ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
Recently Viewed
You have not visited any articles yet, Please visit some articles to see contents here.
CONTENT TYPES

Figure 1Loading Img

Enhanced Electrochemical Methanation of Carbon Dioxide with a Dispersible Nanoscale Copper Catalyst

View Author Information
Department of Chemical and Biomolecular Engineering, Department of Materials Science and Engineering, §Department of Chemistry, and Kavli Energy Nanosciences Institute, University of California, Berkeley, California 94720, United States
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
Cite this: J. Am. Chem. Soc. 2014, 136, 38, 13319–13325
Publication Date (Web):August 19, 2014
https://doi.org/10.1021/ja5065284
Copyright © 2014 American Chemical Society
Article Views
13605
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (3 MB)
Supporting Info (1)»

Abstract

Abstract Image

Although the vast majority of hydrocarbon fuels and products are presently derived from petroleum, there is much interest in the development of routes for synthesizing these same products by hydrogenating CO2. The simplest hydrocarbon target is methane, which can utilize existing infrastructure for natural gas storage, distribution, and consumption. Electrochemical methods for methanizing CO2 currently suffer from a combination of low activities and poor selectivities. We demonstrate that copper nanoparticles supported on glassy carbon (n-Cu/C) achieve up to 4 times greater methanation current densities compared to high-purity copper foil electrodes. The n-Cu/C electrocatalyst also exhibits an average Faradaic efficiency for methanation of 80% during extended electrolysis, the highest Faradaic efficiency for room-temperature methanation reported to date. We find that the level of copper catalyst loading on the glassy carbon support has an enormous impact on the morphology of the copper under catalytic conditions and the resulting Faradaic efficiency for methane. The improved activity and Faradaic efficiency for methanation involves a mechanism that is distinct from what is generally thought to occur on copper foils. Electrochemical data indicate that the early steps of methanation on n-Cu/C involve a pre-equilibrium one-electron transfer to CO2 to form an adsorbed radical, followed by a rate-limiting non-electrochemical step in which the adsorbed CO2 radical reacts with a second CO2 molecule from solution. These nanoscale copper electrocatalysts represent a first step toward the preparation of practical methanation catalysts that can be incorporated into membrane-electrode assemblies in electrolyzers.

Supporting Information

ARTICLE SECTIONS
Jump To

Additional electrochemical data on electrode stability, order dependence, and mechanistic insights. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By

This article is cited by 375 publications.

  1. Eser Metin Akinoglu, Bohua Ren, Junyuan Xu, Dangsheng Su, Tengfei Qiu, Michael Giersig, Guobin Wen. Vertically Aligned Multiwalled Carbon Nanotube/Cu Catalysts for CO2 Electroreduction. ACS Applied Nano Materials 2022, Article ASAP.
  2. Shenghua Chen, Zedong Zhang, Wenjun Jiang, Shishi Zhang, Jiexin Zhu, Liqiang Wang, Honghui Ou, Shahid Zaman, Lin Tan, Peng Zhu, Erhuan Zhang, Peng Jiang, Yaqiong Su, Dingsheng Wang, Yadong Li. Engineering Water Molecules Activation Center on Multisite Electrocatalysts for Enhanced CO2 Methanation. Journal of the American Chemical Society 2022, 144 (28) , 12807-12815. https://doi.org/10.1021/jacs.2c03875
  3. James R. Pankhurst, Laia Castilla-Amorós, Dragos C. Stoian, Jan Vavra, Valeria Mantella, Petru P. Albertini, Raffaella Buonsanti. Copper Phosphonate Lamella Intermediates Control the Shape of Colloidal Copper Nanocrystals. Journal of the American Chemical Society 2022, 144 (27) , 12261-12271. https://doi.org/10.1021/jacs.2c03489
  4. Iwona A. Rutkowska, Anna Chmielnicka, Maciej Krzywiecki, Pawel J. Kulesza. Toward Effective CO2 Reduction in an Acid Medium: Electrocatalysis at Cu2O-Derived Polycrystalline Cu Sites Immobilized within the Network of WO3 Nanowires. ACS Measurement Science Au 2022, Article ASAP.
  5. Kevin Rossi, Raffaella Buonsanti. Shaping Copper Nanocatalysts to Steer Selectivity in the Electrochemical CO2 Reduction Reaction. Accounts of Chemical Research 2022, 55 (5) , 629-637. https://doi.org/10.1021/acs.accounts.1c00673
  6. Nick Daems, Daniel Choukroun, Pablo Merino, Clara Rettenmaier, Lien Pacquets, Arno Bergmann, Gonzalo Santoro, Luis Vázquez, Lidia Martínez, Beatriz Roldan Cuenya, Jose Angel Martín Gago, Tom Breugelmans. Steering Hydrocarbon Selectivity in CO2 Electroreduction over Soft-Landed CuOx Nanoparticle-Functionalized Gas Diffusion Electrodes. ACS Applied Materials & Interfaces 2022, 14 (2) , 2691-2702. https://doi.org/10.1021/acsami.1c17998
  7. Mingyuan Wang, Hui Shi, Ming Tian, Ruowang Chen, Junpeng Shu, Quan Zhang, Yonghu Wang, Cuiyu Li, Neng Wan, Shuangying Lei. Single Nickel Atom-Modified Phosphorene Nanosheets for Electrocatalytic CO2 Reduction. ACS Applied Nano Materials 2021, 4 (10) , 11017-11030. https://doi.org/10.1021/acsanm.1c02458
  8. Daniel Choukroun, Lien Pacquets, Chen Li, Saskia Hoekx, Sven Arnouts, Kitty Baert, Tom Hauffman, Sara Bals, Tom Breugelmans. Mapping Composition–Selectivity Relationships of Supported Sub-10 nm Cu–Ag Nanocrystals for High-Rate CO2 Electroreduction. ACS Nano 2021, 15 (9) , 14858-14872. https://doi.org/10.1021/acsnano.1c04943
  9. Hao-Lin Zhu, Jia-Run Huang, Xue-Wen Zhang, Chao Wang, Ning-Yu Huang, Pei-Qin Liao, Xiao-Ming Chen. Highly Efficient Electroconversion of CO2 into CH4 by a Metal–Organic Framework with Trigonal Pyramidal Cu(I)N3 Active Sites. ACS Catalysis 2021, 11 (18) , 11786-11792. https://doi.org/10.1021/acscatal.1c02980
  10. Lingzhen Zeng, Yonghua Cao, Zhe Li, Yiheng Dai, Yongke Wang, Bing An, Jingzheng Zhang, Han Li, Yang Zhou, Wenbin Lin, Cheng Wang. Multiple Cuprous Centers Supported on a Titanium-Based Metal–Organic Framework Catalyze CO2 Hydrogenation to Ethylene. ACS Catalysis 2021, 11 (18) , 11696-11705. https://doi.org/10.1021/acscatal.1c01939
  11. Shaohua Chen, Chenyuan Zhu, Haoyang Gu, Li Wang, Jiajie Qi, Lixiang Zhong, Zhibin Zhang, Chunlei Yang, Guoshuai Shi, Siwen Zhao, Shuzhou Li, Kaihui Liu, Liming Zhang. Enhanced Electrochemical Methanation of Carbon Dioxide at the Single-Layer Hexagonal Boron Nitride/Cu Interfacial Perimeter. Nano Letters 2021, 21 (10) , 4469-4476. https://doi.org/10.1021/acs.nanolett.1c01258
  12. Zhaolong Wang, Xiaojie She, Qing Yu, Xingwang Zhu, Huaming Li, Hui Xu. Minireview on the Commonly Applied Copper-Based Electrocatalysts for Electrochemical CO2 Reduction. Energy & Fuels 2021, 35 (10) , 8585-8601. https://doi.org/10.1021/acs.energyfuels.1c00700
  13. James R. Pankhurst, Pranit Iyengar, Valery Okatenko, Raffaella Buonsanti. Copper Nanocrystal Morphology Determines the Viability of Molecular Surface Functionalization in Tuning Electrocatalytic Behavior in CO2 Reduction. Inorganic Chemistry 2021, 60 (10) , 6939-6945. https://doi.org/10.1021/acs.inorgchem.1c00287
  14. Lei Zhang, Xiao-Xin Li, Zhong-Ling Lang, Yang Liu, Jiang Liu, Lin Yuan, Wan-Yue Lu, Yuan-Sheng Xia, Long-Zhang Dong, Da-Qiang Yuan, Ya-Qian Lan. Enhanced Cuprophilic Interactions in Crystalline Catalysts Facilitate the Highly Selective Electroreduction of CO2 to CH4. Journal of the American Chemical Society 2021, 143 (10) , 3808-3816. https://doi.org/10.1021/jacs.0c11450
  15. Rui Serra-Maia, F. Marc Michel, Temple A. Douglas, Yijin Kang, Eric A. Stach. Mechanism and Kinetics of Methane Oxidation to Methanol Catalyzed by AuPd Nanocatalysts at Low Temperature. ACS Catalysis 2021, 11 (5) , 2837-2845. https://doi.org/10.1021/acscatal.0c04487
  16. Yannick T. Guntern, Valery Okatenko, James Pankhurst, Seyedeh Behnaz Varandili, Pranit Iyengar, Cedric Koolen, Dragos Stoian, Jan Vavra, Raffaella Buonsanti. Colloidal Nanocrystals as Electrocatalysts with Tunable Activity and Selectivity. ACS Catalysis 2021, 11 (3) , 1248-1295. https://doi.org/10.1021/acscatal.0c04403
  17. Mario Löffler, Karl J. J. Mayrhofer, Ioannis Katsounaros. Oxide Reduction Precedes Carbon Dioxide Reduction on Oxide-Derived Copper Electrodes. The Journal of Physical Chemistry C 2021, 125 (3) , 1833-1838. https://doi.org/10.1021/acs.jpcc.0c09107
  18. Ming Zhou, Can Li, Jiye Fang. Noble-Metal Based Random Alloy and Intermetallic Nanocrystals: Syntheses and Applications. Chemical Reviews 2021, 121 (2) , 736-795. https://doi.org/10.1021/acs.chemrev.0c00436
  19. Sungin Kim, Jimin Kwag, Chiara Machello, Sungsu Kang, Junyoung Heo, Cyril F. Reboul, Dohun Kang, Seulki Kang, Sangdeok Shim, So-Jung Park, Byung Hyo Kim, Taeghwan Hyeon, Peter Ercius, Hans Elmlund, Jungwon Park. Correlating 3D Surface Atomic Structure and Catalytic Activities of Pt Nanocrystals. Nano Letters 2021, 21 (2) , 1175-1183. https://doi.org/10.1021/acs.nanolett.0c04873
  20. Xin Guan, Chenxu Zhao, Xin Liu, Shanping Liu, Wang Gao, Qing Jiang. Universal Principle to Describe Reactivity and Selectivity of CO2 Electroreduction on Transition Metals and Single-Atom Catalysts. The Journal of Physical Chemistry C 2020, 124 (47) , 25898-25906. https://doi.org/10.1021/acs.jpcc.0c08745
  21. Ruixuan Qin, Kunlong Liu, Qingyuan Wu, Nanfeng Zheng. Surface Coordination Chemistry of Atomically Dispersed Metal Catalysts. Chemical Reviews 2020, 120 (21) , 11810-11899. https://doi.org/10.1021/acs.chemrev.0c00094
  22. Charuni M. Gunathunge, Jingyi Li, Xiang Li, Matthias M. Waegele. Surface-Adsorbed CO as an Infrared Probe of Electrocatalytic Interfaces. ACS Catalysis 2020, 10 (20) , 11700-11711. https://doi.org/10.1021/acscatal.0c03316
  23. Tristan T. Adamson, Steven P. Kelley, Wesley H. Bernskoetter. Iron-Mediated C–C Bond Formation via Reductive Coupling with Carbon Dioxide. Organometallics 2020, 39 (19) , 3562-3571. https://doi.org/10.1021/acs.organomet.0c00528
  24. Avdhoot Datar, Maya Bar-Sadan, Ashwin Ramasubramaniam. Interactions between Transition-Metal Surfaces and MoS2 Monolayers: Implications for Hydrogen Evolution and CO2 Reduction Reactions. The Journal of Physical Chemistry C 2020, 124 (37) , 20116-20124. https://doi.org/10.1021/acs.jpcc.0c05191
  25. Zhijiang Wang, Qi Yuan, Jingjing Shan, Zhaohua Jiang, Ping Xu, Yongfeng Hu, Jigang Zhou, Lina Wu, Zhuangzhuang Niu, Jianmin Sun, Tao Cheng, William A. Goddard, III. Highly Selective Electrocatalytic Reduction of CO2 into Methane on Cu–Bi Nanoalloys. The Journal of Physical Chemistry Letters 2020, 11 (17) , 7261-7266. https://doi.org/10.1021/acs.jpclett.0c01261
  26. Mozhgan Moradzaman, Guido Mul. Infrared Analysis of Interfacial Phenomena during Electrochemical Reduction of CO2 over Polycrystalline Copper Electrodes. ACS Catalysis 2020, 10 (15) , 8049-8057. https://doi.org/10.1021/acscatal.0c02130
  27. Lili Han, Shoujie Song, Mingjie Liu, Siyu Yao, Zhixiu Liang, Hao Cheng, Zhouhong Ren, Wei Liu, Ruoqian Lin, Gaocan Qi, Xijun Liu, Qin Wu, Jun Luo, Huolin L. Xin. Stable and Efficient Single-Atom Zn Catalyst for CO2 Reduction to CH4. Journal of the American Chemical Society 2020, 142 (29) , 12563-12567. https://doi.org/10.1021/jacs.9b12111
  28. Chia-Jui Chang, Sheng-Chih Lin, Hsiao-Chien Chen, Jiali Wang, Kai Jen Zheng, Yanping Zhu, Hao Ming Chen. Dynamic Reoxidation/Reduction-Driven Atomic Interdiffusion for Highly Selective CO2 Reduction toward Methane. Journal of the American Chemical Society 2020, 142 (28) , 12119-12132. https://doi.org/10.1021/jacs.0c01859
  29. Juan Carlos Castro-Palacio, Konstantin Ladutenko, Alejandro Prada, Guillermo González-Rubio, Pablo Díaz-Núñez, Andrés Guerrero-Martínez, Pedro Fernández de Córdoba, Jorge Kohanoff, José Manuel Perlado, Ovidio Peña-Rodríguez, Antonio Rivera. Hollow Gold Nanoparticles Produced by Femtosecond Laser Irradiation. The Journal of Physical Chemistry Letters 2020, 11 (13) , 5108-5114. https://doi.org/10.1021/acs.jpclett.0c01233
  30. Maryam Abdinejad, Caitlin Dao, Billy Deng, Filip Dinic, Oleksandr Voznyy, Xiao-an Zhang, Heinz-Bernhard Kraatz. Electrocatalytic Reduction of CO2 to CH4 and CO in Aqueous Solution Using Pyridine-Porphyrins Immobilized onto Carbon Nanotubes. ACS Sustainable Chemistry & Engineering 2020, 8 (25) , 9549-9557. https://doi.org/10.1021/acssuschemeng.0c02791
  31. Charuni M. Gunathunge, Jingyi Li, Xiang Li, Julie J. Hong, Matthias M. Waegele. Revealing the Predominant Surface Facets of Rough Cu Electrodes under Electrochemical Conditions. ACS Catalysis 2020, 10 (12) , 6908-6923. https://doi.org/10.1021/acscatal.9b05532
  32. Chul Jong Yoo, Wan Jae Dong, Jae Yong Park, Jin Wook Lim, Sungjoo Kim, Kyoung Soon Choi, Francis Okello Odongo Ngome, Si-Young Choi, Jong-Lam Lee. Compositional and Geometrical Effects of Bimetallic Cu–Sn Catalysts on Selective Electrochemical CO2 Reduction to CO. ACS Applied Energy Materials 2020, 3 (5) , 4466-4473. https://doi.org/10.1021/acsaem.0c00157
  33. Gian Luca De Gregorio, Thomas Burdyny, Anna Loiudice, Pranit Iyengar, Wilson A. Smith, Raffaella Buonsanti. Facet-Dependent Selectivity of Cu Catalysts in Electrochemical CO2 Reduction at Commercially Viable Current Densities. ACS Catalysis 2020, 10 (9) , 4854-4862. https://doi.org/10.1021/acscatal.0c00297
  34. Subramanian Nellaiappan, Nirmal Kumar Katiyar, Ritesh Kumar, Arko Parui, Kirtiman Deo Malviya, K. G. Pradeep, Abhishek K. Singh, Sudhanshu Sharma, Chandra Sekhar Tiwary, Krishanu Biswas. High-Entropy Alloys as Catalysts for the CO2 and CO Reduction Reactions: Experimental Realization. ACS Catalysis 2020, 10 (6) , 3658-3663. https://doi.org/10.1021/acscatal.9b04302
  35. Peter T. Smith, Eva M. Nichols, Zhi Cao, Christopher J. Chang. Hybrid Catalysts for Artificial Photosynthesis: Merging Approaches from Molecular, Materials, and Biological Catalysis. Accounts of Chemical Research 2020, 53 (3) , 575-587. https://doi.org/10.1021/acs.accounts.9b00619
  36. Mohammadreza Esmaeilirad, Alireza Kondori, Boao Song, Andres Ruiz Belmonte, Jialiang Wei, Kamil Kucuk, Shubhada Mahesh Khanvilkar, Erin Efimoff, Wei Chen, Carlo U. Segre, Reza Shahbazian-Yassar, Mohammad Asadi. Oxygen Functionalized Copper Nanoparticles for Solar-Driven Conversion of Carbon Dioxide to Methane. ACS Nano 2020, 14 (2) , 2099-2108. https://doi.org/10.1021/acsnano.9b08792
  37. Xue Wang, Aoni Xu, Fengwang Li, Sung-Fu Hung, Dae-Hyun Nam, Christine M. Gabardo, Ziyun Wang, Yi Xu, Adnan Ozden, Armin Sedighian Rasouli, Alexander H. Ip, David Sinton, Edward H. Sargent. Efficient Methane Electrosynthesis Enabled by Tuning Local CO2 Availability. Journal of the American Chemical Society 2020, 142 (7) , 3525-3531. https://doi.org/10.1021/jacs.9b12445
  38. Chenlu Xie, Zhiqiang Niu, Dohyung Kim, Mufan Li, Peidong Yang. Surface and Interface Control in Nanoparticle Catalysis. Chemical Reviews 2020, 120 (2) , 1184-1249. https://doi.org/10.1021/acs.chemrev.9b00220
  39. Chia-Jui Chang, Sung-Fu Hung, Chia-Shuo Hsu, Hsiao-Chien Chen, Sheng-Chih Lin, Yen-Fa Liao, Hao Ming Chen. Quantitatively Unraveling the Redox Shuttle of Spontaneous Oxidation/Electroreduction of CuOx on Silver Nanowires Using in Situ X-ray Absorption Spectroscopy. ACS Central Science 2019, 5 (12) , 1998-2009. https://doi.org/10.1021/acscentsci.9b01142
  40. Hyo Sang Jeon, Janis Timoshenko, Fabian Scholten, Ilya Sinev, Antonia Herzog, Felix T. Haase, Beatriz Roldan Cuenya. Operando Insight into the Correlation between the Structure and Composition of CuZn Nanoparticles and Their Selectivity for the Electrochemical CO2 Reduction. Journal of the American Chemical Society 2019, 141 (50) , 19879-19887. https://doi.org/10.1021/jacs.9b10709
  41. Venkata Sai Sriram Mosali, Xiaolong Zhang, Ying Zhang, Thomas Gengenbach, Si-Xuan Guo, Graeme Puxty, Michael D. Horne, Alan M. Bond, Jie Zhang. Electrocatalytic CO2 Reduction to Formate on Cu Based Surface Alloys with Enhanced Selectivity. ACS Sustainable Chemistry & Engineering 2019, 7 (24) , 19453-19462. https://doi.org/10.1021/acssuschemeng.9b04222
  42. Wojciech T. Osowiecki, Jasper J. Nussbaum, Gaurav A. Kamat, Georgios Katsoukis, Marc Ledendecker, Heinz Frei, Alexis T. Bell, A. Paul Alivisatos. Factors and Dynamics of Cu Nanocrystal Reconstruction under CO2 Reduction. ACS Applied Energy Materials 2019, 2 (11) , 7744-7749. https://doi.org/10.1021/acsaem.9b01714
  43. Yi-Yu Cai, Sean S. E. Collins, Miranda J. Gallagher, Ujjal Bhattacharjee, Runmin Zhang, Tsz Him Chow, Arash Ahmadivand, Behnaz Ostovar, Alexander Al-Zubeidi, Jianfang Wang, Peter Nordlander, Christy F. Landes, Stephan Link. Single-Particle Emission Spectroscopy Resolves d-Hole Relaxation in Copper Nanocubes. ACS Energy Letters 2019, 4 (10) , 2458-2465. https://doi.org/10.1021/acsenergylett.9b01747
  44. Jiachang Zeng, Wenbiao Zhang, Yang Yang, Dan Li, Xiang Yu, Qingsheng Gao. Pd–Ag Alloy Electrocatalysts for CO2 Reduction: Composition Tuning to Break the Scaling Relationship. ACS Applied Materials & Interfaces 2019, 11 (36) , 33074-33081. https://doi.org/10.1021/acsami.9b11729
  45. Michael D. Burkart, Nilay Hazari, Cathy L. Tway, Elizabeth L. Zeitler. Opportunities and Challenges for Catalysis in Carbon Dioxide Utilization. ACS Catalysis 2019, 9 (9) , 7937-7956. https://doi.org/10.1021/acscatal.9b02113
  46. Giulia Mangione, Jianfeng Huang, Raffaella Buonsanti, Clémence Corminboeuf. Dual-Facet Mechanism in Copper Nanocubes for Electrochemical CO2 Reduction into Ethylene. The Journal of Physical Chemistry Letters 2019, 10 (15) , 4259-4265. https://doi.org/10.1021/acs.jpclett.9b01471
  47. Stephanie Nitopi, Erlend Bertheussen, Soren B. Scott, Xinyan Liu, Albert K. Engstfeld, Sebastian Horch, Brian Seger, Ifan E. L. Stephens, Karen Chan, Christopher Hahn, Jens K. Nørskov, Thomas F. Jaramillo, Ib Chorkendorff. Progress and Perspectives of Electrochemical CO2 Reduction on Copper in Aqueous Electrolyte. Chemical Reviews 2019, 119 (12) , 7610-7672. https://doi.org/10.1021/acs.chemrev.8b00705
  48. Seyedeh Behnaz Varandili, Jianfeng Huang, Emad Oveisi, Gian Luca De Gregorio, Mounir Mensi, Michal Strach, Jan Vavra, Chethana Gadiyar, Arghya Bhowmik, Raffaella Buonsanti. Synthesis of Cu/CeO2-x Nanocrystalline Heterodimers with Interfacial Active Sites To Promote CO2 Electroreduction. ACS Catalysis 2019, 9 (6) , 5035-5046. https://doi.org/10.1021/acscatal.9b00010
  49. Yuguang C. Li, Ziyun Wang, Tiange Yuan, Dae-Hyun Nam, Mingchuan Luo, Joshua Wicks, Bin Chen, Jun Li, Fengwang Li, F. Pelayo García de Arquer, Ying Wang, Cao-Thang Dinh, Oleksandr Voznyy, David Sinton, Edward H. Sargent. Binding Site Diversity Promotes CO2 Electroreduction to Ethanol. Journal of the American Chemical Society 2019, 141 (21) , 8584-8591. https://doi.org/10.1021/jacs.9b02945
  50. Yuhui Xie, Christian Schöttle, Ying Li, Carlo Carraro, Xinya Zhang, Alexander Katz, Roya Maboudian. Synthesis and Electrochemical Stability of Ultrahigh Aspect Ratio Nanoporous Gold after Calixarene-Phosphine Ligand Removal. ACS Applied Materials & Interfaces 2019, 11 (17) , 15189-15194. https://doi.org/10.1021/acsami.9b00754
  51. Xin Li, Jiaguo Yu, Mietek Jaroniec, Xiaobo Chen. Cocatalysts for Selective Photoreduction of CO2 into Solar Fuels. Chemical Reviews 2019, 119 (6) , 3962-4179. https://doi.org/10.1021/acs.chemrev.8b00400
  52. Hyejin Jung, Si Young Lee, Chan Woo Lee, Min Kyung Cho, Da Hye Won, Cheonghee Kim, Hyung-Suk Oh, Byoung Koun Min, Yun Jeong Hwang. Electrochemical Fragmentation of Cu2O Nanoparticles Enhancing Selective C–C Coupling from CO2 Reduction Reaction. Journal of the American Chemical Society 2019, 141 (11) , 4624-4633. https://doi.org/10.1021/jacs.8b11237
  53. Jianfeng Huang, Mounir Mensi, Emad Oveisi, Valeria Mantella, Raffaella Buonsanti. Structural Sensitivities in Bimetallic Catalysts for Electrochemical CO2 Reduction Revealed by Ag–Cu Nanodimers. Journal of the American Chemical Society 2019, 141 (6) , 2490-2499. https://doi.org/10.1021/jacs.8b12381
  54. Jin Gao, Cheng Zhu, Mengmeng Zhu, Yijun Fu, Hui Huang, Yang Liu, Zhenhui Kang. Highly Selective and Efficient Electroreduction of Carbon Dioxide to Carbon Monoxide with Phosphate Silver-Derived Coral-like Silver. ACS Sustainable Chemistry & Engineering 2019, 7 (3) , 3536-3543. https://doi.org/10.1021/acssuschemeng.8b05776
  55. Jianfeng Huang, Raffaella Buonsanti. Colloidal Nanocrystals as Heterogeneous Catalysts for Electrochemical CO2 Conversion. Chemistry of Materials 2019, 31 (1) , 13-25. https://doi.org/10.1021/acs.chemmater.8b04155
  56. Rosa M. Arán-Ais, Dunfeng Gao, Beatriz Roldan Cuenya. Structure- and Electrolyte-Sensitivity in CO2 Electroreduction. Accounts of Chemical Research 2018, 51 (11) , 2906-2917. https://doi.org/10.1021/acs.accounts.8b00360
  57. Huan Xie, Shaoqing Chen, Feng Ma, Jiashun Liang, Zhengpei Miao, Tanyuan Wang, Hsing-Lin Wang, Yunhui Huang, Qing Li. Boosting Tunable Syngas Formation via Electrochemical CO2 Reduction on Cu/In2O3 Core/Shell Nanoparticles. ACS Applied Materials & Interfaces 2018, 10 (43) , 36996-37004. https://doi.org/10.1021/acsami.8b12747
  58. Dae-Hyun Nam, Oleksandr S. Bushuyev, Jun Li, Phil De Luna, Ali Seifitokaldani, Cao-Thang Dinh, F. Pelayo García de Arquer, Yuhang Wang, Zhiqin Liang, Andrew H. Proppe, Chih Shan Tan, Petar Todorović, Osama Shekhah, Christine M. Gabardo, Jea Woong Jo, Jongmin Choi, Min-Jae Choi, Se-Woong Baek, Junghwan Kim, David Sinton, Shana O. Kelley, Mohamed Eddaoudi, Edward H. Sargent. Metal–Organic Frameworks Mediate Cu Coordination for Selective CO2 Electroreduction. Journal of the American Chemical Society 2018, 140 (36) , 11378-11386. https://doi.org/10.1021/jacs.8b06407
  59. Abhijit Dutta, Carina Elisabeth Morstein, Motiar Rahaman, Alena Cedeño López, Peter Broekmann. Beyond Copper in CO2 Electrolysis: Effective Hydrocarbon Production on Silver-Nanofoam Catalysts. ACS Catalysis 2018, 8 (9) , 8357-8368. https://doi.org/10.1021/acscatal.8b01738
  60. Yifei Wang, Zheng Chen, Peng Han, Yonghua Du, Zhengxiang Gu, Xin Xu, Gengfeng Zheng. Single-Atomic Cu with Multiple Oxygen Vacancies on Ceria for Electrocatalytic CO2 Reduction to CH4. ACS Catalysis 2018, 8 (8) , 7113-7119. https://doi.org/10.1021/acscatal.8b01014
  61. Chi Hun Choi, Kyungwha Chung, Trang-T. H. Nguyen, Dong Ha Kim. Plasmon-Mediated Electrocatalysis for Sustainable Energy: From Electrochemical Conversion of Different Feedstocks to Fuel Cell Reactions. ACS Energy Letters 2018, 3 (6) , 1415-1433. https://doi.org/10.1021/acsenergylett.8b00461
  62. Sunyhik Ahn, Konstantin Klyukin, Russell J. Wakeham, Jennifer A. Rudd, Aled R. Lewis, Shirin Alexander, Francesco Carla, Vitaly Alexandrov, Enrico Andreoli. Poly-Amide Modified Copper Foam Electrodes for Enhanced Electrochemical Reduction of Carbon Dioxide. ACS Catalysis 2018, 8 (5) , 4132-4142. https://doi.org/10.1021/acscatal.7b04347
  63. Thao T. H. Hoang, Sumit Verma, Sichao Ma, Tim T. Fister, Janis Timoshenko, Anatoly I. Frenkel, Paul J. A. Kenis, Andrew A. Gewirth. Nanoporous Copper–Silver Alloys by Additive-Controlled Electrodeposition for the Selective Electroreduction of CO2 to Ethylene and Ethanol. Journal of the American Chemical Society 2018, 140 (17) , 5791-5797. https://doi.org/10.1021/jacs.8b01868
  64. Hua Sheng, Myoung Hwan Oh, Wojciech T. Osowiecki, Wooyul Kim, A. Paul Alivisatos, Heinz Frei. Carbon Dioxide Dimer Radical Anion as Surface Intermediate of Photoinduced CO2 Reduction at Aqueous Cu and CdSe Nanoparticle Catalysts by Rapid-Scan FT-IR Spectroscopy. Journal of the American Chemical Society 2018, 140 (12) , 4363-4371. https://doi.org/10.1021/jacs.8b00271
  65. Matthew Jouny, Wesley Luc, and Feng Jiao . General Techno-Economic Analysis of CO2 Electrolysis Systems. Industrial & Engineering Chemistry Research 2018, 57 (6) , 2165-2177. https://doi.org/10.1021/acs.iecr.7b03514
  66. Charlotte Kirk, Leanne D. Chen, Samira Siahrostami, Mohammadreza Karamad, Michal Bajdich, Johannes Voss, Jens K. Nørskov, and Karen Chan . Theoretical Investigations of the Electrochemical Reduction of CO on Single Metal Atoms Embedded in Graphene. ACS Central Science 2017, 3 (12) , 1286-1293. https://doi.org/10.1021/acscentsci.7b00442
  67. Wan Jae Dong, Chul Jong Yoo, and Jong-Lam Lee . Monolithic Nanoporous In–Sn Alloy for Electrochemical Reduction of Carbon Dioxide. ACS Applied Materials & Interfaces 2017, 9 (50) , 43575-43582. https://doi.org/10.1021/acsami.7b10308
  68. Ezra L. Clark, Christopher Hahn, Thomas F. Jaramillo, and Alexis T. Bell . Electrochemical CO2 Reduction over Compressively Strained CuAg Surface Alloys with Enhanced Multi-Carbon Oxygenate Selectivity. Journal of the American Chemical Society 2017, 139 (44) , 15848-15857. https://doi.org/10.1021/jacs.7b08607
  69. Samira Siahrostami, Kun Jiang, Mohammadreza Karamad, Karen Chan, Haotian Wang, and Jens Nørskov . Theoretical Investigations into Defected Graphene for Electrochemical Reduction of CO2. ACS Sustainable Chemistry & Engineering 2017, 5 (11) , 11080-11085. https://doi.org/10.1021/acssuschemeng.7b03031
  70. Sungju Yu, Andrew J. Wilson, Gayatri Kumari, Xueqiang Zhang, and Prashant K. Jain . Opportunities and Challenges of Solar-Energy-Driven Carbon Dioxide to Fuel Conversion with Plasmonic Catalysts. ACS Energy Letters 2017, 2 (9) , 2058-2070. https://doi.org/10.1021/acsenergylett.7b00640
  71. Yan-Ling Qiu, He-Xiang Zhong, Tao-Tao Zhang, Wen-Bin Xu, Xian-Feng Li, and Hua-Min Zhang . Copper Electrode Fabricated via Pulse Electrodeposition: Toward High Methane Selectivity and Activity for CO2 Electroreduction. ACS Catalysis 2017, 7 (9) , 6302-6310. https://doi.org/10.1021/acscatal.7b00571
  72. Qing Tang, Yongjin Lee, Dai-Ying Li, Woojun Choi, C. W. Liu, Dongil Lee, and De-en Jiang . Lattice-Hydride Mechanism in Electrocatalytic CO2 Reduction by Structurally Precise Copper-Hydride Nanoclusters. Journal of the American Chemical Society 2017, 139 (28) , 9728-9736. https://doi.org/10.1021/jacs.7b05591
  73. Shichen Lian, Mohamad S. Kodaimati, Dmitriy S. Dolzhnikov, Raul Calzada, and Emily A. Weiss . Powering a CO2 Reduction Catalyst with Visible Light through Multiple Sub-picosecond Electron Transfers from a Quantum Dot. Journal of the American Chemical Society 2017, 139 (26) , 8931-8938. https://doi.org/10.1021/jacs.7b03134
  74. Charuni M. Gunathunge, Xiang Li, Jingyi Li, Robert P. Hicks, Vincent J. Ovalle, and Matthias M. Waegele . Spectroscopic Observation of Reversible Surface Reconstruction of Copper Electrodes under CO2 Reduction. The Journal of Physical Chemistry C 2017, 121 (22) , 12337-12344. https://doi.org/10.1021/acs.jpcc.7b03910
  75. Thao T. H. Hoang, Sichao Ma, Jake I. Gold, Paul J. A. Kenis, and Andrew A. Gewirth . Nanoporous Copper Films by Additive-Controlled Electrodeposition: CO2 Reduction Catalysis. ACS Catalysis 2017, 7 (5) , 3313-3321. https://doi.org/10.1021/acscatal.6b03613
  76. Yuxin Fang and John C. Flake . Electrochemical Reduction of CO2 at Functionalized Au Electrodes. Journal of the American Chemical Society 2017, 139 (9) , 3399-3405. https://doi.org/10.1021/jacs.6b11023
  77. Yifan Li, Fan Cui, Michael B. Ross, Dohyung Kim, Yuchun Sun, and Peidong Yang . Structure-Sensitive CO2 Electroreduction to Hydrocarbons on Ultrathin 5-fold Twinned Copper Nanowires. Nano Letters 2017, 17 (2) , 1312-1317. https://doi.org/10.1021/acs.nanolett.6b05287
  78. Wesley Luc, Charles Collins, Siwen Wang, Hongliang Xin, Kai He, Yijin Kang, and Feng Jiao . Ag–Sn Bimetallic Catalyst with a Core–Shell Structure for CO2 Reduction. Journal of the American Chemical Society 2017, 139 (5) , 1885-1893. https://doi.org/10.1021/jacs.6b10435
  79. Shyam Kattel, Binhang Yan, Yixiong Yang, Jingguang G. Chen, and Ping Liu . Optimizing Binding Energies of Key Intermediates for CO2 Hydrogenation to Methanol over Oxide-Supported Copper. Journal of the American Chemical Society 2016, 138 (38) , 12440-12450. https://doi.org/10.1021/jacs.6b05791
  80. Anna Wuttig, Can Liu, Qiling Peng, Momo Yaguchi, Christopher H. Hendon, Kenta Motobayashi, Shen Ye, Masatoshi Osawa, and Yogesh Surendranath . Tracking a Common Surface-Bound Intermediate during CO2-to-Fuels Catalysis. ACS Central Science 2016, 2 (8) , 522-528. https://doi.org/10.1021/acscentsci.6b00155
  81. Zhe Weng, Jianbing Jiang, Yueshen Wu, Zishan Wu, Xiaoting Guo, Kelly L. Materna, Wen Liu, Victor S. Batista, Gary W. Brudvig, and Hailiang Wang . Electrochemical CO2 Reduction to Hydrocarbons on a Heterogeneous Molecular Cu Catalyst in Aqueous Solution. Journal of the American Chemical Society 2016, 138 (26) , 8076-8079. https://doi.org/10.1021/jacs.6b04746
  82. Daniel A. Torelli, Sonja A. Francis, J. Chance Crompton, Alnald Javier, Jonathan R. Thompson, Bruce S. Brunschwig, Manuel P. Soriaga, and Nathan S. Lewis . Nickel–Gallium-Catalyzed Electrochemical Reduction of CO2 to Highly Reduced Products at Low Overpotentials. ACS Catalysis 2016, 6 (3) , 2100-2104. https://doi.org/10.1021/acscatal.5b02888
  83. Hemma Mistry, Farzad Behafarid, Rulle Reske, Ana Sofia Varela, Peter Strasser, and Beatriz Roldan Cuenya . Tuning Catalytic Selectivity at the Mesoscale via Interparticle Interactions. ACS Catalysis 2016, 6 (2) , 1075-1080. https://doi.org/10.1021/acscatal.5b02202
  84. Douglas R. Kauffman, Dominic Alfonso, De Nyago Tafen, Jonathan Lekse, Congjun Wang, Xingyi Deng, Junseok Lee, Hoyoung Jang, Jun-sik Lee, Santosh Kumar, and Christopher Matranga . Electrocatalytic Oxygen Evolution with an Atomically Precise Nickel Catalyst. ACS Catalysis 2016, 6 (2) , 1225-1234. https://doi.org/10.1021/acscatal.5b02633
  85. Dan Ren, Nian Tee Wong, Albertus Denny Handoko, Yun Huang, and Boon Siang Yeo . Mechanistic Insights into the Enhanced Activity and Stability of Agglomerated Cu Nanocrystals for the Electrochemical Reduction of Carbon Dioxide to n-Propanol. The Journal of Physical Chemistry Letters 2016, 7 (1) , 20-24. https://doi.org/10.1021/acs.jpclett.5b02554
  86. James L. White , Maor F. Baruch , James E. Pander III , Yuan Hu , Ivy C. Fortmeyer , James Eujin Park , Tao Zhang , Kuo Liao , Jing Gu , Yong Yan , Travis W. Shaw , Esta Abelev , and Andrew B. Bocarsly . Light-Driven Heterogeneous Reduction of Carbon Dioxide: Photocatalysts and Photoelectrodes. Chemical Reviews 2015, 115 (23) , 12888-12935. https://doi.org/10.1021/acs.chemrev.5b00370
  87. Atefeh Taheri, Emily J. Thompson, James C. Fettinger, and Louise A. Berben . An Iron Electrocatalyst for Selective Reduction of CO2 to Formate in Water: Including Thermochemical Insights. ACS Catalysis 2015, 5 (12) , 7140-7151. https://doi.org/10.1021/acscatal.5b01708
  88. Tao Cheng, Hai Xiao, and William A. Goddard, III . Free-Energy Barriers and Reaction Mechanisms for the Electrochemical Reduction of CO on the Cu(100) Surface, Including Multiple Layers of Explicit Solvent at pH 0. The Journal of Physical Chemistry Letters 2015, 6 (23) , 4767-4773. https://doi.org/10.1021/acs.jpclett.5b02247
  89. Nikolay Kornienko, Yingbo Zhao, Christopher S. Kley, Chenhui Zhu, Dohyung Kim, Song Lin, Christopher J. Chang, Omar M. Yaghi, and Peidong Yang . Metal–Organic Frameworks for Electrocatalytic Reduction of Carbon Dioxide. Journal of the American Chemical Society 2015, 137 (44) , 14129-14135. https://doi.org/10.1021/jacs.5b08212
  90. Yawei Li, Haibin Su, Siew Hwa Chan, and Qiang Sun . CO2 Electroreduction Performance of Transition Metal Dimers Supported on Graphene: A Theoretical Study. ACS Catalysis 2015, 5 (11) , 6658-6664. https://doi.org/10.1021/acscatal.5b01165
  91. Xinxin Cheng, Aiping Fu, Hongliang Li, Yiqian Wang, Peizhi Guo, Jingquan Liu, Jintao Zhang, and Xiu Song Zhao . Sustainable Preparation of Copper Particles Decorated Carbon Microspheres and Studies on Their Bactericidal Activity and Catalytic Properties. ACS Sustainable Chemistry & Engineering 2015, 3 (10) , 2414-2422. https://doi.org/10.1021/acssuschemeng.5b00382
  92. Jonathan Rosen, Gregory S. Hutchings, Qi Lu, Robert V. Forest, Alex Moore, and Feng Jiao . Electrodeposited Zn Dendrites with Enhanced CO Selectivity for Electrocatalytic CO2 Reduction. ACS Catalysis 2015, 5 (8) , 4586-4591. https://doi.org/10.1021/acscatal.5b00922
  93. Douglas R. Kauffman, Jay Thakkar, Rajan Siva, Christopher Matranga, Paul R. Ohodnicki, Chenjie Zeng, and Rongchao Jin . Efficient Electrochemical CO2 Conversion Powered by Renewable Energy. ACS Applied Materials & Interfaces 2015, 7 (28) , 15626-15632. https://doi.org/10.1021/acsami.5b04393
  94. Jonathan Rosen, Gregory S. Hutchings, Qi Lu, Sean Rivera, Yang Zhou, Dionisios G. Vlachos, and Feng Jiao . Mechanistic Insights into the Electrochemical Reduction of CO2 to CO on Nanostructured Ag Surfaces. ACS Catalysis 2015, 5 (7) , 4293-4299. https://doi.org/10.1021/acscatal.5b00840
  95. Ge Yin, Masami Nishikawa, Yoshio Nosaka, Nagarajan Srinivasan, Daiki Atarashi, Etsuo Sakai, and Masahiro Miyauchi . Photocatalytic Carbon Dioxide Reduction by Copper Oxide Nanocluster-Grafted Niobate Nanosheets. ACS Nano 2015, 9 (2) , 2111-2119. https://doi.org/10.1021/nn507429e
  96. Meng He, Loredana Protesescu, Riccarda Caputo, Frank Krumeich, and Maksym V. Kovalenko . A General Synthesis Strategy for Monodisperse Metallic and Metalloid Nanoparticles (In, Ga, Bi, Sb, Zn, Cu, Sn, and Their Alloys) via in Situ Formed Metal Long-Chain Amides. Chemistry of Materials 2015, 27 (2) , 635-647. https://doi.org/10.1021/cm5045144
  97. Sung-Fu Hung, Aoni Xu, Xue Wang, Fengwang Li, Shao-Hui Hsu, Yuhang Li, Joshua Wicks, Eduardo González Cervantes, Armin Sedighian Rasouli, Yuguang C. Li, Mingchuan Luo, Dae-Hyun Nam, Ning Wang, Tao Peng, Yu Yan, Geonhui Lee, Edward H. Sargent. A metal-supported single-atom catalytic site enables carbon dioxide hydrogenation. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-28456-9
  98. Zhihao Liu, Xinhua Gao, Bo Liu, Wenlong Song, Qingxiang Ma, Tian-sheng Zhao, Xu Wang, Jong Wook Bae, Xingjun Zhang, Jianli Zhang. Highly stable and selective layered Co-Al-O catalysts for low-temperature CO2 methanation. Applied Catalysis B: Environmental 2022, 310 , 121303. https://doi.org/10.1016/j.apcatb.2022.121303
  99. Mengen Chu, Chunjun Chen, Yahui Wu, Xupeng Yan, Shuaiqiang Jia, Ruting Feng, Haihong Wu, Mingyuan He, Buxing Han. Enhanced CO2 electroreduction to ethylene via strong metal-support interaction. Green Energy & Environment 2022, 7 (4) , 792-798. https://doi.org/10.1016/j.gee.2020.12.001
  100. Xin Wang, Ximeng Lv, Gengfeng Zheng, Yongzhu Fu. Room-temperature Electrochemical C1-to-fuel Conversion: Perspectives from Material Engineering and Device Design. EnergyChem 2022, 11 , 100086. https://doi.org/10.1016/j.enchem.2022.100086
Load more citations

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect

This website uses cookies to improve your user experience. By continuing to use the site, you are accepting our use of cookies. Read the ACS privacy policy.

CONTINUE