budiyanto, Daniel Waffel, Maik Dreyer, Sascha Saddeler, Tim Kox, Stephane Kenmoe, Eckhard Spohr, Stephan Schulz, Malte Behrens, Martin Muhler, Harun Tüysüz, R. Kramer Campen, Heiko Wende, Sven Reichenberger, Stephan Barcikowski. Engineering of Cation Occupancy of CoFe 2 O 4 Oxidation Catalysts by Nanosecond, Single‐Pulse Laser Excitation in Water. ChemCatChem 2022, 14 (10) https://doi.org/10.1002/cctc.202101785
    98. Ryland C. Forsythe, Astrid M. Müller. Quo vadis water oxidation?. Catalysis Today 2022, 388-389 , 329-332. https://doi.org/10.1016/j.cattod.2020.06.011
    99. Shuaishuai Wang, Kun Zhao, Zhu Chen, Ling Wang, Zhihao Qi, Jinhui Hao, Weidong Shi. New insights into cations effect in oxygen evolution reaction. Chemical Engineering Journal 2022, 433 , 133518. https://doi.org/10.1016/j.cej.2021.133518
    100. Evgeniy S. Seliverstov, Sergei N. Golovin, Olga E. Lebedeva. Layered Double Hydroxides Containing Rare Earth Cations: Synthesis and Applications. Frontiers in Chemical Engineering 2022, 4 https://doi.org/10.3389/fceng.2022.867615
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect