ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Enhanced Electrochemical Methanation of Carbon Dioxide with a Dispersible Nanoscale Copper Catalyst

View Author Information
§ ⊥ Department of Chemical and Biomolecular Engineering, Department of Materials Science and Engineering, §Department of Chemistry, and Kavli Energy Nanosciences Institute, University of California, Berkeley, California 94720, United States
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
Cite this: J. Am. Chem. Soc. 2014, 136, 38, 13319–13325
Publication Date (Web):August 19, 2014
https://doi.org/10.1021/ja5065284
Copyright © 2014 American Chemical Society

    Article Views

    15501

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (3 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Although the vast majority of hydrocarbon fuels and products are presently derived from petroleum, there is much interest in the development of routes for synthesizing these same products by hydrogenating CO2. The simplest hydrocarbon target is methane, which can utilize existing infrastructure for natural gas storage, distribution, and consumption. Electrochemical methods for methanizing CO2 currently suffer from a combination of low activities and poor selectivities. We demonstrate that copper nanoparticles supported on glassy carbon (n-Cu/C) achieve up to 4 times greater methanation current densities compared to high-purity copper foil electrodes. The n-Cu/C electrocatalyst also exhibits an average Faradaic efficiency for methanation of 80% during extended electrolysis, the highest Faradaic efficiency for room-temperature methanation reported to date. We find that the level of copper catalyst loading on the glassy carbon support has an enormous impact on the morphology of the copper under catalytic conditions and the resulting Faradaic efficiency for methane. The improved activity and Faradaic efficiency for methanation involves a mechanism that is distinct from what is generally thought to occur on copper foils. Electrochemical data indicate that the early steps of methanation on n-Cu/C involve a pre-equilibrium one-electron transfer to CO2 to form an adsorbed radical, followed by a rate-limiting non-electrochemical step in which the adsorbed CO2 radical reacts with a second CO2 molecule from solution. These nanoscale copper electrocatalysts represent a first step toward the preparation of practical methanation catalysts that can be incorporated into membrane-electrode assemblies in electrolyzers.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Additional electrochemical data on electrode stability, order dependence, and mechanistic insights. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 437 publications.

    1. Jiachen Gao, Zishan Han, Xinyu Wang, Lu Wang, Yong Guo, Changjun Cui, Daliang Han, Linjie Zhi, Quan-Hong Yang, Zhe Weng. Self-Limited Reconstruction Realized via Copper-Ligand Interaction for Stabilizing High-Selective CO2 Electromethanation. ACS Catalysis 2023, 13 (23) , 15457-15466. https://doi.org/10.1021/acscatal.3c03961
    2. Max Roemer, William Lewis. Azide-Assisted Growth of Copper Nanostructures and Their Application as a Carbon Supported Catalyst in Two-Step Three-Component Azide–Alkyne Cycloadditions. Langmuir 2023, 39 (38) , 13560-13570. https://doi.org/10.1021/acs.langmuir.3c01597
    3. Williams Kweku Darkwah, Alfred Bekoe Appiagyei, Joshua B. Puplampu. Transforming the Petroleum Industry through Catalytic Oxidation Reactions vis-à-vis Preceramic Polymer Catalyst Supports. ACS Omega 2023, 8 (38) , 34215-34234. https://doi.org/10.1021/acsomega.2c07562
    4. Mariana C.N. Bessa, Azahara Luna-Triguero, Jose M. Vicent-Luna, Paulo M.O.C. Carmo, Mihalis N. Tsampas, Ana Mafalda Ribeiro, Alírio E. Rodrigues, Sofia Calero, Alexandre F.P. Ferreira. An Efficient Strategy for Electroreduction Reactor Outlet Fractioning into Valuable Products. Industrial & Engineering Chemistry Research 2023, 62 (22) , 8847-8863. https://doi.org/10.1021/acs.iecr.3c00090
    5. Seong Woo Jo, Joo Yeon Kim, Myoung Won Lee, Yeonsu Kim, Hyun S. Ahn. Highly Selective Reduction of CO2 to Methane Induced by Subzero Depression of the Electrode Surface Temperature. ACS Catalysis 2023, 13 (8) , 5122-5126. https://doi.org/10.1021/acscatal.3c00311
    6. Georg Kastlunger, Hendrik H. Heenen, Nitish Govindarajan. Combining First-Principles Kinetics and Experimental Data to Establish Guidelines for Product Selectivity in Electrochemical CO2 Reduction. ACS Catalysis 2023, 13 (7) , 5062-5072. https://doi.org/10.1021/acscatal.3c00228
    7. Ward van der Stam. The Necessity for Multiscale In Situ Characterization of Tailored Electrocatalyst Nanoparticle Stability. Chemistry of Materials 2023, 35 (2) , 386-394. https://doi.org/10.1021/acs.chemmater.2c03286
    8. Iwona A. Rutkowska, Anna Chmielnicka, Maciej Krzywiecki, Pawel J. Kulesza. Toward Effective CO2 Reduction in an Acid Medium: Electrocatalysis at Cu2O-Derived Polycrystalline Cu Sites Immobilized within the Network of WO3 Nanowires. ACS Measurement Science Au 2022, 2 (6) , 553-567. https://doi.org/10.1021/acsmeasuresciau.2c00010
    9. M. Nur Hossain, Rachelle M. Choueiri, Sharon Abner, Leanne D. Chen, Aicheng Chen. Electrochemical Reduction of Carbon Dioxide at TiO2/Au Nanocomposites. ACS Applied Materials & Interfaces 2022, 14 (46) , 51889-51899. https://doi.org/10.1021/acsami.2c14368
    10. Haisong Feng, Chunyuan Chen, Si Wang, Meng Zhang, Hu Ding, Yujie Liang, Xin Zhang. Theoretical Investigation of Cu–Au Alloy for Carbon Dioxide Electroreduction: Cu/Au Ratio Determining C1/C2 Selectivity. The Journal of Physical Chemistry Letters 2022, 13 (34) , 8002-8009. https://doi.org/10.1021/acs.jpclett.2c02161
    11. Eser Metin Akinoglu, Bohua Ren, Junyuan Xu, Dangsheng Su, Tengfei Qiu, Michael Giersig, Guobin Wen. Vertically Aligned Multiwalled Carbon Nanotube/Cu Catalysts for CO2 Electroreduction. ACS Applied Nano Materials 2022, 5 (8) , 10399-10408. https://doi.org/10.1021/acsanm.2c01728
    12. Shenghua Chen, Zedong Zhang, Wenjun Jiang, Shishi Zhang, Jiexin Zhu, Liqiang Wang, Honghui Ou, Shahid Zaman, Lin Tan, Peng Zhu, Erhuan Zhang, Peng Jiang, Yaqiong Su, Dingsheng Wang, Yadong Li. Engineering Water Molecules Activation Center on Multisite Electrocatalysts for Enhanced CO2 Methanation. Journal of the American Chemical Society 2022, 144 (28) , 12807-12815. https://doi.org/10.1021/jacs.2c03875
    13. James R. Pankhurst, Laia Castilla-Amorós, Dragos C. Stoian, Jan Vavra, Valeria Mantella, Petru P. Albertini, Raffaella Buonsanti. Copper Phosphonate Lamella Intermediates Control the Shape of Colloidal Copper Nanocrystals. Journal of the American Chemical Society 2022, 144 (27) , 12261-12271. https://doi.org/10.1021/jacs.2c03489
    14. Kevin Rossi, Raffaella Buonsanti. Shaping Copper Nanocatalysts to Steer Selectivity in the Electrochemical CO2 Reduction Reaction. Accounts of Chemical Research 2022, 55 (5) , 629-637. https://doi.org/10.1021/acs.accounts.1c00673
    15. Nick Daems, Daniel Choukroun, Pablo Merino, Clara Rettenmaier, Lien Pacquets, Arno Bergmann, Gonzalo Santoro, Luis Vázquez, Lidia Martínez, Beatriz Roldan Cuenya, Jose Angel Martín Gago, Tom Breugelmans. Steering Hydrocarbon Selectivity in CO2 Electroreduction over Soft-Landed CuOx Nanoparticle-Functionalized Gas Diffusion Electrodes. ACS Applied Materials & Interfaces 2022, 14 (2) , 2691-2702. https://doi.org/10.1021/acsami.1c17998
    16. Mingyuan Wang, Hui Shi, Ming Tian, Ruowang Chen, Junpeng Shu, Quan Zhang, Yonghu Wang, Cuiyu Li, Neng Wan, Shuangying Lei. Single Nickel Atom-Modified Phosphorene Nanosheets for Electrocatalytic CO2 Reduction. ACS Applied Nano Materials 2021, 4 (10) , 11017-11030. https://doi.org/10.1021/acsanm.1c02458
    17. Daniel Choukroun, Lien Pacquets, Chen Li, Saskia Hoekx, Sven Arnouts, Kitty Baert, Tom Hauffman, Sara Bals, Tom Breugelmans. Mapping Composition–Selectivity Relationships of Supported Sub-10 nm Cu–Ag Nanocrystals for High-Rate CO2 Electroreduction. ACS Nano 2021, 15 (9) , 14858-14872. https://doi.org/10.1021/acsnano.1c04943
    18. Lingzhen Zeng, Yonghua Cao, Zhe Li, Yiheng Dai, Yongke Wang, Bing An, Jingzheng Zhang, Han Li, Yang Zhou, Wenbin Lin, Cheng Wang. Multiple Cuprous Centers Supported on a Titanium-Based Metal–Organic Framework Catalyze CO2 Hydrogenation to Ethylene. ACS Catalysis 2021, 11 (18) , 11696-11705. https://doi.org/10.1021/acscatal.1c01939
    19. Hao-Lin Zhu, Jia-Run Huang, Xue-Wen Zhang, Chao Wang, Ning-Yu Huang, Pei-Qin Liao, Xiao-Ming Chen. Highly Efficient Electroconversion of CO2 into CH4 by a Metal–Organic Framework with Trigonal Pyramidal Cu(I)N3 Active Sites. ACS Catalysis 2021, 11 (18) , 11786-11792. https://doi.org/10.1021/acscatal.1c02980
    20. Shaohua Chen, Chenyuan Zhu, Haoyang Gu, Li Wang, Jiajie Qi, Lixiang Zhong, Zhibin Zhang, Chunlei Yang, Guoshuai Shi, Siwen Zhao, Shuzhou Li, Kaihui Liu, Liming Zhang. Enhanced Electrochemical Methanation of Carbon Dioxide at the Single-Layer Hexagonal Boron Nitride/Cu Interfacial Perimeter. Nano Letters 2021, 21 (10) , 4469-4476. https://doi.org/10.1021/acs.nanolett.1c01258
    21. Zhaolong Wang, Xiaojie She, Qing Yu, Xingwang Zhu, Huaming Li, Hui Xu. Minireview on the Commonly Applied Copper-Based Electrocatalysts for Electrochemical CO2 Reduction. Energy & Fuels 2021, 35 (10) , 8585-8601. https://doi.org/10.1021/acs.energyfuels.1c00700
    22. James R. Pankhurst, Pranit Iyengar, Valery Okatenko, Raffaella Buonsanti. Copper Nanocrystal Morphology Determines the Viability of Molecular Surface Functionalization in Tuning Electrocatalytic Behavior in CO2 Reduction. Inorganic Chemistry 2021, 60 (10) , 6939-6945. https://doi.org/10.1021/acs.inorgchem.1c00287
    23. Lei Zhang, Xiao-Xin Li, Zhong-Ling Lang, Yang Liu, Jiang Liu, Lin Yuan, Wan-Yue Lu, Yuan-Sheng Xia, Long-Zhang Dong, Da-Qiang Yuan, Ya-Qian Lan. Enhanced Cuprophilic Interactions in Crystalline Catalysts Facilitate the Highly Selective Electroreduction of CO2 to CH4. Journal of the American Chemical Society 2021, 143 (10) , 3808-3816. https://doi.org/10.1021/jacs.0c11450
    24. Rui Serra-Maia, F. Marc Michel, Temple A. Douglas, Yijin Kang, Eric A. Stach. Mechanism and Kinetics of Methane Oxidation to Methanol Catalyzed by AuPd Nanocatalysts at Low Temperature. ACS Catalysis 2021, 11 (5) , 2837-2845. https://doi.org/10.1021/acscatal.0c04487
    25. Yannick T. Guntern, Valery Okatenko, James Pankhurst, Seyedeh Behnaz Varandili, Pranit Iyengar, Cedric Koolen, Dragos Stoian, Jan Vavra, Raffaella Buonsanti. Colloidal Nanocrystals as Electrocatalysts with Tunable Activity and Selectivity. ACS Catalysis 2021, 11 (3) , 1248-1295. https://doi.org/10.1021/acscatal.0c04403
    26. Mario Löffler, Karl J. J. Mayrhofer, Ioannis Katsounaros. Oxide Reduction Precedes Carbon Dioxide Reduction on Oxide-Derived Copper Electrodes. The Journal of Physical Chemistry C 2021, 125 (3) , 1833-1838. https://doi.org/10.1021/acs.jpcc.0c09107
    27. Ming Zhou, Can Li, Jiye Fang. Noble-Metal Based Random Alloy and Intermetallic Nanocrystals: Syntheses and Applications. Chemical Reviews 2021, 121 (2) , 736-795. https://doi.org/10.1021/acs.chemrev.0c00436
    28. Sungin Kim, Jimin Kwag, Chiara Machello, Sungsu Kang, Junyoung Heo, Cyril F. Reboul, Dohun Kang, Seulki Kang, Sangdeok Shim, So-Jung Park, Byung Hyo Kim, Taeghwan Hyeon, Peter Ercius, Hans Elmlund, Jungwon Park. Correlating 3D Surface Atomic Structure and Catalytic Activities of Pt Nanocrystals. Nano Letters 2021, 21 (2) , 1175-1183. https://doi.org/10.1021/acs.nanolett.0c04873
    29. Xin Guan, Chenxu Zhao, Xin Liu, Shanping Liu, Wang Gao, Qing Jiang. Universal Principle to Describe Reactivity and Selectivity of CO2 Electroreduction on Transition Metals and Single-Atom Catalysts. The Journal of Physical Chemistry C 2020, 124 (47) , 25898-25906. https://doi.org/10.1021/acs.jpcc.0c08745
    30. Ruixuan Qin, Kunlong Liu, Qingyuan Wu, Nanfeng Zheng. Surface Coordination Chemistry of Atomically Dispersed Metal Catalysts. Chemical Reviews 2020, 120 (21) , 11810-11899. https://doi.org/10.1021/acs.chemrev.0c00094
    31. Charuni M. Gunathunge, Jingyi Li, Xiang Li, Matthias M. Waegele. Surface-Adsorbed CO as an Infrared Probe of Electrocatalytic Interfaces. ACS Catalysis 2020, 10 (20) , 11700-11711. https://doi.org/10.1021/acscatal.0c03316
    32. Tristan T. Adamson, Steven P. Kelley, Wesley H. Bernskoetter. Iron-Mediated C–C Bond Formation via Reductive Coupling with Carbon Dioxide. Organometallics 2020, 39 (19) , 3562-3571. https://doi.org/10.1021/acs.organomet.0c00528
    33. Avdhoot Datar, Maya Bar-Sadan, Ashwin Ramasubramaniam. Interactions between Transition-Metal Surfaces and MoS2 Monolayers: Implications for Hydrogen Evolution and CO2 Reduction Reactions. The Journal of Physical Chemistry C 2020, 124 (37) , 20116-20124. https://doi.org/10.1021/acs.jpcc.0c05191
    34. Zhijiang Wang, Qi Yuan, Jingjing Shan, Zhaohua Jiang, Ping Xu, Yongfeng Hu, Jigang Zhou, Lina Wu, Zhuangzhuang Niu, Jianmin Sun, Tao Cheng, William A. Goddard, III. Highly Selective Electrocatalytic Reduction of CO2 into Methane on Cu–Bi Nanoalloys. The Journal of Physical Chemistry Letters 2020, 11 (17) , 7261-7266. https://doi.org/10.1021/acs.jpclett.0c01261
    35. Mozhgan Moradzaman, Guido Mul. Infrared Analysis of Interfacial Phenomena during Electrochemical Reduction of CO2 over Polycrystalline Copper Electrodes. ACS Catalysis 2020, 10 (15) , 8049-8057. https://doi.org/10.1021/acscatal.0c02130
    36. Lili Han, Shoujie Song, Mingjie Liu, Siyu Yao, Zhixiu Liang, Hao Cheng, Zhouhong Ren, Wei Liu, Ruoqian Lin, Gaocan Qi, Xijun Liu, Qin Wu, Jun Luo, Huolin L. Xin. Stable and Efficient Single-Atom Zn Catalyst for CO2 Reduction to CH4. Journal of the American Chemical Society 2020, 142 (29) , 12563-12567. https://doi.org/10.1021/jacs.9b12111
    37. Chia-Jui Chang, Sheng-Chih Lin, Hsiao-Chien Chen, Jiali Wang, Kai Jen Zheng, Yanping Zhu, Hao Ming Chen. Dynamic Reoxidation/Reduction-Driven Atomic Interdiffusion for Highly Selective CO2 Reduction toward Methane. Journal of the American Chemical Society 2020, 142 (28) , 12119-12132. https://doi.org/10.1021/jacs.0c01859
    38. Juan Carlos Castro-Palacio, Konstantin Ladutenko, Alejandro Prada, Guillermo González-Rubio, Pablo Díaz-Núñez, Andrés Guerrero-Martínez, Pedro Fernández de Córdoba, Jorge Kohanoff, José Manuel Perlado, Ovidio Peña-Rodríguez, Antonio Rivera. Hollow Gold Nanoparticles Produced by Femtosecond Laser Irradiation. The Journal of Physical Chemistry Letters 2020, 11 (13) , 5108-5114. https://doi.org/10.1021/acs.jpclett.0c01233
    39. Maryam Abdinejad, Caitlin Dao, Billy Deng, Filip Dinic, Oleksandr Voznyy, Xiao-an Zhang, Heinz-Bernhard Kraatz. Electrocatalytic Reduction of CO2 to CH4 and CO in Aqueous Solution Using Pyridine-Porphyrins Immobilized onto Carbon Nanotubes. ACS Sustainable Chemistry & Engineering 2020, 8 (25) , 9549-9557. https://doi.org/10.1021/acssuschemeng.0c02791
    40. Charuni M. Gunathunge, Jingyi Li, Xiang Li, Julie J. Hong, Matthias M. Waegele. Revealing the Predominant Surface Facets of Rough Cu Electrodes under Electrochemical Conditions. ACS Catalysis 2020, 10 (12) , 6908-6923. https://doi.org/10.1021/acscatal.9b05532
    41. Chul Jong Yoo, Wan Jae Dong, Jae Yong Park, Jin Wook Lim, Sungjoo Kim, Kyoung Soon Choi, Francis Okello Odongo Ngome, Si-Young Choi, Jong-Lam Lee. Compositional and Geometrical Effects of Bimetallic Cu–Sn Catalysts on Selective Electrochemical CO2 Reduction to CO. ACS Applied Energy Materials 2020, 3 (5) , 4466-4473. https://doi.org/10.1021/acsaem.0c00157
    42. Gian Luca De Gregorio, Thomas Burdyny, Anna Loiudice, Pranit Iyengar, Wilson A. Smith, Raffaella Buonsanti. Facet-Dependent Selectivity of Cu Catalysts in Electrochemical CO2 Reduction at Commercially Viable Current Densities. ACS Catalysis 2020, 10 (9) , 4854-4862. https://doi.org/10.1021/acscatal.0c00297
    43. Subramanian Nellaiappan, Nirmal Kumar Katiyar, Ritesh Kumar, Arko Parui, Kirtiman Deo Malviya, K. G. Pradeep, Abhishek K. Singh, Sudhanshu Sharma, Chandra Sekhar Tiwary, Krishanu Biswas. High-Entropy Alloys as Catalysts for the CO2 and CO Reduction Reactions: Experimental Realization. ACS Catalysis 2020, 10 (6) , 3658-3663. https://doi.org/10.1021/acscatal.9b04302
    44. Peter T. Smith, Eva M. Nichols, Zhi Cao, Christopher J. Chang. Hybrid Catalysts for Artificial Photosynthesis: Merging Approaches from Molecular, Materials, and Biological Catalysis. Accounts of Chemical Research 2020, 53 (3) , 575-587. https://doi.org/10.1021/acs.accounts.9b00619
    45. Mohammadreza Esmaeilirad, Alireza Kondori, Boao Song, Andres Ruiz Belmonte, Jialiang Wei, Kamil Kucuk, Shubhada Mahesh Khanvilkar, Erin Efimoff, Wei Chen, Carlo U. Segre, Reza Shahbazian-Yassar, Mohammad Asadi. Oxygen Functionalized Copper Nanoparticles for Solar-Driven Conversion of Carbon Dioxide to Methane. ACS Nano 2020, 14 (2) , 2099-2108. https://doi.org/10.1021/acsnano.9b08792
    46. Xue Wang, Aoni Xu, Fengwang Li, Sung-Fu Hung, Dae-Hyun Nam, Christine M. Gabardo, Ziyun Wang, Yi Xu, Adnan Ozden, Armin Sedighian Rasouli, Alexander H. Ip, David Sinton, Edward H. Sargent. Efficient Methane Electrosynthesis Enabled by Tuning Local CO2 Availability. Journal of the American Chemical Society 2020, 142 (7) , 3525-3531. https://doi.org/10.1021/jacs.9b12445
    47. Chenlu Xie, Zhiqiang Niu, Dohyung Kim, Mufan Li, Peidong Yang. Surface and Interface Control in Nanoparticle Catalysis. Chemical Reviews 2020, 120 (2) , 1184-1249. https://doi.org/10.1021/acs.chemrev.9b00220
    48. Chia-Jui Chang, Sung-Fu Hung, Chia-Shuo Hsu, Hsiao-Chien Chen, Sheng-Chih Lin, Yen-Fa Liao, Hao Ming Chen. Quantitatively Unraveling the Redox Shuttle of Spontaneous Oxidation/Electroreduction of CuOx on Silver Nanowires Using in Situ X-ray Absorption Spectroscopy. ACS Central Science 2019, 5 (12) , 1998-2009. https://doi.org/10.1021/acscentsci.9b01142
    49. Hyo Sang Jeon, Janis Timoshenko, Fabian Scholten, Ilya Sinev, Antonia Herzog, Felix T. Haase, Beatriz Roldan Cuenya. Operando Insight into the Correlation between the Structure and Composition of CuZn Nanoparticles and Their Selectivity for the Electrochemical CO2 Reduction. Journal of the American Chemical Society 2019, 141 (50) , 19879-19887. https://doi.org/10.1021/jacs.9b10709
    50. Venkata Sai Sriram Mosali, Xiaolong Zhang, Ying Zhang, Thomas Gengenbach, Si-Xuan Guo, Graeme Puxty, Michael D. Horne, Alan M. Bond, Jie Zhang. Electrocatalytic CO2 Reduction to Formate on Cu Based Surface Alloys with Enhanced Selectivity. ACS Sustainable Chemistry & Engineering 2019, 7 (24) , 19453-19462. https://doi.org/10.1021/acssuschemeng.9b04222
    51. Wojciech T. Osowiecki, Jasper J. Nussbaum, Gaurav A. Kamat, Georgios Katsoukis, Marc Ledendecker, Heinz Frei, Alexis T. Bell, A. Paul Alivisatos. Factors and Dynamics of Cu Nanocrystal Reconstruction under CO2 Reduction. ACS Applied Energy Materials 2019, 2 (11) , 7744-7749. https://doi.org/10.1021/acsaem.9b01714
    52. Yi-Yu Cai, Sean S. E. Collins, Miranda J. Gallagher, Ujjal Bhattacharjee, Runmin Zhang, Tsz Him Chow, Arash Ahmadivand, Behnaz Ostovar, Alexander Al-Zubeidi, Jianfang Wang, Peter Nordlander, Christy F. Landes, Stephan Link. Single-Particle Emission Spectroscopy Resolves d-Hole Relaxation in Copper Nanocubes. ACS Energy Letters 2019, 4 (10) , 2458-2465. https://doi.org/10.1021/acsenergylett.9b01747
    53. Jiachang Zeng, Wenbiao Zhang, Yang Yang, Dan Li, Xiang Yu, Qingsheng Gao. Pd–Ag Alloy Electrocatalysts for CO2 Reduction: Composition Tuning to Break the Scaling Relationship. ACS Applied Materials & Interfaces 2019, 11 (36) , 33074-33081. https://doi.org/10.1021/acsami.9b11729
    54. Michael D. Burkart, Nilay Hazari, Cathy L. Tway, Elizabeth L. Zeitler. Opportunities and Challenges for Catalysis in Carbon Dioxide Utilization. ACS Catalysis 2019, 9 (9) , 7937-7956. https://doi.org/10.1021/acscatal.9b02113
    55. Giulia Mangione, Jianfeng Huang, Raffaella Buonsanti, Clémence Corminboeuf. Dual-Facet Mechanism in Copper Nanocubes for Electrochemical CO2 Reduction into Ethylene. The Journal of Physical Chemistry Letters 2019, 10 (15) , 4259-4265. https://doi.org/10.1021/acs.jpclett.9b01471
    56. Stephanie Nitopi, Erlend Bertheussen, Soren B. Scott, Xinyan Liu, Albert K. Engstfeld, Sebastian Horch, Brian Seger, Ifan E. L. Stephens, Karen Chan, Christopher Hahn, Jens K. Nørskov, Thomas F. Jaramillo, Ib Chorkendorff. Progress and Perspectives of Electrochemical CO2 Reduction on Copper in Aqueous Electrolyte. Chemical Reviews 2019, 119 (12) , 7610-7672. https://doi.org/10.1021/acs.chemrev.8b00705
    57. Seyedeh Behnaz Varandili, Jianfeng Huang, Emad Oveisi, Gian Luca De Gregorio, Mounir Mensi, Michal Strach, Jan Vavra, Chethana Gadiyar, Arghya Bhowmik, Raffaella Buonsanti. Synthesis of Cu/CeO2-x Nanocrystalline Heterodimers with Interfacial Active Sites To Promote CO2 Electroreduction. ACS Catalysis 2019, 9 (6) , 5035-5046. https://doi.org/10.1021/acscatal.9b00010
    58. Yuguang C. Li, Ziyun Wang, Tiange Yuan, Dae-Hyun Nam, Mingchuan Luo, Joshua Wicks, Bin Chen, Jun Li, Fengwang Li, F. Pelayo García de Arquer, Ying Wang, Cao-Thang Dinh, Oleksandr Voznyy, David Sinton, Edward H. Sargent. Binding Site Diversity Promotes CO2 Electroreduction to Ethanol. Journal of the American Chemical Society 2019, 141 (21) , 8584-8591. https://doi.org/10.1021/jacs.9b02945
    59. Yuhui Xie, Christian Schöttle, Ying Li, Carlo Carraro, Xinya Zhang, Alexander Katz, Roya Maboudian. Synthesis and Electrochemical Stability of Ultrahigh Aspect Ratio Nanoporous Gold after Calixarene-Phosphine Ligand Removal. ACS Applied Materials & Interfaces 2019, 11 (17) , 15189-15194. https://doi.org/10.1021/acsami.9b00754
    60. Xin Li, Jiaguo Yu, Mietek Jaroniec, Xiaobo Chen. Cocatalysts for Selective Photoreduction of CO2 into Solar Fuels. Chemical Reviews 2019, 119 (6) , 3962-4179. https://doi.org/10.1021/acs.chemrev.8b00400
    61. Hyejin Jung, Si Young Lee, Chan Woo Lee, Min Kyung Cho, Da Hye Won, Cheonghee Kim, Hyung-Suk Oh, Byoung Koun Min, Yun Jeong Hwang. Electrochemical Fragmentation of Cu2O Nanoparticles Enhancing Selective C–C Coupling from CO2 Reduction Reaction. Journal of the American Chemical Society 2019, 141 (11) , 4624-4633. https://doi.org/10.1021/jacs.8b11237
    62. Jianfeng Huang, Mounir Mensi, Emad Oveisi, Valeria Mantella, Raffaella Buonsanti. Structural Sensitivities in Bimetallic Catalysts for Electrochemical CO2 Reduction Revealed by Ag–Cu Nanodimers. Journal of the American Chemical Society 2019, 141 (6) , 2490-2499. https://doi.org/10.1021/jacs.8b12381
    63. Jin Gao, Cheng Zhu, Mengmeng Zhu, Yijun Fu, Hui Huang, Yang Liu, Zhenhui Kang. Highly Selective and Efficient Electroreduction of Carbon Dioxide to Carbon Monoxide with Phosphate Silver-Derived Coral-like Silver. ACS Sustainable Chemistry & Engineering 2019, 7 (3) , 3536-3543. https://doi.org/10.1021/acssuschemeng.8b05776
    64. Jianfeng Huang, Raffaella Buonsanti. Colloidal Nanocrystals as Heterogeneous Catalysts for Electrochemical CO2 Conversion. Chemistry of Materials 2019, 31 (1) , 13-25. https://doi.org/10.1021/acs.chemmater.8b04155
    65. Rosa M. Arán-Ais, Dunfeng Gao, Beatriz Roldan Cuenya. Structure- and Electrolyte-Sensitivity in CO2 Electroreduction. Accounts of Chemical Research 2018, 51 (11) , 2906-2917. https://doi.org/10.1021/acs.accounts.8b00360
    66. Huan Xie, Shaoqing Chen, Feng Ma, Jiashun Liang, Zhengpei Miao, Tanyuan Wang, Hsing-Lin Wang, Yunhui Huang, Qing Li. Boosting Tunable Syngas Formation via Electrochemical CO2 Reduction on Cu/In2O3 Core/Shell Nanoparticles. ACS Applied Materials & Interfaces 2018, 10 (43) , 36996-37004. https://doi.org/10.1021/acsami.8b12747
    67. Dae-Hyun Nam, Oleksandr S. Bushuyev, Jun Li, Phil De Luna, Ali Seifitokaldani, Cao-Thang Dinh, F. Pelayo García de Arquer, Yuhang Wang, Zhiqin Liang, Andrew H. Proppe, Chih Shan Tan, Petar Todorović, Osama Shekhah, Christine M. Gabardo, Jea Woong Jo, Jongmin Choi, Min-Jae Choi, Se-Woong Baek, Junghwan Kim, David Sinton, Shana O. Kelley, Mohamed Eddaoudi, Edward H. Sargent. Metal–Organic Frameworks Mediate Cu Coordination for Selective CO2 Electroreduction. Journal of the American Chemical Society 2018, 140 (36) , 11378-11386. https://doi.org/10.1021/jacs.8b06407
    68. Abhijit Dutta, Carina Elisabeth Morstein, Motiar Rahaman, Alena Cedeño López, Peter Broekmann. Beyond Copper in CO2 Electrolysis: Effective Hydrocarbon Production on Silver-Nanofoam Catalysts. ACS Catalysis 2018, 8 (9) , 8357-8368. https://doi.org/10.1021/acscatal.8b01738
    69. Yifei Wang, Zheng Chen, Peng Han, Yonghua Du, Zhengxiang Gu, Xin Xu, Gengfeng Zheng. Single-Atomic Cu with Multiple Oxygen Vacancies on Ceria for Electrocatalytic CO2 Reduction to CH4. ACS Catalysis 2018, 8 (8) , 7113-7119. https://doi.org/10.1021/acscatal.8b01014
    70. Chi Hun Choi, Kyungwha Chung, Trang-T. H. Nguyen, Dong Ha Kim. Plasmon-Mediated Electrocatalysis for Sustainable Energy: From Electrochemical Conversion of Different Feedstocks to Fuel Cell Reactions. ACS Energy Letters 2018, 3 (6) , 1415-1433. https://doi.org/10.1021/acsenergylett.8b00461
    71. Sunyhik Ahn, Konstantin Klyukin, Russell J. Wakeham, Jennifer A. Rudd, Aled R. Lewis, Shirin Alexander, Francesco Carla, Vitaly Alexandrov, Enrico Andreoli. Poly-Amide Modified Copper Foam Electrodes for Enhanced Electrochemical Reduction of Carbon Dioxide. ACS Catalysis 2018, 8 (5) , 4132-4142. https://doi.org/10.1021/acscatal.7b04347
    72. Thao T. H. Hoang, Sumit Verma, Sichao Ma, Tim T. Fister, Janis Timoshenko, Anatoly I. Frenkel, Paul J. A. Kenis, Andrew A. Gewirth. Nanoporous Copper–Silver Alloys by Additive-Controlled Electrodeposition for the Selective Electroreduction of CO2 to Ethylene and Ethanol. Journal of the American Chemical Society 2018, 140 (17) , 5791-5797. https://doi.org/10.1021/jacs.8b01868
    73. Hua Sheng, Myoung Hwan Oh, Wojciech T. Osowiecki, Wooyul Kim, A. Paul Alivisatos, Heinz Frei. Carbon Dioxide Dimer Radical Anion as Surface Intermediate of Photoinduced CO2 Reduction at Aqueous Cu and CdSe Nanoparticle Catalysts by Rapid-Scan FT-IR Spectroscopy. Journal of the American Chemical Society 2018, 140 (12) , 4363-4371. https://doi.org/10.1021/jacs.8b00271
    74. Matthew Jouny, Wesley Luc, and Feng Jiao . General Techno-Economic Analysis of CO2 Electrolysis Systems. Industrial & Engineering Chemistry Research 2018, 57 (6) , 2165-2177. https://doi.org/10.1021/acs.iecr.7b03514
    75. Charlotte Kirk, Leanne D. Chen, Samira Siahrostami, Mohammadreza Karamad, Michal Bajdich, Johannes Voss, Jens K. Nørskov, and Karen Chan . Theoretical Investigations of the Electrochemical Reduction of CO on Single Metal Atoms Embedded in Graphene. ACS Central Science 2017, 3 (12) , 1286-1293. https://doi.org/10.1021/acscentsci.7b00442
    76. Wan Jae Dong, Chul Jong Yoo, and Jong-Lam Lee . Monolithic Nanoporous In–Sn Alloy for Electrochemical Reduction of Carbon Dioxide. ACS Applied Materials & Interfaces 2017, 9 (50) , 43575-43582. https://doi.org/10.1021/acsami.7b10308
    77. Ezra L. Clark, Christopher Hahn, Thomas F. Jaramillo, and Alexis T. Bell . Electrochemical CO2 Reduction over Compressively Strained CuAg Surface Alloys with Enhanced Multi-Carbon Oxygenate Selectivity. Journal of the American Chemical Society 2017, 139 (44) , 15848-15857. https://doi.org/10.1021/jacs.7b08607
    78. Samira Siahrostami, Kun Jiang, Mohammadreza Karamad, Karen Chan, Haotian Wang, and Jens Nørskov . Theoretical Investigations into Defected Graphene for Electrochemical Reduction of CO2. ACS Sustainable Chemistry & Engineering 2017, 5 (11) , 11080-11085. https://doi.org/10.1021/acssuschemeng.7b03031
    79. Sungju Yu, Andrew J. Wilson, Gayatri Kumari, Xueqiang Zhang, and Prashant K. Jain . Opportunities and Challenges of Solar-Energy-Driven Carbon Dioxide to Fuel Conversion with Plasmonic Catalysts. ACS Energy Letters 2017, 2 (9) , 2058-2070. https://doi.org/10.1021/acsenergylett.7b00640
    80. Yan-Ling Qiu, He-Xiang Zhong, Tao-Tao Zhang, Wen-Bin Xu, Xian-Feng Li, and Hua-Min Zhang . Copper Electrode Fabricated via Pulse Electrodeposition: Toward High Methane Selectivity and Activity for CO2 Electroreduction. ACS Catalysis 2017, 7 (9) , 6302-6310. https://doi.org/10.1021/acscatal.7b00571
    81. Qing Tang, Yongjin Lee, Dai-Ying Li, Woojun Choi, C. W. Liu, Dongil Lee, and De-en Jiang . Lattice-Hydride Mechanism in Electrocatalytic CO2 Reduction by Structurally Precise Copper-Hydride Nanoclusters. Journal of the American Chemical Society 2017, 139 (28) , 9728-9736. https://doi.org/10.1021/jacs.7b05591
    82. Shichen Lian, Mohamad S. Kodaimati, Dmitriy S. Dolzhnikov, Raul Calzada, and Emily A. Weiss . Powering a CO2 Reduction Catalyst with Visible Light through Multiple Sub-picosecond Electron Transfers from a Quantum Dot. Journal of the American Chemical Society 2017, 139 (26) , 8931-8938. https://doi.org/10.1021/jacs.7b03134
    83. Charuni M. Gunathunge, Xiang Li, Jingyi Li, Robert P. Hicks, Vincent J. Ovalle, and Matthias M. Waegele . Spectroscopic Observation of Reversible Surface Reconstruction of Copper Electrodes under CO2 Reduction. The Journal of Physical Chemistry C 2017, 121 (22) , 12337-12344. https://doi.org/10.1021/acs.jpcc.7b03910
    84. Thao T. H. Hoang, Sichao Ma, Jake I. Gold, Paul J. A. Kenis, and Andrew A. Gewirth . Nanoporous Copper Films by Additive-Controlled Electrodeposition: CO2 Reduction Catalysis. ACS Catalysis 2017, 7 (5) , 3313-3321. https://doi.org/10.1021/acscatal.6b03613
    85. Yuxin Fang and John C. Flake . Electrochemical Reduction of CO2 at Functionalized Au Electrodes. Journal of the American Chemical Society 2017, 139 (9) , 3399-3405. https://doi.org/10.1021/jacs.6b11023
    86. Yifan Li, Fan Cui, Michael B. Ross, Dohyung Kim, Yuchun Sun, and Peidong Yang . Structure-Sensitive CO2 Electroreduction to Hydrocarbons on Ultrathin 5-fold Twinned Copper Nanowires. Nano Letters 2017, 17 (2) , 1312-1317. https://doi.org/10.1021/acs.nanolett.6b05287
    87. Wesley Luc, Charles Collins, Siwen Wang, Hongliang Xin, Kai He, Yijin Kang, and Feng Jiao . Ag–Sn Bimetallic Catalyst with a Core–Shell Structure for CO2 Reduction. Journal of the American Chemical Society 2017, 139 (5) , 1885-1893. https://doi.org/10.1021/jacs.6b10435
    88. Shyam Kattel, Binhang Yan, Yixiong Yang, Jingguang G. Chen, and Ping Liu . Optimizing Binding Energies of Key Intermediates for CO2 Hydrogenation to Methanol over Oxide-Supported Copper. Journal of the American Chemical Society 2016, 138 (38) , 12440-12450. https://doi.org/10.1021/jacs.6b05791
    89. Anna Wuttig, Can Liu, Qiling Peng, Momo Yaguchi, Christopher H. Hendon, Kenta Motobayashi, Shen Ye, Masatoshi Osawa, and Yogesh Surendranath . Tracking a Common Surface-Bound Intermediate during CO2-to-Fuels Catalysis. ACS Central Science 2016, 2 (8) , 522-528. https://doi.org/10.1021/acscentsci.6b00155
    90. Zhe Weng, Jianbing Jiang, Yueshen Wu, Zishan Wu, Xiaoting Guo, Kelly L. Materna, Wen Liu, Victor S. Batista, Gary W. Brudvig, and Hailiang Wang . Electrochemical CO2 Reduction to Hydrocarbons on a Heterogeneous Molecular Cu Catalyst in Aqueous Solution. Journal of the American Chemical Society 2016, 138 (26) , 8076-8079. https://doi.org/10.1021/jacs.6b04746
    91. Daniel A. Torelli, Sonja A. Francis, J. Chance Crompton, Alnald Javier, Jonathan R. Thompson, Bruce S. Brunschwig, Manuel P. Soriaga, and Nathan S. Lewis . Nickel–Gallium-Catalyzed Electrochemical Reduction of CO2 to Highly Reduced Products at Low Overpotentials. ACS Catalysis 2016, 6 (3) , 2100-2104. https://doi.org/10.1021/acscatal.5b02888
    92. Hemma Mistry, Farzad Behafarid, Rulle Reske, Ana Sofia Varela, Peter Strasser, and Beatriz Roldan Cuenya . Tuning Catalytic Selectivity at the Mesoscale via Interparticle Interactions. ACS Catalysis 2016, 6 (2) , 1075-1080. https://doi.org/10.1021/acscatal.5b02202
    93. Douglas R. Kauffman, Dominic Alfonso, De Nyago Tafen, Jonathan Lekse, Congjun Wang, Xingyi Deng, Junseok Lee, Hoyoung Jang, Jun-sik Lee, Santosh Kumar, and Christopher Matranga . Electrocatalytic Oxygen Evolution with an Atomically Precise Nickel Catalyst. ACS Catalysis 2016, 6 (2) , 1225-1234. https://doi.org/10.1021/acscatal.5b02633
    94. Dan Ren, Nian Tee Wong, Albertus Denny Handoko, Yun Huang, and Boon Siang Yeo . Mechanistic Insights into the Enhanced Activity and Stability of Agglomerated Cu Nanocrystals for the Electrochemical Reduction of Carbon Dioxide to n-Propanol. The Journal of Physical Chemistry Letters 2016, 7 (1) , 20-24. https://doi.org/10.1021/acs.jpclett.5b02554
    95. James L. White , Maor F. Baruch , James E. Pander III , Yuan Hu , Ivy C. Fortmeyer , James Eujin Park , Tao Zhang , Kuo Liao , Jing Gu , Yong Yan , Travis W. Shaw , Esta Abelev , and Andrew B. Bocarsly . Light-Driven Heterogeneous Reduction of Carbon Dioxide: Photocatalysts and Photoelectrodes. Chemical Reviews 2015, 115 (23) , 12888-12935. https://doi.org/10.1021/acs.chemrev.5b00370
    96. Atefeh Taheri, Emily J. Thompson, James C. Fettinger, and Louise A. Berben . An Iron Electrocatalyst for Selective Reduction of CO2 to Formate in Water: Including Thermochemical Insights. ACS Catalysis 2015, 5 (12) , 7140-7151. https://doi.org/10.1021/acscatal.5b01708
    97. Tao Cheng, Hai Xiao, and William A. Goddard, III . Free-Energy Barriers and Reaction Mechanisms for the Electrochemical Reduction of CO on the Cu(100) Surface, Including Multiple Layers of Explicit Solvent at pH 0. The Journal of Physical Chemistry Letters 2015, 6 (23) , 4767-4773. https://doi.org/10.1021/acs.jpclett.5b02247
    98. Nikolay Kornienko, Yingbo Zhao, Christopher S. Kley, Chenhui Zhu, Dohyung Kim, Song Lin, Christopher J. Chang, Omar M. Yaghi, and Peidong Yang . Metal–Organic Frameworks for Electrocatalytic Reduction of Carbon Dioxide. Journal of the American Chemical Society 2015, 137 (44) , 14129-14135. https://doi.org/10.1021/jacs.5b08212
    99. Yawei Li, Haibin Su, Siew Hwa Chan, and Qiang Sun . CO2 Electroreduction Performance of Transition Metal Dimers Supported on Graphene: A Theoretical Study. ACS Catalysis 2015, 5 (11) , 6658-6664. https://doi.org/10.1021/acscatal.5b01165
    100. Xinxin Cheng, Aiping Fu, Hongliang Li, Yiqian Wang, Peizhi Guo, Jingquan Liu, Jintao Zhang, and Xiu Song Zhao . Sustainable Preparation of Copper Particles Decorated Carbon Microspheres and Studies on Their Bactericidal Activity and Catalytic Properties. ACS Sustainable Chemistry & Engineering 2015, 3 (10) , 2414-2422. https://doi.org/10.1021/acssuschemeng.5b00382
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect