ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Synthesis of (−)-Pseudotabersonine, (−)-Pseudovincadifformine, and (+)-Coronaridine Enabled by Photoredox Catalysis in Flow

View Author Information
Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
Cite this: J. Am. Chem. Soc. 2014, 136, 29, 10270–10273
Publication Date (Web):July 8, 2014
https://doi.org/10.1021/ja506170g

Copyright © 2014 American Chemical Society. This publication is licensed under these Terms of Use.

  • Open Access

Article Views

10663

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
PDF (1 MB)
Supporting Info (1)»

Abstract

Natural product modification with photoredox catalysis allows for mild, chemoselective access to a wide array of related structures in complex areas of chemical space, providing the possibility for novel structural motifs as well as useful quantities of less abundant congeners. While amine additives have been used extensively as stoichiometric electron donors for photocatalysis, the controlled modification of amine substrates through single-electron oxidation is ideal for the synthesis and modification of alkaloids. Here, we report the conversion of the amine (+)-catharanthine into the natural products (−)-pseudotabersonine, (−)-pseudovincadifformine, and (+)-coronaridine utilizing visible light photoredox catalysis.

Tunable and selective methods for the controlled redox manipulation of complex substrates are essential to successful semisynthetic efforts, and photoredox catalysis offers unique opportunities in this regard. (1) While photoredox catalysis has been utilized to great effect in a substantial body of methodology, examples of its use in natural product synthesis are comparatively limited. (2) Furthermore, the photooxidation of amine substrates has generally been limited to the functionalization of highly activated tetrahydroisoquinoline derivatives, (3, 4) while the use of complex amines as a platform for synthesis has garnered minimal attention. (3) In light of the abundance of alkaloids with amine functionality, we set out to explore the synthesis of a number of structurally related natural products to further test the limits of photoredox catalysis in a complex setting.

Natural product modification for the production of biologically active compounds holds significant potential for material access, as the need for a multistep synthesis of starting material can be obviated by biological production on scale. The natural product (+)-catharanthine 1 was identified as an ideal entry point for the synthesis of a number of structurally related alkaloids through a common α-aminonitrile intermediate (Scheme 1). While catharanthine itself lacks notable bioactivity, (5) it has been the subject of much research due to its ability to undergo a unique fragmentation of its C16–C21 bond, (6) which has chiefly been exploited in the synthesis of the clinically approved chemotherapeutic agent vinblastine (7) and analogs thereof. (8) Catharanthine’s abundance has contributed to the rationale behind the development of a semisynthetic strategy to vinblastine, as synthetically useful quantities are available from cell cultures. (6) A variety of oxidative, (8, 9) reductive, (10) electrochemical, (11) and photolytic (12) methods for the fragmentation of 1 have been reported, and we set out to investigate the synthetic utility of catharanthine fragmentation in the synthesis of a number of related alkaloids.

Scheme 1

Scheme 1. Catharanthine Fragmentation Provides Access to Structurally Diverse Alkaloids

Chief among our interests was the alkaloid (−)-pseudotabersonine 2 (Scheme 1), which was first generated from catharanthine by Gorman et al. by refluxing catharanthine in glacial acetic acid for 16 h. (13) Unfortunately, catharanthine’s potential as a chiral pool material in such investigations was hampered by an estimated 90% racemization of the starting material and only 20% yield. (14) Kutney et al. also reported formation of pseudotabersonine from catharanthine through a two-step reduction (10)-oxidation (15) procedure, affording 2 in 18% overall yield, also with low enantiopurity. (14) Alternative examples of pseudotabersonine total syntheses are exclusively racemic. (16)

Visible light irradiation of catharanthine in the presence of polyfluorinated catalyst Ir(dF(CF3)ppy)2(dtbbpy)PF6 (17)5 and 2 equiv of trimethylsilyl cyanide (TMSCN) provided the cyanated fragmentation product 6 in 93% after 3 h (Scheme 2A). (18) We further evaluated the efficiency of the transformation in a flow photochemical reactor (19) with the intention to decrease reaction time, improve scalability, and allow for the safe, controlled generation of HCN. (20) In a flow reactor with a 1.34 mL internal volume, the fragmentation reaction was complete with a residence time of only 2 min and with a slightly improved yield of 96%.

Scheme 2

Scheme 2. Synthesis of (−)-Pseudotabersonine

As the demonstrated photocatalytic fragmentation of catharanthine is redox neutral, we hoped that an isohypsic synthesis of pseudotabersonine could be achieved through an iminium isomerization/transannular Pictet–Spengler cascade from 6 (Scheme 2B). Acidic conditions proved effective to facilitate iminium isomerization; refluxing 6 in toluene with 4 mol % benzoic acid for 1 h provided a mixture of three compounds, including pseudotabersonine which was isolated in 13% yield (Scheme 2C). The reaction also yielded cyanated pseudotabersonine 7 and reduced starting material 8, which is symptomatic of redox-disproportionation. Interestingly, when 7 and 8 were combined in a 1:1 ratio and subjected to the optimized rearrangement conditions at reflux (vide infra), pseudotabersonine was isolated in 65% as the only product from the reaction, suggesting a role for these species as possible intermediates in the transformation of 6 to pseudotabersonine. This observation supports the possibility of intermolecular hydride transfer as an operative mechanism, but does not exclude the alternative possibility of azomethine ylide isomerization. (21)

The rearrangement conditions were modified to include a full equivalent of trifluoroacetic acid with the aim of stoichiometrically forming the corresponding dihydropyridinum ion. (22) These conditions provided pseudotabersonine as the only observed product in 90% yield after 3 h (Scheme 2C). While this process provided the natural product in high yield, our sample displayed significantly lower optical rotation ([α]D26 = −172 (c 1.0 MeOH)) than that reported for the antipodal natural sample ([α]D26 = +320 (MeOH)); (23) further analysis showed that the alkaloid was obtained in an enantiomeric ratio of only 2:1. While this ratio could be improved to 20:1 by performing the reaction at 60 °C, the improved enantioselectivity was accompanied by a reduction in reaction efficiency, with inconsistent yields ranging from 5 to 24%. This inconsistency in yield was also observed for the redox byproducts 7 and 8 and can likely be attributed to reduced solubility of both reactants and products as inhomogeneity was observed at these temperatures. Upon formation of the internal iminium ion, a transannular Pictet–Spengler reaction provides the natural product, and the configuration of C14 (Scheme 2B) dictates the stereochemical outcome of the transformation. The racemization mechanism is expected to involve iminium tautomerization at C14, which is possible from both proposed dihydropyridinium intermediates.

To eliminate the possibility of epimerization from the initial iminium ion intermediate, hydrogenation of the fragmentation product 6 was performed to yield 9 with high diastereoselectivity (Scheme 3), which we anticipated would provide (−)-pseudovincadifformine 3 as the rearrangement product. Interestingly, subjection of crude 9 to the aminonitrile rearrangement conditions did not provide 3 but instead yielded the natural product (+)-coronaridine 4 as the sole product in 48% yield over two steps. This is the highest yielding preparation of coronaridine from catharanthine reported to date (13) and represents a net hydrogenation of catharanthine with diastereoselectivity opposite that dictated by the substrate. The diastereomeric hydrogenation product (+)-dihydrocatharanthine was prepared in 93% yield from catharanthine as a single diastereomer through hydrogenation with Adams’ catalyst. (24)

Scheme 3

Scheme 3. Synthesis of (+)-Coronaridine

Our difficulties in producing pseudovincadifformine through iminium isomerization led us to investigate an alternative photocatalysis approach to the natural product. (15) Hydrogenation of aminonitrile 6 with heterogeneous palladium followed by workup with sodium borohydride provided the tertiary amine 11 in 98% yield with a 12:1 diastereomeric ratio in favor of the desired β-epimer (Scheme 4). Exposure of the resultant amine to oxidative photoredox conditions in flow led to the formation of (−)-pseudovincadifformine in 58% yield using diethyl 2-bromo-2-methylmalonate 12 as the terminal oxidant. (25) While the C3 and C21 methylene units are both aligned well for oxidation, the steric accessibility of C3 may provide an explanation for the selectivity observed.

Scheme 4

Scheme 4. Synthesis of (−)-Pseudovincadifformine

A mechanistic proposal consistent with the observed reactivity proceeds with oxidation of the substrate (E1/2red = +0.60 V vs SCE) (11) by the excited state of photocatalyst 5 (E1/2III*/II = +1.21 V vs SCE) (Scheme 5). (17a) The resultant radical cation 13 undergoes fragmentation to produce the ring opened radical cation 14 which is then trapped stereoselectively by cyanide. Reduction and protonation of 15 then affords the cyanated fragmentation product and regenerates the Ir(III) species. Interestingly, when cyanide was excluded from the reaction catharanthine was recovered unchanged, suggesting reversibility of the fragmentation event.

Scheme 5

Scheme 5. Proposed Catalytic Cycle for Fragmentation

With both coronaridine 4 and dihydrocatharanthine 10 in hand, the generality of the light-mediated fragmentation reaction could be studied in more detail. Both 4 and 10 were subjected to the fragmentation conditions but required elevated temperature (50 °C) in addition to a residence time 21 times longer. A 25% yield of fragmented material was obtained from 4, with slightly higher fragmentation efficiency observed for 10. The decreased reaction efficiency observed for the hydrogenated substrates in comparison to catharanthine led us to computationally examine the role of ring-strain in fragmentation efficiency, beginning with B3LYP/6-31G* geometry optimization of relevant structures for each of the three Iboga alkaloids (Scheme 6). (26) Consistent with the high experimental efficiency observed, homodesmotic cleavage (27) of the C16–C21 bond of catharanthine releases 4.23 kcal/mol upon fragmentation. (18) Ring strain is clearly less of a driving force in the fragmentation of the hydrogenated alkaloids, as 4 gains 0.08 kcal/mol and 10 releases 0.00 kcal/mol (Scheme 7). Energy comparison of 4 and 10 reveals that axial orientation of the ethyl group contributes 3.15 kcal/mol of energy to the ring-closed starting material; while this energy difference is significant, it is balanced by a similar energy difference between the ring-opened diastereomers 17 and 11. Although ring-strain release seems to contribute significantly to the thermodynamic aspects of the catharanthine fragmentation, this driving force is clearly mitigated by alkene hydrogenation.

Scheme 6

Scheme 6. Photocatalytic Fragmentation of Hydrogenated Iboga Alkaloids

Scheme 7

Scheme 7. Homodesmotic Strain Release Values

Scheme 8

Scheme 8. Synthetic summary

In conclusion, the utility of photoredox catalysis as a tool for alkaloid manipulation has been demonstrated in the semisynthesis of (−)-pseudotabersonine, (−)-pseudovincadifformine, and (+)-coronaridine in 86%, 55%, and 46% overall yield from catharanthine, respectively (Scheme 8). To the best of our knowledge, for each natural product this represents the highest yielding synthetic route reported to date. Significantly, the synthesis of (−)-pseudovincadifformine relies upon visible light photoredox catalysis for two of the three total steps. The ability to efficiently generate natural products from a common advanced intermediate in this manner allows for rapid access to alternate alkaloid scaffolds, ultimately paving the way for further synthetic efforts toward structural analogs and more complex synthetic targets.

Supporting Information

ARTICLE SECTIONS
Jump To

Experimental details, computational details, characterization data, and complete ref 26. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

ARTICLE SECTIONS
Jump To

  • Corresponding Author
    • Corey R. J. Stephenson - Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
  • Author
    • Joel W. Beatty - Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
  • Notes
    The authors declare no competing financial interest.

Acknowledgment

ARTICLE SECTIONS
Jump To

The authors thank Dr. Joseph W. Tucker for preliminary experimental contributions and Dr. James Devery, Dr. James Douglas, Mr. John Nguyen, and Professor Paul Zimmerman for their helpful discussions and suggestions. Financial support for this research from the NIH-NIGMS (R01-GM096129), the Alfred P. Sloan Foundation, the Camille Dreyfus Teacher-Scholar Award Program, Eli Lilly, Novartis, and the University of Michigan is gratefully acknowledged.

References

ARTICLE SECTIONS
Jump To

This article references 27 other publications.

  1. 1

    For reviews on visible-light photoredox catalysis:

    (a) Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40, 102
    (b) Wallentin, C.-J.; Nguyen, J. D.; Stephenson, C. R. J. Chimia 2012, 66, 394
    (c) Xuan, J.; Xiao, W.-J. Angew. Chem., Int. Ed. 2012, 51, 6828
    (d) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322
  2. 2

    Visible light photoredox catalysis in total synthesis:

    (a) Furst, L.; Narayanam, J. M. R.; Stephenson, C. R. J. Angew. Chem., Int. Ed. 2011, 50, 9655
    (b) Lin, S.; Ischay, M. A.; Fry, C. G.; Yoon, T. P. J. Am. Chem. Soc. 2011, 133, 19350
    (c) Schnermann, M. J.; Overman, L. E. Angew. Chem., Int. Ed. 2012, 51, 9576
    (d) Lu, Z.; Yoon, T. P. Angew. Chem., Int. Ed. 2012, 51, 10329
    (e) Riener, M.; Nicewicz, D. A. Chem. Sci. 2013, 4, 2625
    (f) Sun, Y.; Li, R.; Zhang, W.; Li, A. Angew. Chem., Int. Ed. 2013, 52, 9201
    (g) Mizoguchi, H.; Oikawa, H.; Oguri, H. Nat. Chem. 2014, 6, 57
  3. 3

    Reviews of photoredox catalysis in C–H oxidation

    (a) Shi, L.; Xia, W. Chem. Soc. Rev. 2012, 41, 7687
    (b) Hu, J.; Wang, J.; Nguyen, T. H.; Zheng, N. Beilstein J. Org. Chem. 2013, 9, 1977
  4. 4

    Select examples of α-amine functionalization

    (a) Condie, A. G.; González-Gómez, J. C.; Stephenson, C. R. J. J. Am. Chem. Soc. 2010, 132, 1464
    (b) Maity, S.; Zhu, M.; Shinabery, R. S.; Zheng, N. Angew. Chem., Int. Ed. 2012, 51, 222
    (c) Zhao, G.; Yang, C.; Guo, L.; Sun, H.; Chen, C.; Xia, W. Chem. Commun. 2012, 48, 2337
    (d) Dai, C.; Meschini, F.; Narayanam, J. M. R.; Stephenson, C. R. J. J. Org. Chem. 2012, 77, 4425
    (e) DiRocco, D. A.; Rovis, T. J. Am. Chem. Soc. 2012, 134, 8094
    (f) Xuan, J.; Xia, X.-D.; Zeng, T.-T.; Feng, Z.-J.; Chen, J.-R.; Lu, Q.-L.; Xiao, W.-J. Angew. Chem., Int. Ed. 2014, 53, 5653
  5. 5
    (a) Prakash, V.; Timasheff, S. N. Biochemistry 1991, 30, 873
    (b) Pereira, D. M.; Ferreres, F.; Oliveira, J. M. A.; Gaspar, L.; Faria, J.; Valentão, P.; Sottomayor, M.; Andrade, P. B. Phytomedicine 2010, 17, 646
  6. 6
    Sundberg, R. J.; Smith, S. Q. In The Alkaloids; Academic Press: Waltham, MA, 2002; Vol. 59, p 281.
  7. 7
    Neuss, N.; Neuss, M. N. In The Alkaloids; Brossi, A.; Suffness, M., Eds.; Academic Press: Waltham, MA, 1990; Vol. 37, p 229.
  8. 8
    Ishikawa, H.; Colby, D. A.; Seto, S.; Va, P.; Tam, A.; Kakei, H.; Rayl, T. J.; Hwang, I.; Boger, D. L. J. Am. Chem. Soc. 2009, 131, 4904
  9. 9
    (a) Sundberg, R. J.; Hunt, P. J.; Desos, P.; Gadamasetti, K. G. J. Org. Chem. 1991, 56, 1689
    (b) Vukovic, J.; Goodbody, A. E.; Kutney, J. P.; Misawa, M. Tetrahedron 1988, 44, 325
    (c) Kutney, J. P.; Honda, T.; Joshua, A. V.; Lewis, N. G.; Worth, B. R. Helv. Chim. Acta 1978, 61, 690
    (d) Langlois, N.; Gueritte, F.; Langlois, Y.; Potier, P. J. Am. Chem. Soc. 1976, 98, 7017
    (e) Kutney, J. P.; Hibino, T.; Jahngen, E.; Okutani, T.; Ratcliffe, A. H.; Treasurywala, A. M.; Wunderly, S. Helv. Chim. Acta 1976, 59, 2858
    (f) Potier, P.; Langlois, N.; Langlois, Y.; Gueritte, F. J. Chem. Soc., Chem. Comm. 1975, 670
  10. 10
    Kutney, J. P.; Cretney, W. J.; Hadfield, J. R.; Hall, E. S.; Nelson, V. R. J. Am. Chem. Soc. 1970, 92, 1704
  11. 11
    Tabakovic, I.; Gunic, E.; Gasic, M. J. J. Chem. Soc., Perk. Trans. 2 1996, 2741
  12. 12
    (a) Sundberg, R. J.; Desos, P.; Gadamasetti, K. G.; Sabat, M. Tetrahedron Lett. 1991, 32, 3035
    (b) Cocquet, G.; Rool, P.; Ferroud, C. Tetrahedron Lett. 2001, 42, 839
  13. 13
    Gorman, M.; Neuss, N.; Cone, N. J. J. Am. Chem. Soc. 1965, 87, 93
  14. 14
    Brown, R. T.; Hill, J. S.; Smith, G. F.; Stapleford, K. S. J. Tetrahedron 1971, 27, 5217
  15. 15
    Kutney, J. P.; Brown, R. T.; Piers, E.; Hadfield, J. R. J. Am. Chem. Soc. 1970, 92, 1708
  16. 16
    (a) Carroll, W. A.; Grieco, P. A. J. Am. Chem. Soc. 1993, 115, 1164
    (b) Cheng, B.; Sunderhaus, J. D.; Martin, S. F. Org. Lett. 2010, 12, 3622
  17. 17
    (a) Lowry, M. S.; Goldsmith, J. I.; Slinker, J. D.; Rohl, R.; Pascal, R. A.; Malliaras, G. G.; Bernhard, S. Chem. Mater. 2005, 17, 5712
    (b) This photocatalyst is commercially available from Sigma Aldrich, catalog no. L511765.
  18. 18

    See the Supporting Information for details.

  19. 19
    (a) Bou-Hamdan, F. R.; Seeberger, P. H. Chem. Sci. 2012, 3, 1612
    (b) Andrews, R. S.; Becker, J. J.; Gagné, M. R. Angew. Chem., Int. Ed. 2012, 51, 4140
    (c) Tucker, J. W.; Zhang, Y.; Jamison, T. F.; Stephenson, C. R. J. Angew. Chem., Int. Ed. 2012, 51, 4144
  20. 20

    For a review see:

    Garlets, Z. J.; Nguyen, J. D.; Stephenson, C. R. J. Isr. J. Chem. 2014, 54, 351
  21. 21

    For a relevant discussion of these competing mechanistic pathways in a different system:

    Richers, M. T.; Breugst, M.; Platonova, A. Y.; Ullrich, A.; Dieckmann, A.; Houk, K. N.; Seidel, S. J. Am. Chem. Soc. 2014, 136, 6123
  22. 22

    Treatment of 6 with 0.5 N methanolic HCl for 10 min at 0° followed by concentration of the solution provides the corresponding dihydropyridinium ion by 1H NMR.

  23. 23
    Zeches, M.; Debray, M. M.; Ledouble, G.; Le Men-Olivier, L.; Le Men, J. Phytochemistry 1975, 14, 1122
  24. 24
    Neuss, N.; Gorman, M. Tetrahedron Lett. 1961, 2, 206
  25. 25
    Freeman, D. B.; Furst, L.; Condie, A. G.; Stephenson, C. R. J. Org. Lett. 2012, 14, 94
  26. 26
    Frisch, M. J.; Gaussian 09, revision D.01; Gaussian, Inc.: Wallingford CT, 2009.
  27. 27
    Wheeler, S. E.; Houk, K. N.; Schleyer, P. v. R.; Allen, W. D. J. Am. Chem. Soc. 2009, 131, 2547

Cited By

ARTICLE SECTIONS
Jump To

This article is cited by 144 publications.

  1. Hao Hou, Wei Ou, Chenliang Su. Photochemical C(sp3)–H Activation for Diversity-Oriented Synthesis of 3-Functionalized Oxindoles. The Journal of Organic Chemistry 2024, 89 (6) , 4120-4127. https://doi.org/10.1021/acs.joc.3c02953
  2. Chu Wang, Xiao Liu, Qian Wang, Wei-Hai Fang, Xuebo Chen. Unveiling Mechanistic Insights and Photocatalytic Advancements in Intramolecular Photo-(3 + 2)-Cycloaddition: A Comparative Assessment of Two Paradigmatic Single-Electron-Transfer Models. JACS Au 2024, 4 (2) , 419-431. https://doi.org/10.1021/jacsau.3c00542
  3. Alexander W. Rand, Kevin J. Gonzalez, Christopher E. Reimann, Scott C. Virgil, Brian M. Stoltz. Total Synthesis of Strempeliopidine and Non-Natural Stereoisomers through a Convergent Petasis Borono–Mannich Reaction. Journal of the American Chemical Society 2023, 145 (13) , 7278-7287. https://doi.org/10.1021/jacs.2c13146
  4. Mohamed O. Kamileen, Matthew D. DeMars II, Benke Hong, Yoko Nakamura, Christian Paetz, Benjamin R. Lichman, Prashant D. Sonawane, Lorenzo Caputi, Sarah E. O’Connor. Recycling Upstream Redox Enzymes Expands the Regioselectivity of Cycloaddition in Pseudo-Aspidosperma Alkaloid Biosynthesis. Journal of the American Chemical Society 2022, 144 (43) , 19673-19679. https://doi.org/10.1021/jacs.2c08107
  5. Adrián Luguera Ruiz, Marta La Mantia, Daniele Merli, Stefano Protti, Maurizio Fagnoni. Alkyl Radical Generation via C–C Bond Cleavage in 2-Substituted Oxazolidines. ACS Catalysis 2022, 12 (19) , 12469-12476. https://doi.org/10.1021/acscatal.2c03768
  6. Kristen M. Flynn, In-Soo Myeong, Taylor Pinto, Mohammad Movassaghi. Total Synthesis of (−)-Voacinol and (−)-Voacandimine C. Journal of the American Chemical Society 2022, 144 (20) , 9126-9131. https://doi.org/10.1021/jacs.2c03057
  7. Spencer P. Pitre, Larry E. Overman. Strategic Use of Visible-Light Photoredox Catalysis in Natural Product Synthesis. Chemical Reviews 2022, 122 (2) , 1717-1751. https://doi.org/10.1021/acs.chemrev.1c00247
  8. Jyothi Yadav, Atul Jankiram Dolas, Eldhose Iype, Krishnan Rangan, Joji Ohshita, Dalip Kumar, Indresh Kumar. Asymmetric Synthesis of Bridged N-Heterocycles with Tertiary Carbon Center through Barbas Dienamine-Catalysis: Scope and Applications. The Journal of Organic Chemistry 2021, 86 (23) , 17213-17225. https://doi.org/10.1021/acs.joc.1c02295
  9. Jianhui Qiao, Huili Liu, Shaozhong Wang. Access to Indole-Annulated Medium-Sized Lactams through Protonation/Deuteration-Induced Ring-Opening of Spiroindolines. ACS Omega 2021, 6 (38) , 25049-25061. https://doi.org/10.1021/acsomega.1c04261
  10. Pablo Gabriel, Yaseen A. Almehmadi, Zeng Rong Wong, Darren J. Dixon. A General Iridium-Catalyzed Reductive Dienamine Synthesis Allows a Five-Step Synthesis of Catharanthine via the Elusive Dehydrosecodine. Journal of the American Chemical Society 2021, 143 (29) , 10828-10835. https://doi.org/10.1021/jacs.1c04980
  11. Xiao-Ye Yu, Jia-Rong Chen, Wen-Jing Xiao. Visible Light-Driven Radical-Mediated C–C Bond Cleavage/Functionalization in Organic Synthesis. Chemical Reviews 2021, 121 (1) , 506-561. https://doi.org/10.1021/acs.chemrev.0c00030
  12. Qing Xia, Yufei Li, Lan Cheng, Xin Liang, Chenlin Cao, Peng Dai, Hongping Deng, Weihua Zhang, Qingmin Wang. Electron Donor–Acceptor Complex-Initiated Photochemical Cyanation for the Preparation of α-Amino Nitriles. Organic Letters 2020, 22 (24) , 9638-9643. https://doi.org/10.1021/acs.orglett.0c03703
  13. Jyothi Yadav, Amol Prakash Pawar, Yadav Kacharu Nagare, Eldhose Iype, Krishnan Rangan, Joji Ohshita, Dalip Kumar, Indresh Kumar. Direct Amine-Catalyzed Enantioselective Synthesis of Pentacyclic Dibenzo[b,f][1,4]oxazepine/Thiazepine-Fused Isoquinuclidines along with DFT Calculations. The Journal of Organic Chemistry 2020, 85 (21) , 14094-14108. https://doi.org/10.1021/acs.joc.0c02141
  14. Zhijie Zhang, Dong Yi, Min Zhang, Jun Wei, Ji Lu, Lin Yang, Jun Wang, Na Hao, Xianchao Pan, Shiqi Zhang, Siping Wei, Qiang Fu. Photocatalytic Intramolecular [2 + 2] Cycloaddition of Indole Derivatives via Energy Transfer: A Method for Late-Stage Skeletal Transformation. ACS Catalysis 2020, 10 (17) , 10149-10156. https://doi.org/10.1021/acscatal.0c01841
  15. Jinjian Liu, Lingxiang Lu, Devin Wood, Song Lin. New Redox Strategies in Organic Synthesis by Means of Electrochemistry and Photochemistry. ACS Central Science 2020, 6 (8) , 1317-1340. https://doi.org/10.1021/acscentsci.0c00549
  16. Jun Ueda, Shingo Harada, Ayaka Kanda, Hiroki Nakayama, Tetsuhiro Nemoto. Silver-Catalyzed, Chemo- and Enantioselective Intramolecular Dearomatization of Indoles to Access Sterically Congested Azaspiro Frameworks. The Journal of Organic Chemistry 2020, 85 (16) , 10934-10950. https://doi.org/10.1021/acs.joc.0c01580
  17. Zachary G. Brill, Casey B. Ritts, Umar Faruk Mansoor, Nunzio Sciammetta. Continuous Flow Enables Metallaphotoredox Catalysis in a Medicinal Chemistry Setting: Accelerated Optimization and Library Execution of a Reductive Coupling between Benzylic Chlorides and Aryl Bromides. Organic Letters 2020, 22 (2) , 410-416. https://doi.org/10.1021/acs.orglett.9b04117
  18. Ranran Cui, Jinxiang Ye, Wenhui Mo, Yu Gao, Haijun Chen. Stabilization of Transient 3-Chloroindolenines Enables Diverse Functionalization. Organic Letters 2019, 21 (22) , 8884-8887. https://doi.org/10.1021/acs.orglett.9b02920
  19. Panduga Ramaraju, Amol Prakash Pawar, Eldhose Iype, Nisar A. Mir, Sachin Choudhary, Devinder Kumar Sharma, Rajni Kant, Indresh Kumar. Enantio- and Diastereoselective Two-Pot Synthesis of Isoquinuclidines from Glutaraldehyde and N-Aryl Imines with DFT Calculations. The Journal of Organic Chemistry 2019, 84 (19) , 12408-12419. https://doi.org/10.1021/acs.joc.9b01865
  20. Byron A. Boon, Dale L. Boger. Triarylaminium Radical Cation Promoted Coupling of Catharanthine with Vindoline: Diastereospecific Synthesis of Anhydrovinblastine and Reaction Scope. Journal of the American Chemical Society 2019, 141 (36) , 14349-14355. https://doi.org/10.1021/jacs.9b06968
  21. Scott C. Farrow, Mohamed O. Kamileen, Lorenzo Caputi, Kate Bussey, Julia E. A. Mundy, Rory C. McAtee, Corey R. J. Stephenson, Sarah E. O’Connor. Biosynthesis of an Anti-Addiction Agent from the Iboga Plant. Journal of the American Chemical Society 2019, 141 (33) , 12979-12983. https://doi.org/10.1021/jacs.9b05999
  22. Andrew R. Bogdan, Amanda W. Dombrowski. Emerging Trends in Flow Chemistry and Applications to the Pharmaceutical Industry. Journal of Medicinal Chemistry 2019, 62 (14) , 6422-6468. https://doi.org/10.1021/acs.jmedchem.8b01760
  23. Masato Kono, Shingo Harada, Tomoyuki Nozaki, Yoshinori Hashimoto, Shun-ichi Murata, Harald Gröger, Yusuke Kuroda, Ken-ichi Yamada, Kiyosei Takasu, Yasumasa Hamada, Tetsuhiro Nemoto. Asymmetric Formal Synthesis of (+)-Catharanthine via Desymmetrization of Isoquinuclidine. Organic Letters 2019, 21 (10) , 3750-3754. https://doi.org/10.1021/acs.orglett.9b01198
  24. Kaid C. Harper, Eric G. Moschetta, Shailendra V. Bordawekar, Steven J. Wittenberger. A Laser Driven Flow Chemistry Platform for Scaling Photochemical Reactions with Visible Light. ACS Central Science 2019, 5 (1) , 109-115. https://doi.org/10.1021/acscentsci.8b00728
  25. Aline A. N. de Souza, Nathalia S. Silva, Andressa V. Müller, André S. Polo, Timothy J. Brocksom, Kleber T. de Oliveira. Porphyrins as Photoredox Catalysts in Csp2–H Arylations: Batch and Continuous Flow Approaches. The Journal of Organic Chemistry 2018, 83 (24) , 15077-15086. https://doi.org/10.1021/acs.joc.8b02355
  26. Anhua Hu, Yilin Chen, Jing-Jing Guo, Na Yu, Qing An, Zhiwei Zuo. Cerium-Catalyzed Formal Cycloaddition of Cycloalkanols with Alkenes through Dual Photoexcitation. Journal of the American Chemical Society 2018, 140 (42) , 13580-13585. https://doi.org/10.1021/jacs.8b08781
  27. Wenjing Yang, Xuebo Chen, Weihai Fang. Nonadiabatic Curve-Crossing Model for the Visible-Light Photoredox Catalytic Generation of Radical Intermediate via a Concerted Mechanism. ACS Catalysis 2018, 8 (8) , 7388-7396. https://doi.org/10.1021/acscatal.8b00601
  28. Lei Li, Zhuang Chen, Xiwu Zhang, Yanxing Jia. Divergent Strategy in Natural Product Total Synthesis. Chemical Reviews 2018, 118 (7) , 3752-3832. https://doi.org/10.1021/acs.chemrev.7b00653
  29. Mihail Kazak, Martins Priede, Kirill Shubin, Hannah E. Bartrum, Jean-François Poisson, and Edgars Suna . Stereodivergent Synthesis of Pseudotabersonine Alkaloids. Organic Letters 2017, 19 (19) , 5356-5359. https://doi.org/10.1021/acs.orglett.7b02635
  30. Shinsuke Inuki, Keisuke Sato, Takahide Fukuyama, Ilhyong Ryu, and Yukari Fujimoto . Formal Total Synthesis of l-Ossamine via Decarboxylative Functionalization Using Visible-Light-Mediated Photoredox Catalysis in a Flow System. The Journal of Organic Chemistry 2017, 82 (2) , 1248-1253. https://doi.org/10.1021/acs.joc.6b02531
  31. Chiara Cabrele and Oliver Reiser . The Modern Face of Synthetic Heterocyclic Chemistry. The Journal of Organic Chemistry 2016, 81 (21) , 10109-10125. https://doi.org/10.1021/acs.joc.6b02034
  32. Daryl Staveness, Irene Bosque, and Corey R. J. Stephenson . Free Radical Chemistry Enabled by Visible Light-Induced Electron Transfer. Accounts of Chemical Research 2016, 49 (10) , 2295-2306. https://doi.org/10.1021/acs.accounts.6b00270
  33. Davide Ravelli, Stefano Protti, and Maurizio Fagnoni . Carbon–Carbon Bond Forming Reactions via Photogenerated Intermediates. Chemical Reviews 2016, 116 (17) , 9850-9913. https://doi.org/10.1021/acs.chemrev.5b00662
  34. Dario Cambié, Cecilia Bottecchia, Natan J. W. Straathof, Volker Hessel, and Timothy Noël . Applications of Continuous-Flow Photochemistry in Organic Synthesis, Material Science, and Water Treatment. Chemical Reviews 2016, 116 (17) , 10276-10341. https://doi.org/10.1021/acs.chemrev.5b00707
  35. Markus D. Kärkäs, John A. Porco, Jr., and Corey R. J. Stephenson . Photochemical Approaches to Complex Chemotypes: Applications in Natural Product Synthesis. Chemical Reviews 2016, 116 (17) , 9683-9747. https://doi.org/10.1021/acs.chemrev.5b00760
  36. Timothy M. Monos, Alexandra C. Sun, Rory C. McAtee, James J. Devery, III, and Corey R. J. Stephenson . Microwave-Assisted Synthesis of Heteroleptic Ir(III)+ Polypyridyl Complexes. The Journal of Organic Chemistry 2016, 81 (16) , 6988-6994. https://doi.org/10.1021/acs.joc.6b00983
  37. Lotfi Benmekhbi, Fadila Louafi, Thierry Roisnel, and Jean-Pierre Hurvois . Synthesis of Tetrahydroisoquinoline Alkaloids and Related Compounds through the Alkylation of Anodically Prepared α-Amino Nitriles. The Journal of Organic Chemistry 2016, 81 (15) , 6721-6739. https://doi.org/10.1021/acs.joc.6b01419
  38. Kip Teegardin, Jon I. Day, John Chan, and Jimmie Weaver . Advances in Photocatalysis: A Microreview of Visible Light Mediated Ruthenium and Iridium Catalyzed Organic Transformations. Organic Process Research & Development 2016, 20 (7) , 1156-1163. https://doi.org/10.1021/acs.oprd.6b00101
  39. D. Chandrasekhar, Satheesh Borra, Jagadeesh Babu Nanubolu, and Ram Awatar Maurya . Visible Light Driven Photocascade Catalysis: Ru(bpy)3(PF6)2/TBHP-Mediated Synthesis of Fused β-Carbolines in Batch and Flow Microreactors. Organic Letters 2016, 18 (12) , 2974-2977. https://doi.org/10.1021/acs.orglett.6b01321
  40. Gaoyuan Zhao, Xingang Xie, Haiyu Sun, Ziyun Yuan, Zhuliang Zhong, Shouchu Tang, and Xuegong She . Bioinspired Collective Syntheses of Iboga-Type Indole Alkaloids. Organic Letters 2016, 18 (10) , 2447-2450. https://doi.org/10.1021/acs.orglett.6b00989
  41. Sunghyun Hwang, Inhwan Baek, and Chulbom Lee . Synthesis of the C1–C10 Fragment of Madeirolide A. Organic Letters 2016, 18 (9) , 2154-2157. https://doi.org/10.1021/acs.orglett.6b00777
  42. Andrew R. Bogdan, Manwika Charaschanya, Amanda W. Dombrowski, Ying Wang, and Stevan W. Djuric . High-Temperature Boc Deprotection in Flow and Its Application in Multistep Reaction Sequences. Organic Letters 2016, 18 (8) , 1732-1735. https://doi.org/10.1021/acs.orglett.6b00378
  43. Jian Luo and Jian Zhang . Donor–Acceptor Fluorophores for Visible-Light-Promoted Organic Synthesis: Photoredox/Ni Dual Catalytic C(sp3)–C(sp2) Cross-Coupling. ACS Catalysis 2016, 6 (2) , 873-877. https://doi.org/10.1021/acscatal.5b02204
  44. Gerald Pratsch and Larry E. Overman . Synthesis of 2,5-Diaryl-1,5-dienes from Allylic Bromides Using Visible-Light Photoredox Catalysis. The Journal of Organic Chemistry 2015, 80 (22) , 11388-11397. https://doi.org/10.1021/acs.joc.5b01962
  45. Panduga Ramaraju, Nisar A. Mir, Deepika Singh, Vivek K. Gupta, Rajni Kant, and Indresh Kumar . Enantioselective Synthesis of N-PMP-1,2-dihydropyridines via Formal [4 + 2] Cycloaddition between Aqueous Glutaraldehyde and Imines. Organic Letters 2015, 17 (22) , 5582-5585. https://doi.org/10.1021/acs.orglett.5b02744
  46. Shingo Harada, Masato Kono, Tomoyuki Nozaki, Yasuhiro Menjo, Tetsuhiro Nemoto, and Yasumasa Hamada . General Approach to Nitrogen-Bridged Bicyclic Frameworks by Rh-Catalyzed Formal Carbenoid Insertion into an Amide C–N Bond. The Journal of Organic Chemistry 2015, 80 (20) , 10317-10333. https://doi.org/10.1021/acs.joc.5b01954
  47. Ahlam M. Armaly, Yvonne C. DePorre, Emilia J. Groso, Paul S. Riehl, and Corinna S. Schindler . Discovery of Novel Synthetic Methodologies and Reagents during Natural Product Synthesis in the Post-Palytoxin Era. Chemical Reviews 2015, 115 (17) , 9232-9276. https://doi.org/10.1021/acs.chemrev.5b00034
  48. Joel W. Beatty and Corey R. J. Stephenson . Amine Functionalization via Oxidative Photoredox Catalysis: Methodology Development and Complex Molecule Synthesis. Accounts of Chemical Research 2015, 48 (5) , 1474-1484. https://doi.org/10.1021/acs.accounts.5b00068
  49. Jing Zhang, Jie Chen, Xiaoyun Zhang, and Xiaoguang Lei . Total Syntheses of Menisporphine and Daurioxoisoporphine C Enabled by Photoredox-Catalyzed Direct C–H Arylation of Isoquinoline with Aryldiazonium Salt. The Journal of Organic Chemistry 2014, 79 (21) , 10682-10688. https://doi.org/10.1021/jo5020432
  50. Olivier Wagnières, Zhengren Xu, Qian Wang, and Jieping Zhu . Unified Strategy to Monoterpene Indole Alkaloids: Total Syntheses of (±)-Goniomitine, (±)-1,2-Dehydroaspidospermidine, (±)-Aspidospermidine, (±)-Vincadifformine, and (±)-Kopsihainanine A. Journal of the American Chemical Society 2014, 136 (42) , 15102-15108. https://doi.org/10.1021/ja509329x
  51. Mikhail A. Kabeshov, Biagia Musio, Philip R. D. Murray, Duncan L. Browne, and Steven V. Ley . Expedient Preparation of Nazlinine and a Small Library of Indole Alkaloids Using Flow Electrochemistry as an Enabling Technology. Organic Letters 2014, 16 (17) , 4618-4621. https://doi.org/10.1021/ol502201d
  52. Alexander J. Hughes, Steven D. Townsend. Total Synthesis of Ervaoffine J and K. Chemistry – A European Journal 2024, 30 (15) https://doi.org/10.1002/chem.202303985
  53. Kotaro Ikeda, Shingo Harada, Yoshinori Hashimoto, Haruka Homma, Masato Kono, Nadine Zumbrägel, Harald Gröger, Tetsuhiro Nemoto. Enantioselective Formal Synthesis of (–)-Catharanthine through Enzyme-Catalyzed Desymmetrization of a meso-Azabicyclo [2.2.2]octane. Synlett 2024, 35 (04) , 469-473. https://doi.org/10.1055/a-2086-0690
  54. Pan‐Feng Yuan, Zhao Yang, Shan‐Shan Zhang, Can‐Ming Zhu, Xiu‐Long Yang, Qing‐Yuan Meng. Deconstructive Carboxylation of Activated Alkenes with Carbon Dioxide. Angewandte Chemie 2024, 136 (5) https://doi.org/10.1002/ange.202313030
  55. Pan‐Feng Yuan, Zhao Yang, Shan‐Shan Zhang, Can‐Ming Zhu, Xiu‐Long Yang, Qing‐Yuan Meng. Deconstructive Carboxylation of Activated Alkenes with Carbon Dioxide. Angewandte Chemie International Edition 2024, 63 (5) https://doi.org/10.1002/anie.202313030
  56. Toma Glasnov. Photochemische Synthese von Heterocyclen: Zusammenführung von Durchflussverarbeitung und Metall-katalysierten Photoredoxtransformationen mit sichtbarem Licht. 2024, 113-145. https://doi.org/10.1007/978-3-031-51912-3_2
  57. Ana Filipović, Zdravko Džambaski, Aleksandra M. Bondžić, Bojan P. Bondžić. Visible-light promoted photoredox catalysis in flow: addition of biologically important α‑amino radicals to michael acceptors. Photochemical & Photobiological Sciences 2023, 22 (10) , 2259-2270. https://doi.org/10.1007/s43630-023-00448-8
  58. Derek A. Leas, Daniel C. Schultz, Robert W. Huigens III. Chemical Reactions of Indole Alkaloids That Enable Rapid Access to New Scaffolds for Discovery. SynOpen 2023, 07 (02) , 165-185. https://doi.org/10.1055/a-2048-8412
  59. Tsukasa Furuya, Kotaro Ikeda, Shingo Harada, Tetsuhiro Nemoto. Theoretical Investigation of Chemoselectivity between C–H Insertion and Amide Insertion in Intramolecular Rhodium-Carbene Reactions. Chemical and Pharmaceutical Bulletin 2023, 71 (2) , 107-110. https://doi.org/10.1248/cpb.c22-00341
  60. Sara Cuadros, Tommaso Bortolato, Alberto Vega-Peñaloza, Luca Dell’Amico. Modern Photocatalytic Strategies in Natural Product Synthesis. 2023, 1-104. https://doi.org/10.1007/978-3-031-11783-1_1
  61. Pei Dong, Zhaojing Li, Xiaohua Liu, Shunxi Dong, Xiaoming Feng. Asymmetric synthesis of polycyclic spiroindolines via the Dy-catalyzed cascade reaction of 3-(2-isocyanoethyl)indoles with aziridines. Organic Chemistry Frontiers 2022, 9 (17) , 4591-4597. https://doi.org/10.1039/D2QO00874B
  62. Sudipta Saha, Avik Kumar Bagdi. Visible light-promoted photocatalyst-free activation of persulfates: a promising strategy for C–H functionalization reactions. Organic & Biomolecular Chemistry 2022, 20 (16) , 3249-3262. https://doi.org/10.1039/D2OB00109H
  63. Xiaohu Zhao, Yuqiao Zhou, Bao-Lin Li, Guangxi Du, Zhipeng Yu. Highly diastereoselective cascade dearomatization of 3-(2-isocyanoethyl)indoles with nitrile imines: a facile access to unexpected polycyclic indolines. Organic Chemistry Frontiers 2022, 9 (5) , 1336-1342. https://doi.org/10.1039/D1QO01731D
  64. Kun Fan, Lan-Chun Zhang, Wei-Yan Hu, Shi-Yu Deng, Hao Wu, Bang-Yin Tan, Rong-Ping Zhang, Cai-Feng Ding, Hao-Fei Yu. Tabernaecorymine A, an 18-normonoterpenoid indole alkaloid with antibacterial activity from Tabernaemontana corymbosa. Fitoterapia 2022, 157 , 105129. https://doi.org/10.1016/j.fitote.2022.105129
  65. Joel W. Beatty, Corey R. J. Stephenson. C–H Activation with Photoredox Catalysis. 2022, 297-325. https://doi.org/10.1007/978-1-0716-1579-9_10
  66. Jun Ueda, Shingo Harada, Mayu Kobayashi, Mai Yanagawa, Tetsuhiro Nemoto. Maleic Acid/Thiourea‐Catalyzed Dearomative ipso ‐Friedel–Crafts Reaction of Indoles to Produce Functionalized Spiroindolenines. European Journal of Organic Chemistry 2021, 2021 (29) , 3999-4006. https://doi.org/10.1002/ejoc.202100215
  67. Yan Deng, Yang Yu, Bao‐Bao Shi, Mei‐Fen Bao, Si‐Meng Zhao, Xiang‐Hai Cai. Monoterpenoid Indole Alkaloids with Promoting Neurite Growth from Tabernaemontana divaricata. Chinese Journal of Chemistry 2021, 39 (5) , 1085-1092. https://doi.org/10.1002/cjoc.202000656
  68. Szabolcs Mayer, Péter Keglevich, András Keglevich, László Hazai. New Anticancer Vinca Alkaloids in the Last Decade - A Mini-Review. Current Organic Chemistry 2021, 25 (10) , 1224-1234. https://doi.org/10.2174/1385272825666210216123256
  69. Ana Filipović, Zdravko Džambaski, Dana Vasiljević-Radović, Bojan P. Bondžić. Visible light promoted photoredox C(sp 3 )–H bond functionalization of tetrahydroisoquinolines in flow. Organic & Biomolecular Chemistry 2021, 19 (12) , 2668-2675. https://doi.org/10.1039/D0OB02582H
  70. Jianbo Du, Xiaokun Yang, Xin Wang, Qing An, Xu He, Hui Pan, Zhiwei Zuo. Photocatalytic Aerobic Oxidative Ring Expansion of Cyclic Ketones to Macrolactones by Cerium and Cyanoanthracene Catalysis. Angewandte Chemie 2021, 133 (10) , 5430-5436. https://doi.org/10.1002/ange.202012720
  71. Jianbo Du, Xiaokun Yang, Xin Wang, Qing An, Xu He, Hui Pan, Zhiwei Zuo. Photocatalytic Aerobic Oxidative Ring Expansion of Cyclic Ketones to Macrolactones by Cerium and Cyanoanthracene Catalysis. Angewandte Chemie International Edition 2021, 60 (10) , 5370-5376. https://doi.org/10.1002/anie.202012720
  72. Lisi Yuan, Linrong Chen, Xiaoxiao Yan, Kun Gao, Xiaolei Wang. Palladium catalyzed reductive Heck coupling and its application in total synthesis of (−)-17-nor-excelsinidine. RSC Advances 2021, 11 (13) , 7570-7574. https://doi.org/10.1039/D1RA00015B
  73. Nengzhong Wang, Xuefeng Jiang. Synthetic Approaches to Tricyclic Aminoketones in the Total Synthesis of Aspidosperma and Kopsia Alkaloids. The Chemical Record 2021, 21 (2) , 295-314. https://doi.org/10.1002/tcr.202000131
  74. Long‐Zhou Qin, Xin Yuan, Yu‐Sheng Cui, Qi Sun, Xiu Duan, Kai‐Qiang Zhuang, Lin Chen, Jiang‐Kai Qiu, Kai Guo. Visible‐Light‐Mediated S−H Bond Insertion Reactions of Diazoalkanes with Cysteine Residues in Batch and Flow. Advanced Synthesis & Catalysis 2020, 362 (22) , 5093-5104. https://doi.org/10.1002/adsc.202000716
  75. Kelly A. D. F. Castro, Leandro M. O. Lourenço, Roberto Santana da Silva, João P. C. Tomé. Photocatalytic Synthesis of Nitrogen‐Containing Heterocycles. 2020, 699-728. https://doi.org/10.1002/9781119708841.ch22
  76. Ranadeep Talukdar. Tracking down the brominated single electron oxidants in recent organic red-ox transformations: photolysis and photocatalysis. Organic & Biomolecular Chemistry 2020, 18 (41) , 8294-8345. https://doi.org/10.1039/D0OB01652G
  77. Avik Kumar Bagdi, Matiur Rahman, Dhananjay Bhattacherjee, Grigory V. Zyryanov, Sumit Ghosh, Oleg N. Chupakhin, Alakananda Hajra. Visible light promoted cross-dehydrogenative coupling: a decade update. Green Chemistry 2020, 22 (20) , 6632-6681. https://doi.org/10.1039/D0GC02437F
  78. Yixiong Lin, Jun Guo, Jovan San Martin, Chuang Han, Ramon Martinez, Yong Yan. Photoredox Organic Synthesis Employing Heterogeneous Photocatalysts with Emphasis on Halide Perovskite. Chemistry – A European Journal 2020, 26 (58) , 13118-13136. https://doi.org/10.1002/chem.202002145
  79. Caroline Grundke, Nina Vierengel, Till Opatz. ‐Aminonitriles: From Sustainable Preparation to Applications in Natural Product Synthesis. The Chemical Record 2020, 20 (9) , 989-1016. https://doi.org/10.1002/tcr.202000066
  80. Ryo Tanifuji, Atsushi Minami, Hiroki Oguri, Hideaki Oikawa. Total synthesis of alkaloids using both chemical and biochemical methods. Natural Product Reports 2020, 37 (8) , 1098-1121. https://doi.org/10.1039/C9NP00073A
  81. Yi-Dan Du, Cong-Ying Zhou, Wai-Pong To, Hai-Xu Wang, Chi-Ming Che. Iron porphyrin catalysed light driven C–H bond amination and alkene aziridination with organic azides. Chemical Science 2020, 11 (18) , 4680-4686. https://doi.org/10.1039/D0SC00784F
  82. Lei Xia, Bo‐Fei Cheng, Tian‐You Zeng, Xuan Nie, Guang Chen, Ze Zhang, Wen‐Jian Zhang, Chun‐Yan Hong, Ye‐Zi You. Polymer Nanofibers Exhibiting Remarkable Activity in Driving the Living Polymerization under Visible Light and Reusability. Advanced Science 2020, 7 (6) https://doi.org/10.1002/advs.201902451
  83. Daryl Staveness, James L. Collins, Rory C. McAtee, Corey R. J. Stephenson. Exploiting Imine Photochemistry for Masked N‐Centered Radical Reactivity. Angewandte Chemie 2019, 131 (52) , 19176-19182. https://doi.org/10.1002/ange.201909492
  84. Daryl Staveness, James L. Collins, Rory C. McAtee, Corey R. J. Stephenson. Exploiting Imine Photochemistry for Masked N‐Centered Radical Reactivity. Angewandte Chemie International Edition 2019, 58 (52) , 19000-19006. https://doi.org/10.1002/anie.201909492
  85. Jasmin Busch, Daniel M. Knoll, Christoph Zippel, Stefan Bräse, Claudia Bizzarri. Metal-supported and -assisted stereoselective cooperative photoredox catalysis. Dalton Transactions 2019, 48 (41) , 15338-15357. https://doi.org/10.1039/C9DT02094B
  86. Haruro Ishitani, Yuki Saito, Benjamin Laroche, Xiaofeng Rao, Shū Kobayashi. Recent Perspectives in Catalysis under Continuous Flow. 2019, 1-49. https://doi.org/10.1039/9781788016094-00001
  87. Elizabeth M. Dauncey, Shashikant U. Dighe, James J. Douglas, Daniele Leonori. A dual photoredox-nickel strategy for remote functionalization via iminyl radicals: radical ring-opening-arylation, -vinylation and -alkylation cascades. Chemical Science 2019, 10 (33) , 7728-7733. https://doi.org/10.1039/C9SC02616A
  88. Alexey A. Festa, Leonid G. Voskressensky, Erik V. Van der Eycken. Visible light-mediated chemistry of indoles and related heterocycles. Chemical Society Reviews 2019, 48 (16) , 4401-4423. https://doi.org/10.1039/C8CS00790J
  89. Hiroki Oguri. Chemical Assembly Lines for Skeletally Diverse Indole Alkaloids. 2019, 43-70. https://doi.org/10.1002/9783527823987.vol2_c3
  90. Xiang Ren, Zhan Lu. Visible light promoted difunctionalization reactions of alkynes. Chinese Journal of Catalysis 2019, 40 (7) , 1003-1019. https://doi.org/10.1016/S1872-2067(19)63278-X
  91. Quan‐Qing Zhao, Jun Chen, Xue‐Song Zhou, Xiao‐Ye Yu, Jia‐Rong Chen, Wen‐Jing Xiao. Photogenerated Neutral Nitrogen Radical Catalyzed Bifunctionalization of Alkenes. Chemistry – A European Journal 2019, 25 (34) , 8024-8029. https://doi.org/10.1002/chem.201901665
  92. Pi Cheng, Wei Wang, Lin Wang, Jianguo Zeng, Oliver Reiser, Yun Liang. Ag2CO3-mediated direct functionalization of alkyl nitriles: Facile synthesis of γ-ketonitriles through nitrile alkylation of enol acetates. Tetrahedron Letters 2019, 60 (21) , 1408-1412. https://doi.org/10.1016/j.tetlet.2019.04.042
  93. Rory C. McAtee, Edward J. McClain, Corey R.J. Stephenson. Illuminating Photoredox Catalysis. Trends in Chemistry 2019, 1 (1) , 111-125. https://doi.org/10.1016/j.trechm.2019.01.008
  94. Rachel Grainger, Tom D. Heightman, Steven V. Ley, Fabio Lima, Christopher N. Johnson. Enabling synthesis in fragment-based drug discovery by reactivity mapping: photoredox-mediated cross-dehydrogenative heteroarylation of cyclic amines. Chemical Science 2019, 10 (8) , 2264-2271. https://doi.org/10.1039/C8SC04789H
  95. Chunngai Hui, Fang Chen, Fan Pu, Jing Xu. Innovation in protecting-group-free natural product synthesis. Nature Reviews Chemistry 2019, 3 (2) , 85-107. https://doi.org/10.1038/s41570-018-0071-1
  96. Sikwang Seong, Hyeonggeun Lim, Sunkyu Han. Biosynthetically Inspired Transformation of Iboga to Monomeric Post-iboga Alkaloids. Chem 2019, 5 (2) , 353-363. https://doi.org/10.1016/j.chempr.2018.10.009
  97. Eiji Yamaguchi, Saki Maejima, Akichika Itoh. Photo-Driven Catalytic Cross-Dehydrogenative Coupling (CDC)-Type Reactions. 2019, 413-444. https://doi.org/10.1007/978-981-13-9144-6_12
  98. Daryl Staveness, Taylor M. Sodano, Kangjun Li, Elizabeth A. Burnham, Klarissa D. Jackson, Corey R.J. Stephenson. Providing a New Aniline Bioisostere through the Photochemical Production of 1-Aminonorbornanes. Chem 2019, 5 (1) , 215-226. https://doi.org/10.1016/j.chempr.2018.10.017
  99. Masato Kono, Shingo Harada, Tetsuhiro Nemoto. Exploring New Reactivity of Metal Carbenoids and its Application to Organic Synthesis. Journal of Synthetic Organic Chemistry, Japan 2019, 77 (1) , 49-57. https://doi.org/10.5059/yukigoseikyokaishi.77.49
  100. Masha Elkin, Timothy R. Newhouse. Computational chemistry strategies in natural product synthesis. Chemical Society Reviews 2018, 47 (21) , 7830-7844. https://doi.org/10.1039/C8CS00351C
Load all citations
  • Abstract

    Scheme 1

    Scheme 1. Catharanthine Fragmentation Provides Access to Structurally Diverse Alkaloids

    Scheme 2

    Scheme 2. Synthesis of (−)-Pseudotabersonine

    Scheme 3

    Scheme 3. Synthesis of (+)-Coronaridine

    Scheme 4

    Scheme 4. Synthesis of (−)-Pseudovincadifformine

    Scheme 5

    Scheme 5. Proposed Catalytic Cycle for Fragmentation

    Scheme 6

    Scheme 6. Photocatalytic Fragmentation of Hydrogenated Iboga Alkaloids

    Scheme 7

    Scheme 7. Homodesmotic Strain Release Values

    Scheme 8

    Scheme 8. Synthetic summary
  • References

    ARTICLE SECTIONS
    Jump To

    This article references 27 other publications.

    1. 1

      For reviews on visible-light photoredox catalysis:

      (a) Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40, 102
      (b) Wallentin, C.-J.; Nguyen, J. D.; Stephenson, C. R. J. Chimia 2012, 66, 394
      (c) Xuan, J.; Xiao, W.-J. Angew. Chem., Int. Ed. 2012, 51, 6828
      (d) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322
    2. 2

      Visible light photoredox catalysis in total synthesis:

      (a) Furst, L.; Narayanam, J. M. R.; Stephenson, C. R. J. Angew. Chem., Int. Ed. 2011, 50, 9655
      (b) Lin, S.; Ischay, M. A.; Fry, C. G.; Yoon, T. P. J. Am. Chem. Soc. 2011, 133, 19350
      (c) Schnermann, M. J.; Overman, L. E. Angew. Chem., Int. Ed. 2012, 51, 9576
      (d) Lu, Z.; Yoon, T. P. Angew. Chem., Int. Ed. 2012, 51, 10329
      (e) Riener, M.; Nicewicz, D. A. Chem. Sci. 2013, 4, 2625
      (f) Sun, Y.; Li, R.; Zhang, W.; Li, A. Angew. Chem., Int. Ed. 2013, 52, 9201
      (g) Mizoguchi, H.; Oikawa, H.; Oguri, H. Nat. Chem. 2014, 6, 57
    3. 3

      Reviews of photoredox catalysis in C–H oxidation

      (a) Shi, L.; Xia, W. Chem. Soc. Rev. 2012, 41, 7687
      (b) Hu, J.; Wang, J.; Nguyen, T. H.; Zheng, N. Beilstein J. Org. Chem. 2013, 9, 1977
    4. 4

      Select examples of α-amine functionalization

      (a) Condie, A. G.; González-Gómez, J. C.; Stephenson, C. R. J. J. Am. Chem. Soc. 2010, 132, 1464
      (b) Maity, S.; Zhu, M.; Shinabery, R. S.; Zheng, N. Angew. Chem., Int. Ed. 2012, 51, 222
      (c) Zhao, G.; Yang, C.; Guo, L.; Sun, H.; Chen, C.; Xia, W. Chem. Commun. 2012, 48, 2337
      (d) Dai, C.; Meschini, F.; Narayanam, J. M. R.; Stephenson, C. R. J. J. Org. Chem. 2012, 77, 4425
      (e) DiRocco, D. A.; Rovis, T. J. Am. Chem. Soc. 2012, 134, 8094
      (f) Xuan, J.; Xia, X.-D.; Zeng, T.-T.; Feng, Z.-J.; Chen, J.-R.; Lu, Q.-L.; Xiao, W.-J. Angew. Chem., Int. Ed. 2014, 53, 5653
    5. 5
      (a) Prakash, V.; Timasheff, S. N. Biochemistry 1991, 30, 873
      (b) Pereira, D. M.; Ferreres, F.; Oliveira, J. M. A.; Gaspar, L.; Faria, J.; Valentão, P.; Sottomayor, M.; Andrade, P. B. Phytomedicine 2010, 17, 646
    6. 6
      Sundberg, R. J.; Smith, S. Q. In The Alkaloids; Academic Press: Waltham, MA, 2002; Vol. 59, p 281.
    7. 7
      Neuss, N.; Neuss, M. N. In The Alkaloids; Brossi, A.; Suffness, M., Eds.; Academic Press: Waltham, MA, 1990; Vol. 37, p 229.
    8. 8
      Ishikawa, H.; Colby, D. A.; Seto, S.; Va, P.; Tam, A.; Kakei, H.; Rayl, T. J.; Hwang, I.; Boger, D. L. J. Am. Chem. Soc. 2009, 131, 4904
    9. 9
      (a) Sundberg, R. J.; Hunt, P. J.; Desos, P.; Gadamasetti, K. G. J. Org. Chem. 1991, 56, 1689
      (b) Vukovic, J.; Goodbody, A. E.; Kutney, J. P.; Misawa, M. Tetrahedron 1988, 44, 325
      (c) Kutney, J. P.; Honda, T.; Joshua, A. V.; Lewis, N. G.; Worth, B. R. Helv. Chim. Acta 1978, 61, 690
      (d) Langlois, N.; Gueritte, F.; Langlois, Y.; Potier, P. J. Am. Chem. Soc. 1976, 98, 7017
      (e) Kutney, J. P.; Hibino, T.; Jahngen, E.; Okutani, T.; Ratcliffe, A. H.; Treasurywala, A. M.; Wunderly, S. Helv. Chim. Acta 1976, 59, 2858
      (f) Potier, P.; Langlois, N.; Langlois, Y.; Gueritte, F. J. Chem. Soc., Chem. Comm. 1975, 670
    10. 10
      Kutney, J. P.; Cretney, W. J.; Hadfield, J. R.; Hall, E. S.; Nelson, V. R. J. Am. Chem. Soc. 1970, 92, 1704
    11. 11
      Tabakovic, I.; Gunic, E.; Gasic, M. J. J. Chem. Soc., Perk. Trans. 2 1996, 2741
    12. 12
      (a) Sundberg, R. J.; Desos, P.; Gadamasetti, K. G.; Sabat, M. Tetrahedron Lett. 1991, 32, 3035
      (b) Cocquet, G.; Rool, P.; Ferroud, C. Tetrahedron Lett. 2001, 42, 839
    13. 13
      Gorman, M.; Neuss, N.; Cone, N. J. J. Am. Chem. Soc. 1965, 87, 93
    14. 14
      Brown, R. T.; Hill, J. S.; Smith, G. F.; Stapleford, K. S. J. Tetrahedron 1971, 27, 5217
    15. 15
      Kutney, J. P.; Brown, R. T.; Piers, E.; Hadfield, J. R. J. Am. Chem. Soc. 1970, 92, 1708
    16. 16
      (a) Carroll, W. A.; Grieco, P. A. J. Am. Chem. Soc. 1993, 115, 1164
      (b) Cheng, B.; Sunderhaus, J. D.; Martin, S. F. Org. Lett. 2010, 12, 3622
    17. 17
      (a) Lowry, M. S.; Goldsmith, J. I.; Slinker, J. D.; Rohl, R.; Pascal, R. A.; Malliaras, G. G.; Bernhard, S. Chem. Mater. 2005, 17, 5712
      (b) This photocatalyst is commercially available from Sigma Aldrich, catalog no. L511765.
    18. 18

      See the Supporting Information for details.

    19. 19
      (a) Bou-Hamdan, F. R.; Seeberger, P. H. Chem. Sci. 2012, 3, 1612
      (b) Andrews, R. S.; Becker, J. J.; Gagné, M. R. Angew. Chem., Int. Ed. 2012, 51, 4140
      (c) Tucker, J. W.; Zhang, Y.; Jamison, T. F.; Stephenson, C. R. J. Angew. Chem., Int. Ed. 2012, 51, 4144
    20. 20

      For a review see:

      Garlets, Z. J.; Nguyen, J. D.; Stephenson, C. R. J. Isr. J. Chem. 2014, 54, 351
    21. 21

      For a relevant discussion of these competing mechanistic pathways in a different system:

      Richers, M. T.; Breugst, M.; Platonova, A. Y.; Ullrich, A.; Dieckmann, A.; Houk, K. N.; Seidel, S. J. Am. Chem. Soc. 2014, 136, 6123
    22. 22

      Treatment of 6 with 0.5 N methanolic HCl for 10 min at 0° followed by concentration of the solution provides the corresponding dihydropyridinium ion by 1H NMR.

    23. 23
      Zeches, M.; Debray, M. M.; Ledouble, G.; Le Men-Olivier, L.; Le Men, J. Phytochemistry 1975, 14, 1122
    24. 24
      Neuss, N.; Gorman, M. Tetrahedron Lett. 1961, 2, 206
    25. 25
      Freeman, D. B.; Furst, L.; Condie, A. G.; Stephenson, C. R. J. Org. Lett. 2012, 14, 94
    26. 26
      Frisch, M. J.; Gaussian 09, revision D.01; Gaussian, Inc.: Wallingford CT, 2009.
    27. 27
      Wheeler, S. E.; Houk, K. N.; Schleyer, P. v. R.; Allen, W. D. J. Am. Chem. Soc. 2009, 131, 2547
  • Supporting Information

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Experimental details, computational details, characterization data, and complete ref 26. This material is available free of charge via the Internet at http://pubs.acs.org.


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect