ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Electrochemical Activation of Cp* Iridium Complexes for Electrode-Driven Water-Oxidation Catalysis

View Author Information
Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
Department of Chemical and Environmental Engineering, Yale University, 9 Hillhouse Avenue, New Haven, Connecticut 06520, United States
§ Centre for Sustainable Chemical Technologies, University of Bath, Bath BA2 7AY, United Kingdom
Cite this: J. Am. Chem. Soc. 2014, 136, 39, 13826–13834
Publication Date (Web):September 4, 2014
https://doi.org/10.1021/ja5068299
Copyright © 2014 American Chemical Society

    Article Views

    3954

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Organometallic iridium complexes bearing oxidatively stable chelate ligands are precursors for efficient homogeneous water-oxidation catalysts (WOCs), but their activity in oxygen evolution has so far been studied almost exclusively with sacrificial chemical oxidants. In this report, we study the electrochemical activation of Cp*Ir complexes and demonstrate true electrode-driven water oxidation catalyzed by a homogeneous iridium species in solution. Whereas the Cp* precursors exhibit no measurable O2-evolution activity, the molecular species formed after their oxidative activation are highly active homogeneous WOCs, capable of electrode-driven O2 evolution with high Faradaic efficiency. We have ruled out the formation of heterogeneous iridium oxides, either as colloids in solution or as deposits on the surface of the electrode, and found indication that the conversion of the precursor to the active molecular species occurs by a similar process whether carried out by chemical or electrochemical methods. This work makes these WOCs more practical for application in photoelectrochemical dyads for light-driven water splitting.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Additional electrochemical data, UV–visible spectra, electron microscopy, DLS, and O2-evolution data. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 103 publications.

    1. Hongna Zhang, Boqiang Chen, Tianying Liu, Gary W. Brudvig, Dunwei Wang, Matthias M. Waegele. Infrared Spectroscopic Observation of Oxo- and Superoxo-Intermediates in the Water Oxidation Cycle of a Molecular Ir Catalyst. Journal of the American Chemical Society 2024, 146 (1) , 878-883. https://doi.org/10.1021/jacs.3c11206
    2. Alejandra Pita-Milleiro, Macarena G. Alférez, Juan J. Moreno, María F. Espada, Celia Maya, Jesús Campos. Unveiling the Latent Reactivity of Cp* Ligands (C5Me5–) toward Carbon Nucleophiles on an Iridium Complex. Inorganic Chemistry 2023, 62 (15) , 5961-5971. https://doi.org/10.1021/acs.inorgchem.2c04381
    3. Haoyi Li, Muchun Fei, Jennifer L. Troiano, Lu Ma, Xingxu Yan, Peter Tieu, Yucheng Yuan, Yuhan Zhang, Tianying Liu, Xiaoqing Pan, Gary W. Brudvig, Dunwei Wang. Selective Methane Oxidation by Heterogenized Iridium Catalysts. Journal of the American Chemical Society 2023, 145 (2) , 769-773. https://doi.org/10.1021/jacs.2c09434
    4. Gongfang Hu, Jennifer L. Troiano, Uriel T. Tayvah, Liam S. Sharninghausen, Shashi Bhushan Sinha, Dimitar Y. Shopov, Brandon Q. Mercado, Robert H. Crabtree, Gary W. Brudvig. Accessing Molecular Dimeric Ir Water Oxidation Catalysts from Coordination Precursors. Inorganic Chemistry 2021, 60 (18) , 14349-14356. https://doi.org/10.1021/acs.inorgchem.1c02025
    5. Shao-Xiong Lennon Luo, Richard Y. Liu, Sungsik Lee, Timothy M. Swager. Electrocatalytic Isoxazoline–Nanocarbon Metal Complexes. Journal of the American Chemical Society 2021, 143 (27) , 10441-10453. https://doi.org/10.1021/jacs.1c05439
    6. Graham E. Dobereiner, Nilay Hazari, Nathan D. Schley. Pioneers and Influencers in Organometallic Chemistry: Professor Robert Crabtree’s Storied Career via an Unusual Journey to the Ivy League. Organometallics 2021, 40 (3) , 295-301. https://doi.org/10.1021/acs.organomet.0c00797
    7. Yuki Tanahashi, Sho Nagai, Yuta Tsubonouchi, Masanari Hirahara, Taisei Sato, Eman A. Mohamed, Zaki N. Zahran, Kenji Saito, Tatsuto Yui, Masayuki Yagi. Efficient Electrocatalytic Water Oxidation by a Dinuclear Ruthenium(II) Complex with Vicinal Aquo and Hydroxo Groups Adsorbed on a TiO2 Electrode. ACS Applied Energy Materials 2020, 3 (12) , 12172-12184. https://doi.org/10.1021/acsaem.0c02242
    8. Zahra Mazloomi, Jessica Margalef, Marcos Gil-Sepulcre, Nuria Romero, Martin Albrecht, Antoni Llobet, Xavier Sala, Oscar Pàmies, Montserrat Diéguez. Effect of Ligand Chelation and Sacrificial Oxidant on the Integrity of Triazole-Based Carbene Iridium Water Oxidation Catalysts. Inorganic Chemistry 2020, 59 (17) , 12337-12347. https://doi.org/10.1021/acs.inorgchem.0c01439
    9. Bas van Dijk, Gabriel Menendez Rodriguez, Longfei Wu, Jan P. Hofmann, Alceo Macchioni, Dennis G. H. Hetterscheid. The Influence of the Ligand in the Iridium Mediated Electrocatalyic Water Oxidation. ACS Catalysis 2020, 10 (7) , 4398-4410. https://doi.org/10.1021/acscatal.0c00531
    10. Andrea Volpe, Cristina Tubaro, Mirco Natali, Andrea Sartorel, Gary W. Brudvig, Marcella Bonchio. Light-Driven Water Oxidation with the Ir-blue Catalyst and the Ru(bpy)32+/S2O82– Cycle: Photogeneration of Active Dimers, Electron-Transfer Kinetics, and Light Synchronization for Oxygen Evolution with High Quantum Efficiency. Inorganic Chemistry 2019, 58 (24) , 16537-16545. https://doi.org/10.1021/acs.inorgchem.9b02531
    11. Shunsuke Watabe, Yuki Tanahashi, Masanari Hirahara, Hirosato Yamazaki, Kosuke Takahashi, Eman A. Mohamed, Yuta Tsubonouchi, Zaki N. Zahran, Kenji Saito, Tatsuto Yui, Masayuki Yagi. Critical Hammett Electron-Donating Ability of Substituent Groups for Efficient Water Oxidation Catalysis by Mononuclear Ruthenium Aquo Complexes. Inorganic Chemistry 2019, 58 (19) , 12716-12723. https://doi.org/10.1021/acs.inorgchem.9b01623
    12. Yanyan Zhao, Xingxu Yan, Ke R. Yang, Sufeng Cao, Qi Dong, James E. Thorne, Kelly L. Materna, Shasha Zhu, Xiaoqing Pan, Maria Flytzani-Stephanopoulos, Gary W. Brudvig, Victor S. Batista, Dunwei Wang. End-On Bound Iridium Dinuclear Heterogeneous Catalysts on WO3 for Solar Water Oxidation. ACS Central Science 2018, 4 (9) , 1166-1172. https://doi.org/10.1021/acscentsci.8b00335
    13. Georges Siddiqi, Zhenya Luo, Yujun Xie, Zhenhua Pan, Qianhong Zhu, Jason A. Röhr, Judy J. Cha, Shu Hu. Stable Water Oxidation in Acid Using Manganese-Modified TiO2 Protective Coatings. ACS Applied Materials & Interfaces 2018, 10 (22) , 18805-18815. https://doi.org/10.1021/acsami.8b05323
    14. Dimitar Y. Shopov, Liam S. Sharninghausen, Shashi Bhushan Sinha, Brandon Q. Mercado, David Balcells, Gary W. Brudvig, Robert H. Crabtree. A Dinuclear Iridium(V,V) Oxo-Bridged Complex Characterized Using a Bulk Electrolysis Technique for Crystallizing Highly Oxidizing Compounds. Inorganic Chemistry 2018, 57 (9) , 5684-5691. https://doi.org/10.1021/acs.inorgchem.8b00757
    15. Dongliang Li, Zhuo Zong, Zhenghua Tang, Zhen Liu, Shaowei Chen, Yong Tian, Xiufang Wang. Total Water Splitting Catalyzed by Co@Ir Core–Shell Nanoparticles Encapsulated in Nitrogen-Doped Porous Carbon Derived from Metal–Organic Frameworks. ACS Sustainable Chemistry & Engineering 2018, 6 (4) , 5105-5114. https://doi.org/10.1021/acssuschemeng.7b04777
    16. Emma V. Sackville, Gabriele Kociok-Köhn, and Ulrich Hintermair . Ligand Tuning in Pyridine-Alkoxide Ligated Cp*IrIII Oxidation Catalysts. Organometallics 2017, 36 (18) , 3578-3588. https://doi.org/10.1021/acs.organomet.7b00492
    17. Shashi Bhushan Sinha, Dimitar Y. Shopov, Liam S. Sharninghausen, Christopher J. Stein, Brandon Q. Mercado, David Balcells, Thomas Bondo Pedersen, Markus Reiher, Gary W. Brudvig, and Robert H. Crabtree . Redox Activity of Oxo-Bridged Iridium Dimers in an N,O-Donor Environment: Characterization of Remarkably Stable Ir(IV,V) Complexes. Journal of the American Chemical Society 2017, 139 (28) , 9672-9683. https://doi.org/10.1021/jacs.7b04874
    18. Thoe K. Michaelos, Dimitar Y. Shopov, Shashi Bhushan Sinha, Liam S. Sharninghausen, Katherine J. Fisher, Hannah M. C. Lant, Robert H. Crabtree, and Gary W. Brudvig . A Pyridine Alkoxide Chelate Ligand That Promotes Both Unusually High Oxidation States and Water-Oxidation Catalysis. Accounts of Chemical Research 2017, 50 (4) , 952-959. https://doi.org/10.1021/acs.accounts.6b00652
    19. Ignacio Funes-Ardoiz, Pablo Garrido-Barros, Antoni Llobet, and Feliu Maseras . Single Electron Transfer Steps in Water Oxidation Catalysis. Redefining the Mechanistic Scenario. ACS Catalysis 2017, 7 (3) , 1712-1719. https://doi.org/10.1021/acscatal.6b03253
    20. Rebecca J. Kamire, Kelly L. Materna, William L. Hoffeditz, Brian T. Phelan, Julianne M. Thomsen, Omar K. Farha, Joseph T. Hupp, Gary W. Brudvig, and Michael R. Wasielewski . Photodriven Oxidation of Surface-Bound Iridium-Based Molecular Water-Oxidation Catalysts on Perylene-3,4-dicarboximide-Sensitized TiO2 Electrodes Protected by an Al2O3 Layer. The Journal of Physical Chemistry C 2017, 121 (7) , 3752-3764. https://doi.org/10.1021/acs.jpcc.6b11672
    21. Quentin Daniel, Ram B. Ambre, Biaobiao Zhang, Bertrand Philippe, Hong Chen, Fusheng Li, Ke Fan, Sareh Ahmadi, Håkan Rensmo, and Licheng Sun . Re-Investigation of Cobalt Porphyrin for Electrochemical Water Oxidation on FTO Surface: Formation of CoOx as Active Species. ACS Catalysis 2017, 7 (2) , 1143-1149. https://doi.org/10.1021/acscatal.6b01815
    22. Daria L. Huang, David J. Vinyard, James D. Blakemore, Sara M. Hashmi, and Robert H. Crabtree . Cp* versus Bis-carbonyl Iridium Precursors as CH Oxidation Precatalysts. Organometallics 2017, 36 (1) , 199-206. https://doi.org/10.1021/acs.organomet.6b00525
    23. Liam S. Sharninghausen, Shashi Bhushan Sinha, Dimitar Y. Shopov, Bonnie Choi, Brandon Q. Mercado, Xavier Roy, David Balcells, Gary W. Brudvig, and Robert H. Crabtree . High Oxidation State Iridium Mono-μ-oxo Dimers Related to Water Oxidation Catalysis. Journal of the American Chemical Society 2016, 138 (49) , 15917-15926. https://doi.org/10.1021/jacs.6b07716
    24. Daniel Charles Ashley and Mu-Hyun Baik . The Electronic Structure of [Mn(V)═O]: What is the Connection between Oxyl Radical Character, Physical Oxidation State, and Reactivity?. ACS Catalysis 2016, 6 (10) , 7202-7216. https://doi.org/10.1021/acscatal.6b01793
    25. Rebecca E. Adams and Russell H. Schmehl . Micellar Effects on Photoinduced Electron Transfer in Aqueous Solutions Revisited: Dramatic Enhancement of Cage Escape Yields in Surfactant Ru(II) Diimine Complex/[Ru(NH3)6]2+ Systems. Langmuir 2016, 32 (34) , 8598-8607. https://doi.org/10.1021/acs.langmuir.6b02193
    26. Aaron J. Bloomfield, Adam J. Matula, Brandon Q. Mercado, Victor S. Batista, and Robert H. Crabtree . Organometallic Iridium Complex Containing a Dianionic, Tridentate, Mixed Organic–Inorganic Ligand. Inorganic Chemistry 2016, 55 (16) , 8121-8129. https://doi.org/10.1021/acs.inorgchem.6b01218
    27. Kelly L. Materna, Benjamin Rudshteyn, Bradley J. Brennan, Morgan H. Kane, Aaron J. Bloomfield, Daria L. Huang, Dimitar Y. Shopov, Victor S. Batista, Robert H. Crabtree, and Gary W. Brudvig . Heterogenized Iridium Water-Oxidation Catalyst from a Silatrane Precursor. ACS Catalysis 2016, 6 (8) , 5371-5377. https://doi.org/10.1021/acscatal.6b01101
    28. Jonathon W. Moir, Emma V. Sackville, Ulrich Hintermair, and Geoffrey A. Ozin . Kinetics versus Charge Separation: Improving the Activity of Stoichiometric and Non-Stoichiometric Hematite Photoanodes Using a Molecular Iridium Water Oxidation Catalyst. The Journal of Physical Chemistry C 2016, 120 (24) , 12999-13012. https://doi.org/10.1021/acs.jpcc.6b00735
    29. Jacobus M. Koelewijn, Martin Lutz, Wojciech I. Dzik, Remko J. Detz, and Joost N. H. Reek . Reaction Progress Kinetic Analysis as a Tool To Reveal Ligand Effects in Ce(IV)-Driven IrCp*-Catalyzed Water Oxidation. ACS Catalysis 2016, 6 (6) , 3418-3427. https://doi.org/10.1021/acscatal.6b00297
    30. Ke R. Yang, Adam J. Matula, Gihan Kwon, Jiyun Hong, Stafford W. Sheehan, Julianne M. Thomsen, Gary W. Brudvig, Robert H. Crabtree, David M. Tiede, Lin X. Chen, and Victor S. Batista . Solution Structures of Highly Active Molecular Ir Water-Oxidation Catalysts from Density Functional Theory Combined with High-Energy X-ray Scattering and EXAFS Spectroscopy. Journal of the American Chemical Society 2016, 138 (17) , 5511-5514. https://doi.org/10.1021/jacs.6b01750
    31. Daria L. Huang, Rodrigo Beltrán-Suito, Julianne M. Thomsen, Sara M. Hashmi, Kelly L. Materna, Stafford W. Sheehan, Brandon Q. Mercado, Gary W. Brudvig, and Robert H. Crabtree . New Ir Bis-Carbonyl Precursor for Water Oxidation Catalysis. Inorganic Chemistry 2016, 55 (5) , 2427-2435. https://doi.org/10.1021/acs.inorgchem.5b02809
    32. Yingying Feng, Jie Wei, and Yong Ding . Efficient Photochemical, Thermal, and Electrochemical Water Oxidation Catalyzed by a Porous Iron-Based Oxide Derived Metal–Organic Framework. The Journal of Physical Chemistry C 2016, 120 (1) , 517-526. https://doi.org/10.1021/acs.jpcc.5b11533
    33. Shashi B. Sinha, Dimitar Y. Shopov, Liam S. Sharninghausen, David J. Vinyard, Brandon Q. Mercado, Gary W. Brudvig, and Robert H. Crabtree . A Stable Coordination Complex of Rh(IV) in an N,O-Donor Environment. Journal of the American Chemical Society 2015, 137 (50) , 15692-15695. https://doi.org/10.1021/jacs.5b12148
    34. James D. Blakemore, Robert H. Crabtree, and Gary W. Brudvig . Molecular Catalysts for Water Oxidation. Chemical Reviews 2015, 115 (23) , 12974-13005. https://doi.org/10.1021/acs.chemrev.5b00122
    35. Fabio Evangelisti, René Moré, Florian Hodel, Sandra Luber, and Greta Ricarda Patzke . 3d–4f {CoII3Ln(OR)4} Cubanes as Bio-Inspired Water Oxidation Catalysts. Journal of the American Chemical Society 2015, 137 (34) , 11076-11084. https://doi.org/10.1021/jacs.5b05831
    36. Leen E. E. Broeckx, Alberto Bucci, Cristiano Zuccaccia, Martin Lutz, Alceo Macchioni, and Christian Müller . Cyclometalated Phosphinine–Iridium(III) Complexes: Synthesis, Reactivity, and Application as Phosphorus-Containing Water-Oxidation Catalysts. Organometallics 2015, 34 (12) , 2943-2952. https://doi.org/10.1021/acs.organomet.5b00281
    37. Dimitar Y. Shopov, Benjamin Rudshteyn, Jesús Campos, Victor S. Batista, Robert H. Crabtree, and Gary W. Brudvig . Stable Iridium(IV) Complexes of an Oxidation-Resistant Pyridine-Alkoxide Ligand: Highly Divergent Redox Properties Depending on the Isomeric Form Adopted. Journal of the American Chemical Society 2015, 137 (22) , 7243-7250. https://doi.org/10.1021/jacs.5b04185
    38. Ilaria Corbucci, Ana Petronilho, Helge Müller-Bunz, Luca Rocchigiani, Martin Albrecht, and Alceo Macchioni . Substantial Improvement of Pyridine-Carbene Iridium Water Oxidation Catalysts by a Simple Methyl-to-Octyl Substitution. ACS Catalysis 2015, 5 (5) , 2714-2718. https://doi.org/10.1021/acscatal.5b00319
    39. Matthew C. Lehman, Dale R. Pahls, Joseph M. Meredith, Roger D. Sommer, D. Michael Heinekey, Thomas R. Cundari, and Elon A. Ison . Oxyfunctionalization with Cp*IrIII(NHC)(Me)(Cl) with O2: Identification of a Rare Bimetallic IrIV μ-Oxo Intermediate. Journal of the American Chemical Society 2015, 137 (10) , 3574-3584. https://doi.org/10.1021/ja512905t
    40. Andrew M. Ullman, Yi Liu, Michael Huynh, D. Kwabena Bediako, Hongsen Wang, Bryce L. Anderson, David C. Powers, John J. Breen, Héctor D. Abruña, and Daniel G. Nocera . Water Oxidation Catalysis by Co(II) Impurities in Co(III)4O4 Cubanes. Journal of the American Chemical Society 2014, 136 (50) , 17681-17688. https://doi.org/10.1021/ja5110393
    41. Thomas Gobbato, Giulia Alice Volpato, Andrea Sartorel, Marcella Bonchio. A breath of sunshine: oxygenic photosynthesis by functional molecular architectures. Chemical Science 2023, 14 (44) , 12402-12429. https://doi.org/10.1039/D3SC03780K
    42. Hussein A. Younus, Nazir Ahmad, Mohammed Al‐Abri, Rashid Al‐Hajri, Shiguo Zhang. Molecular Nature of Electrodeposits in Electrochemical Water Oxidation. Advanced Energy Materials 2023, 13 (25) https://doi.org/10.1002/aenm.202300896
    43. Ken J. Jenewein, Yuanxing Wang, Tianying Liu, Tara McDonald, Matej Zlatar, Nadiia Kulyk, Victoria Benavente Llorente, Attila Kormányos, Dunwei Wang, Serhiy Cherevko. Electrolyte Engineering Stabilizes Photoanodes Decorated with Molecular Catalysts. ChemSusChem 2023, 16 (7) https://doi.org/10.1002/cssc.202202319
    44. Daan den Boer, Dennis G.H. Hetterscheid. Design principles for homogeneous water oxidation catalysts based on first–row transition metals. Current Opinion in Electrochemistry 2022, 35 , 101064. https://doi.org/10.1016/j.coelec.2022.101064
    45. Yan Lu, Yetsedaw A. Tsegaw, Artur Wodyński, Lin Li, Helmut Beckers, Martin Kaupp, Sebastian Riedel. Investigation of Molecular Iridium Fluorides IrF n ( n =1–6): A Combined Matrix‐Isolation and Quantum‐Chemical Study. Chemistry – A European Journal 2022, 28 (22) https://doi.org/10.1002/chem.202104005
    46. Ana M. Geer, Chang Liu, Charles B. Musgrave, Christopher Webber, Grayson Johnson, Hua Zhou, Cheng-Jun Sun, Diane A. Dickie, William A. Goddard, Sen Zhang, T. Brent Gunnoe. Noncovalent Immobilization of Pentamethylcyclopentadienyl Iridium Complexes on Ordered Mesoporous Carbon for Electrocatalytic Water Oxidation. Small Science 2021, 1 (11) https://doi.org/10.1002/smsc.202100037
    47. Dan Xiao, Jennifer Gregg, K. V. Lakshmi, Peter J. Bonitatibus. Bio-Inspired Molecular Catalysts for Water Oxidation. Catalysts 2021, 11 (9) , 1068. https://doi.org/10.3390/catal11091068
    48. Matthew V. Sheridan, Benjamin D. Sherman, Yi Xie, Ying Wang. Heterogeneous Water Oxidation Catalysts for Molecular Anodes and Photoanodes. Solar RRL 2021, 5 (6) https://doi.org/10.1002/solr.202000565
    49. Agnes E. Thorarinsdottir, Daniel G. Nocera. Energy catalysis needs ligands with high oxidative stability. Chem Catalysis 2021, 1 (1) , 32-43. https://doi.org/10.1016/j.checat.2021.05.012
    50. Ajeet Singh, Neha Choudhary, Shaikh M. Mobin, Pradeep Mathur. Cubane Ru4(CO)8 cluster containing 4 pyridine-methanol ligands as a highly efficient photoelectrocatalyst for oxygen evolution reaction from water. Journal of Organometallic Chemistry 2021, 940 , 121769. https://doi.org/10.1016/j.jorganchem.2021.121769
    51. Marta Olivares, Cornelis J. M. van der Ham, Velabo Mdluli, Markus Schmidtendorf, Helge Müller‐Bunz, Tiny W. G. M. Verhoeven, Mo Li, J. W. (Hans) Niemantsverdriet, Dennis G. H. Hetterscheid, Stefan Bernhard, Martin Albrecht. Relevance of Chemical vs. Electrochemical Oxidation of Tunable Carbene Iridium Complexes for Catalytic Water Oxidation. European Journal of Inorganic Chemistry 2020, 2020 (10) , 801-812. https://doi.org/10.1002/ejic.202000090
    52. Isabella Poli, Ulrich Hintermair, Miriam Regue, Santosh Kumar, Emma V. Sackville, Jenny Baker, Trystan M. Watson, Salvador Eslava, Petra J. Cameron. Graphite-protected CsPbBr3 perovskite photoanodes functionalised with water oxidation catalyst for oxygen evolution in water. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-10124-0
    53. Maya Singer Hobbs, Emma V. Sackville, Andrew J. Smith, Karen J. Edler, Ulrich Hintermair. In Situ Monitoring of Nanoparticle Formation during Iridium‐Catalysed Oxygen Evolution by Real‐Time Small Angle X‐Ray Scattering. ChemCatChem 2019, 11 (21) , 5313-5321. https://doi.org/10.1002/cctc.201901268
    54. Ning Yan, Remko J. Detz, Nitish Govindarajan, Jacobus M. Koelewijn, Bin Hua, Peng Li, Evert Jan Meijer, Joost N. H. Reek. Selective surface functionalization generating site-isolated Ir on a MnO x /N-doped carbon composite for robust electrocatalytic water oxidation. Journal of Materials Chemistry A 2019, 7 (40) , 23098-23104. https://doi.org/10.1039/C9TA08447A
    55. Joanna Kargul, Małgorzata Kiliszek. Artificial Photosynthesis. 2019, 271-309. https://doi.org/10.1002/9781119611103.ch15
    56. Peng Li, Jin‐Bao Liu, Sheng Han, Wei Deng, Zi‐Jian Yao. Half‐sandwich Ir (III) and Rh (III) complexes as catalysts for water oxidation with double‐site. Applied Organometallic Chemistry 2019, 33 (9) https://doi.org/10.1002/aoc.5040
    57. Marc Ledendecker, Simon Geiger, Katharina Hengge, Joohyun Lim, Serhiy Cherevko, Andrea M. Mingers, Daniel Göhl, Guilherme V. Fortunato, Daniel Jalalpoor, Ferdi Schüth, Christina Scheu, Karl J. J. Mayrhofer. Towards maximized utilization of iridium for the acidic oxygen evolution reaction. Nano Research 2019, 12 (9) , 2275-2280. https://doi.org/10.1007/s12274-019-2383-y
    58. Stuart A. Bartlett, Emma V. Sackville, Emma K. Gibson, Veronica Celorrio, Peter P. Wells, Maarten Nachtegaal, Stafford W. Sheehan, Ulrich Hintermair. Evidence for tetranuclear bis-μ-oxo cubane species in molecular iridium-based water oxidation catalysts from XAS analysis. Chemical Communications 2019, 55 (54) , 7832-7835. https://doi.org/10.1039/C9CC02088H
    59. Zaki N. Zahran, Yuta Tsubonouchi, Eman A. Mohamed, Masayuki Yagi. Recent Advances in the Development of Molecular Catalyst‐Based Anodes for Water Oxidation toward Artificial Photosynthesis. ChemSusChem 2019, 12 (9) , 1775-1793. https://doi.org/10.1002/cssc.201802795
    60. Farhan A. Pasha, Albert Poater, Sai V. C. Vummaleti, Theodorus de Bruin, Jean M. Basset, Luigi Cavallo. Revisiting O–O Bond Formation through Outer‐Sphere Water Molecules versus Bimolecular Mechanisms in Water‐Oxidation Catalysis (WOC) by Cp*Ir Based Complexes. European Journal of Inorganic Chemistry 2019, 2019 (15) , 2093-2100. https://doi.org/10.1002/ejic.201800500
    61. Hannah M. C. Lant, Thoe K. Michaelos, Liam S. Sharninghausen, Brandon Q. Mercado, Robert H. Crabtree, Gary W. Brudvig. N,N,O Pincer Ligand with a Deprotonatable Site That Promotes Redox‐Leveling, High Mn Oxidation States, and a Mn 2 O 2 Dimer Competent for Catalytic Oxygen Evolution. European Journal of Inorganic Chemistry 2019, 2019 (15) , 2115-2123. https://doi.org/10.1002/ejic.201801343
    62. Adiran de Aguirre, Ignacio Funes-Ardoiz, Feliu Maseras. Computational Characterization of Single-Electron Transfer Steps in Water Oxidation. Inorganics 2019, 7 (3) , 32. https://doi.org/10.3390/inorganics7030032
    63. Junqi Lin, Xiangyu Meng, Min Zheng, Baochun Ma, Yong Ding. Insight into a hexanuclear cobalt complex: Strategy to construct efficient catalysts for visible light-driven water oxidation. Applied Catalysis B: Environmental 2019, 241 , 351-358. https://doi.org/10.1016/j.apcatb.2018.09.052
    64. Jia-Wei Wang, Wen-Ju Liu, Di-Chang Zhong, Tong-Bu Lu. Nickel complexes as molecular catalysts for water splitting and CO2 reduction. Coordination Chemistry Reviews 2019, 378 , 237-261. https://doi.org/10.1016/j.ccr.2017.12.009
    65. Laurent Sévery, Sebastian Siol, S. Tilley. Design of Molecular Water Oxidation Catalysts Stabilized by Ultrathin Inorganic Overlayers—Is Active Site Protection Necessary?. Inorganics 2018, 6 (4) , 105. https://doi.org/10.3390/inorganics6040105
    66. Zhaodi Huang, Meixi Zhang, Huan Lin, Shuo Ding, Bin Dong, Di Liu, Hong Wang, Fangna Dai, Daofeng Sun. Comparison of two water oxidation electrocatalysts by copper or zinc supermolecule complexes based on porphyrin ligand. RSC Advances 2018, 8 (70) , 40054-40059. https://doi.org/10.1039/C8RA08338J
    67. Emma V. Sackville, Frank Marken, Ulrich Hintermair. Electrochemical and Kinetic Insights into Molecular Water Oxidation Catalysts Derived from Cp*Ir(pyridine‐alkoxide) Complexes. ChemCatChem 2018, 10 (19) , 4280-4291. https://doi.org/10.1002/cctc.201800916
    68. Xin Jiang, Jian Li, Bing Yang, Xiang‐Zhu Wei, Bo‐Wei Dong, Yi Kao, Mao‐Yong Huang, Chen‐Ho Tung, Li‐Zhu Wu. A Bio‐inspired Cu 4 O 4 Cubane: Effective Molecular Catalysts for Electrocatalytic Water Oxidation in Aqueous Solution. Angewandte Chemie 2018, 130 (26) , 7976-7980. https://doi.org/10.1002/ange.201803944
    69. Xin Jiang, Jian Li, Bing Yang, Xiang‐Zhu Wei, Bo‐Wei Dong, Yi Kao, Mao‐Yong Huang, Chen‐Ho Tung, Li‐Zhu Wu. A Bio‐inspired Cu 4 O 4 Cubane: Effective Molecular Catalysts for Electrocatalytic Water Oxidation in Aqueous Solution. Angewandte Chemie International Edition 2018, 57 (26) , 7850-7854. https://doi.org/10.1002/anie.201803944
    70. Junqi Lin, Peng Kang, Xiangming Liang, Baochun Ma, Yong Ding. Homogeneous electrocatalytic water oxidation catalyzed by a mononuclear nickel complex. Electrochimica Acta 2017, 258 , 353-359. https://doi.org/10.1016/j.electacta.2017.11.061
    71. Ilaria Corbucci, Kevin Ellingwood, Lucia Fagiolari, Cristiano Zuccaccia, Fausto Elisei, Pier Luigi Gentili, Alceo Macchioni. Photocatalytic water oxidation mediated by iridium complexes. Catalysis Today 2017, 290 , 10-18. https://doi.org/10.1016/j.cattod.2016.10.030
    72. R. Morris Bullock, Atanu K. Das, Aaron M. Appel. Surface Immobilization of Molecular Electrocatalysts for Energy Conversion. Chemistry – A European Journal 2017, 23 (32) , 7626-7641. https://doi.org/10.1002/chem.201605066
    73. Jiawei Wang, Haihua Huang, Tongbu Lu. Homogeneous Electrocatalytic Water Oxidation by a Rigid Macrocyclic Copper( II ) Complex. Chinese Journal of Chemistry 2017, 35 (5) , 586-590. https://doi.org/10.1002/cjoc.201600669
    74. Hao Yuan, Richard R. Lunt, Joseph I. Thompson, Robert Y. Ofoli. Electrodeposition of Ni/Ni(OH) 2 Catalytic Films for the Hydrogen Evolution Reaction Produced by using Cyclic Voltammetry. ChemElectroChem 2017, 4 (2) , 241-245. https://doi.org/10.1002/celc.201600572
    75. Binbin Huang, Yan Wang, Shuzhong Zhan, Jianshan Ye. One-step electrochemical deposition of Schiff base cobalt complex as effective water oxidation catalyst. Applied Surface Science 2017, 396 , 121-128. https://doi.org/10.1016/j.apsusc.2016.11.036
    76. Foteini M. Sapountzi, Jose M. Gracia, C.J. (Kees-Jan) Weststrate, Hans O.A. Fredriksson, J.W. (Hans) Niemantsverdriet. Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas. Progress in Energy and Combustion Science 2017, 58 , 1-35. https://doi.org/10.1016/j.pecs.2016.09.001
    77. Dimitar Y. Shopov, Benjamin Rudshteyn, Jesús Campos, David J. Vinyard, Victor S. Batista, Gary W. Brudvig, Robert H. Crabtree. A full set of iridium( iv ) pyridine-alkoxide stereoisomers: highly geometry-dependent redox properties. Chemical Science 2017, 8 (2) , 1642-1652. https://doi.org/10.1039/C6SC03758E
    78. Dennis G. H. Hetterscheid. In operando studies on the electrochemical oxidation of water mediated by molecular catalysts. Chemical Communications 2017, 53 (77) , 10622-10631. https://doi.org/10.1039/C7CC04944G
    79. Jia-Wei Wang, Cheng Hou, Hai-Hua Huang, Wen-Ju Liu, Zhuo-Feng Ke, Tong-Bu Lu. Further insight into the electrocatalytic water oxidation by macrocyclic nickel( ii ) complexes: the influence of steric effect on catalytic activity. Catalysis Science & Technology 2017, 7 (23) , 5585-5593. https://doi.org/10.1039/C7CY01527E
    80. Shengbo Zhang, Hua Wang, Mei Li, Jinyu Han, Shinji Inagaki, Xiao Liu. Enhanced durability of an iridium-bipyridine complex embedded into organosilica nanotubes for water oxidation. Dalton Transactions 2017, 46 (29) , 9369-9374. https://doi.org/10.1039/C7DT02026K
    81. Dimitar Y. Shopov, Liam S. Sharninghausen, Shashi Bhushan Sinha, Julia E. Borowski, Brandon Q. Mercado, Gary W. Brudvig, Robert H. Crabtree. Synthesis of pyridine-alkoxide ligands for formation of polynuclear complexes. New Journal of Chemistry 2017, 41 (14) , 6709-6719. https://doi.org/10.1039/C7NJ01845B
    82. Jia‐Wei Wang, Xiang‐Qiong Zhang, Hai‐Hua Huang, Tong‐Bu Lu. A Nickel(II) Complex as a Homogeneous Electrocatalyst for Water Oxidation at Neutral pH: Dual Role of HPO 4 2− in Catalysis. ChemCatChem 2016, 8 (20) , 3287-3293. https://doi.org/10.1002/cctc.201600796
    83. Qing-Ya He, Hua-Tian Shi, Xianwen Wei, Wei-Bin Yu. A molecular precatalyst for water oxidation based on half-sandwich iridium fragment. Journal of Organometallic Chemistry 2016, 818 , 1-6. https://doi.org/10.1016/j.jorganchem.2016.04.008
    84. Mohammad Mahdi Najafpour, Seyedeh Maedeh Hosseini, Mojtaba Tavahodi, Mohadeseh Zarei Ghobadi. The conversion of CoSe 2 to Co oxide under the electrochemical water oxidation condition. International Journal of Hydrogen Energy 2016, 41 (31) , 13469-13475. https://doi.org/10.1016/j.ijhydene.2016.05.288
    85. Gang‐Yi Luo, Hai‐Hua Huang, Jia‐Wei Wang, Tong‐Bu Lu. Further Investigation of a Nickel‐Based Homogeneous Water Oxidation Catalyst with Two cis Labile Sites. ChemSusChem 2016, 9 (5) , 485-491. https://doi.org/10.1002/cssc.201501474
    86. Sujay Mukhopadhyay, Roop Shikha Singh, Arnab Biswas, Daya Shankar Pandey. Photochemical water oxidation by cyclometalated iridium( iii ) complexes: a mechanistic insight. Chemical Communications 2016, 52 (19) , 3840-3843. https://doi.org/10.1039/C5CC10520J
    87. Wei-Bin Yu, Qing-Ya He, Hua-Tian Shi, Xianwen Wei. Heterogeneous catalysis of water oxidation supported by a novel metallamacrocycle. New Journal of Chemistry 2016, 40 (3) , 2354-2361. https://doi.org/10.1039/C5NJ02931G
    88. Dennis G. H. Hetterscheid, Cornelis J. M. van der Ham, Oscar Diaz-Morales, M. W. G. M. (Tiny) Verhoeven, Alessandro Longo, Dipanjan Banerjee, J. W. (Hans) Niemantsverdriet, Joost N. H. Reek, Martin C. Feiters. Early stages of catalyst aging in the iridium mediated water oxidation reaction. Physical Chemistry Chemical Physics 2016, 18 (16) , 10931-10940. https://doi.org/10.1039/C6CP00751A
    89. Rong-Zhen Liao, Markus D. Kärkäs, Tanja M. Laine, Björn Åkermark, Per E. M. Siegbahn. On the mechanism of water oxidation catalyzed by a dinuclear ruthenium complex: a quantum chemical study. Catalysis Science & Technology 2016, 6 (13) , 5031-5041. https://doi.org/10.1039/C6CY00083E
    90. Craig J. Richmond, Antoni Llobet. Incorporation of a ruthenium–bis(pyridine)pyrazolate (Ru–bpp) water oxidation catalyst in a hexametallic macrocycle. Catalysis Science & Technology 2016, 6 (17) , 6697-6704. https://doi.org/10.1039/C6CY01077F
    91. Quentin Daniel, Lei Wang, Lele Duan, Fusheng Li, Licheng Sun. Tailored design of ruthenium molecular catalysts with 2,2′-bypyridine-6,6′-dicarboxylate and pyrazole based ligands for water oxidation. Dalton Transactions 2016, 45 (37) , 14689-14696. https://doi.org/10.1039/C6DT01287F
    92. Tzung‐Wen Chiou, Tsai‐Te Lu, Ying‐Hao Wu, Yi‐Ju Yu, Li‐Kang Chu, Wen‐Feng Liaw. Development of a Dinitrosyl Iron Complex Molecular Catalyst into a Hydrogen Evolution Cathode. Angewandte Chemie 2015, 127 (49) , 15037-15042. https://doi.org/10.1002/ange.201508351
    93. Tzung‐Wen Chiou, Tsai‐Te Lu, Ying‐Hao Wu, Yi‐Ju Yu, Li‐Kang Chu, Wen‐Feng Liaw. Development of a Dinitrosyl Iron Complex Molecular Catalyst into a Hydrogen Evolution Cathode. Angewandte Chemie International Edition 2015, 54 (49) , 14824-14829. https://doi.org/10.1002/anie.201508351
    94. Wei Li, Stafford W. Sheehan, Da He, Yumin He, Xiahui Yao, Ronald L. Grimm, Gary W. Brudvig, Dunwei Wang. Hematite‐Based Solar Water Splitting in Acidic Solutions: Functionalization by Mono‐ and Multilayers of Iridium Oxygen‐Evolution Catalysts. Angewandte Chemie 2015, 127 (39) , 11590-11594. https://doi.org/10.1002/ange.201504427
    95. Wei Li, Stafford W. Sheehan, Da He, Yumin He, Xiahui Yao, Ronald L. Grimm, Gary W. Brudvig, Dunwei Wang. Hematite‐Based Solar Water Splitting in Acidic Solutions: Functionalization by Mono‐ and Multilayers of Iridium Oxygen‐Evolution Catalysts. Angewandte Chemie International Edition 2015, 54 (39) , 11428-11432. https://doi.org/10.1002/anie.201504427
    96. Kim von Allmen, René Moré, Rafael Müller, Joaquín Soriano‐López, Anthony Linden, Greta R. Patzke. Nickel‐Containing Keggin‐Type Polyoxometalates as Hydrogen Evolution Catalysts: Photochemical Structure–Activity Relationships. ChemPlusChem 2015, 80 (9) , 1389-1398. https://doi.org/10.1002/cplu.201500074
    97. Mahesh Kalidasan, R. Nagarajaprakash, Kollipara Mohan Rao. Synthesis and molecular studies of half-sandwich arene ruthenium and Cp*Rh/Cp*Ir complexes containing (3-picolyl)thiourea derivatives as N,S-bidentate donor ligands. Transition Metal Chemistry 2015, 40 (5) , 531-539. https://doi.org/10.1007/s11243-015-9946-x
    98. Tanja M. Laine, Markus D. Kärkäs, Rong‐Zhen Liao, Per E. M. Siegbahn, Björn Åkermark. A Dinuclear Ruthenium‐Based Water Oxidation Catalyst: Use of Non‐Innocent Ligand Frameworks for Promoting Multi‐Electron Reactions. Chemistry – A European Journal 2015, 21 (28) , 10039-10048. https://doi.org/10.1002/chem.201406613
    99. R. L. Purchase, H. J. M. de Groot. Biosolar cells: global artificial photosynthesis needs responsive matrices with quantum coherent kinetic control for high yield. Interface Focus 2015, 5 (3) , 20150014. https://doi.org/10.1098/rsfs.2015.0014
    100. Stafford W. Sheehan, Julianne M. Thomsen, Ulrich Hintermair, Robert H. Crabtree, Gary W. Brudvig, Charles A. Schmuttenmaer. A molecular catalyst for water oxidation that binds to metal oxide surfaces. Nature Communications 2015, 6 (1) https://doi.org/10.1038/ncomms7469
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect