ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

An Intermediate Cobalt(IV) Nitrido Complex and its N-Migratory Insertion Product

View Author Information
Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen - Nürnberg (FAU), Egerlandstr. 1, 91058 Erlangen, Germany
Université de Toulouse et CNRS, NSA, UPS, CNRS, UMR 5215 LPCNO, 135 avenue de Rangueil, 31077 Toulouse, France
§ Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34−36, 45470 Mülheim, Germany
Cite this: J. Am. Chem. Soc. 2014, 136, 42, 15072–15078
Publication Date (Web):September 22, 2014
https://doi.org/10.1021/ja508144j
Copyright © 2014 American Chemical Society

    Article Views

    5126

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (2)»

    Abstract

    Abstract Image

    Low-temperature photolysis experiments (T = 10 K) on the tripodal azido complex [(BIMPNMes,Ad,Me)CoII(N3)] (1) were monitored by EPR spectroscopy and support the formation of an exceedingly reactive, high-valent Co nitrido species [(BIMPNMes,Ad,Me)CoIV(N)] (2). Density functional theory calculations suggest a low-spin d5, S = 1/2, electronic configuration of the central cobalt ion in 2 and, thus, are in line with the formulation of complex 2 as a genuine, low-spin Co(IV) nitride species. Although the reactivity of this species precludes handling above 50 K or isolation in the solid state, the N-migratory insertion product [(NH-BIMPNMes,Ad,Me)CoII](BPh4) (3) is isolable and was reproducibly synthesized as well as fully characterized, including CHN elemental analysis, paramagnetic 1H NMR, IR, UV–vis, and EPR spectroscopy as well as SQUID magnetization and single-crystal X-ray crystallography studies. A computational analysis of the reaction pathway 23 indicates that the reaction readily occurs via N-migratory insertion into the Co–C bond (activation barrier of 2.2 kcal mol–1). In addition to the unusual reactivity of the nitride 2, the resulting divalent cobalt complex 3 is a rare example of a trigonal pyramidal complex with four different donor ligands of a tetradentate chelate—an N-heterocyclic carbene, a phenolate, an imine, and an amine—binding to a high-spin Co(II) ion. This renders complex 3 chiral-at-metal.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Synthetic and analytical details, magnetization data, and simulation parameters, and crystallographic details. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 82 publications.

    1. Tao Mei, Peng Zhang, Zihe Song, Baomin Wang, Jingping Qu, Shengfa Ye, Dawei Yang. Unusual Hydrogenation Reactivities of a Thiolate-Bridged Dicobalt μ-Nitride Featuring a Bent {CoIII–N–CoIII} Core. Journal of the American Chemical Society 2023, 145 (37) , 20578-20587. https://doi.org/10.1021/jacs.3c07254
    2. Carl Schiller, Daniel Sieh, Nils Lindenmaier, Michel Stephan, Natascha Junker, Edward Reijerse, Alexander A. Granovsky, Peter Burger. Cleavage of an Aromatic C–C Bond in Ferrocene by Insertion of an Iridium Nitrido Nitrogen Atom. Journal of the American Chemical Society 2023, 145 (20) , 11392-11401. https://doi.org/10.1021/jacs.3c02781
    3. Diego Martelino, Samyadeb Mahato, Warren VandeVen, Nicholas M. Hein, Ryan M. Clarke, Gregory A. MacNeil, Fabrice Thomas, Tim Storr. Chromium Nitride Umpolung Tuned by the Locus of Oxidation. Journal of the American Chemical Society 2022, 144 (26) , 11594-11607. https://doi.org/10.1021/jacs.2c01840
    4. Anders Reinholdt, Jesper Bendix. Transition Metal Carbide Complexes. Chemical Reviews 2022, 122 (1) , 830-902. https://doi.org/10.1021/acs.chemrev.1c00404
    5. McKenna K. Goetz, Joseph E. Schneider, Alexander S. Filatov, Kate A. Jesse, John S. Anderson. Enzyme-Like Hydroxylation of Aliphatic C–H Bonds From an Isolable Co-Oxo Complex. Journal of the American Chemical Society 2021, 143 (49) , 20849-20862. https://doi.org/10.1021/jacs.1c09280
    6. J. Rolando Aguilar-Calderón, Dominik Fehn, Dieter Sorsche, Matthias Miehlich, Patrick J. Carroll, Ethan Zars, Karsten Meyer, Daniel J. Mindiola. Redox-Controlled and Reversible N–N Bond Forming and Splitting with an IronIV Terminal Imido Ligand. Inorganic Chemistry 2021, 60 (17) , 13091-13100. https://doi.org/10.1021/acs.inorgchem.1c01509
    7. Gwendolyn A. Bailey, Joshua A. Buss, Paul H. Oyala, Theodor Agapie. Terminal, Open-Shell Mo Carbide and Carbyne Complexes: Spin Delocalization and Ligand Noninnocence. Journal of the American Chemical Society 2021, 143 (33) , 13091-13102. https://doi.org/10.1021/jacs.1c03806
    8. Anshika Kalra, Vivek Bagchi, Patrina Paraskevopoulou, Purak Das, Lin Ai, Yiannis Sanakis, Grigorios Raptopoulos, Sudip Mohapatra, Amitava Choudhury, Zhicheng Sun, Thomas R. Cundari, Pericles Stavropoulos. Is the Electrophilicity of the Metal Nitrene the Sole Predictor of Metal-Mediated Nitrene Transfer to Olefins? Secondary Contributing Factors as Revealed by a Library of High-Spin Co(II) Reagents. Organometallics 2021, 40 (12) , 1974-1996. https://doi.org/10.1021/acs.organomet.1c00267
    9. Sebastian J. K. Forrest, Bastian Schluschaß, Ekaterina Y. Yuzik-Klimova, Sven Schneider. Nitrogen Fixation via Splitting into Nitrido Complexes. Chemical Reviews 2021, 121 (11) , 6522-6587. https://doi.org/10.1021/acs.chemrev.0c00958
    10. Ariana Z. Spentzos, Neil C. Tomson. Mapping the Reactivity of Dicobalt Bridging Nitrides in Constrained Geometries. Inorganic Chemistry 2021, 60 (10) , 6889-6899. https://doi.org/10.1021/acs.inorgchem.0c03774
    11. Alexsandro R. da Silva, Jailton Souza de Almeida, Roberto Rivelino. A Theoretical Assessment of Spin and Charge States in Binuclear Cobalt–Ruthenium Complexes: Implications for a Creutz–Taube Model Ion Separated by a C60-Derivative Bridging Ligand. The Journal of Physical Chemistry A 2020, 124 (51) , 10826-10837. https://doi.org/10.1021/acs.jpca.0c09194
    12. Luciano Barluzzi, Rosario Scopelliti, Marinella Mazzanti. Photochemical Synthesis of a Stable Terminal Uranium(VI) Nitride. Journal of the American Chemical Society 2020, 142 (45) , 19047-19051. https://doi.org/10.1021/jacs.0c09814
    13. Debabrata Sengupta, Christian Sandoval-Pauker, Emily Schueller, Angela M. Encerrado-Manriquez, Alejandro Metta-Magaña, Wen-Yee Lee, Ram Seshadri, Balazs Pinter, Skye Fortier. Isolation of a Bimetallic Cobalt(III) Nitride and Examination of Its Hydrogen Atom Abstraction Chemistry and Reactivity toward H2. Journal of the American Chemical Society 2020, 142 (18) , 8233-8242. https://doi.org/10.1021/jacs.0c00291
    14. Martin Keilwerth, Johannes Hohenberger, Frank W. Heinemann, Jörg Sutter, Andreas Scheurer, Huayi Fang, Eckhard Bill, Frank Neese, Shengfa Ye, Karsten Meyer. A Series of Iron Nitrosyl Complexes {Fe–NO}6–9 and a Fleeting {Fe–NO}10 Intermediate en Route to a Metalacyclic Iron Nitrosoalkane. Journal of the American Chemical Society 2019, 141 (43) , 17217-17235. https://doi.org/10.1021/jacs.9b08053
    15. Ahmad Najafian, Thomas R. Cundari. Effect of Appended S-Block Metal Ion Crown Ethers on Redox Properties and Catalytic Activity of Mn–Nitride Schiff Base Complexes: Methane Activation. Inorganic Chemistry 2019, 58 (18) , 12254-12263. https://doi.org/10.1021/acs.inorgchem.9b01696
    16. Andreas A. Danopoulos, Thomas Simler, Pierre Braunstein. N-Heterocyclic Carbene Complexes of Copper, Nickel, and Cobalt. Chemical Reviews 2019, 119 (6) , 3730-3961. https://doi.org/10.1021/acs.chemrev.8b00505
    17. Jun Cheng, Lijun Wang, Peng Wang, Liang Deng. High-Oxidation-State 3d Metal (Ti–Cu) Complexes with N-Heterocyclic Carbene Ligation. Chemical Reviews 2018, 118 (19) , 9930-9987. https://doi.org/10.1021/acs.chemrev.8b00096
    18. Zhicheng Sun, Olivia A. Hull, Thomas R. Cundari. Computational Study of Methane C–H Activation by Diiminopyridine Nitride/Nitridyl Complexes of 3d Transition Metals and Main-Group Elements. Inorganic Chemistry 2018, 57 (12) , 6807-6815. https://doi.org/10.1021/acs.inorgchem.7b03212
    19. Prasenjit Mondal, Paolo Pirovano, Ankita Das, Erik R. Farquhar, and Aidan R. McDonald . Hydrogen Atom Transfer by a High-Valent Nickel-Chloride Complex. Journal of the American Chemical Society 2018, 140 (5) , 1834-1841. https://doi.org/10.1021/jacs.7b11953
    20. Etienne A. LaPierre, Marissa L. Clapson, Warren E. Piers, Laurent Maron, Denis M. Spasyuk, and Chris Gendy . Oxygen Atom Transfer to Cationic PCPNi(II) Complexes Using Amine-N-Oxides. Inorganic Chemistry 2018, 57 (1) , 495-506. https://doi.org/10.1021/acs.inorgchem.7b02766
    21. Arnab K. Maity, Jesse Murillo, Alejandro J. Metta-Magaña, Balazs Pinter, and Skye Fortier . A Terminal Iron(IV) Nitride Supported by a Super Bulky Guanidinate Ligand and Examination of Its Electronic Structure and Reactivity. Journal of the American Chemical Society 2017, 139 (44) , 15691-15700. https://doi.org/10.1021/jacs.7b06919
    22. Nathaniel J. Hartmann, Guang Wu, and Trevor W. Hayton . Trapping of an NiII Sulfide by a CoI Fulvene Complex. Organometallics 2017, 36 (9) , 1765-1769. https://doi.org/10.1021/acs.organomet.7b00123
    23. Lukas Bucinsky, Martin Breza, Wei-Tsung Lee, Anne K. Hickey, Diane A. Dickie, Ismael Nieto, Jordan A. DeGayner, T. David Harris, Karsten Meyer, J. Krzystek, Andrew Ozarowski, Joscha Nehrkorn, Alexander Schnegg, Karsten Holldack, Rolfe H. Herber, Joshua Telser, and Jeremy M. Smith . Spectroscopic and Computational Studies of Spin States of Iron(IV) Nitrido and Imido Complexes. Inorganic Chemistry 2017, 56 (8) , 4751-4768. https://doi.org/10.1021/acs.inorgchem.7b00512
    24. Anuvab Das, Joseph H. Reibenspies, Yu-Sheng Chen, and David C. Powers . Direct Characterization of a Reactive Lattice-Confined Ru2 Nitride by Photocrystallography. Journal of the American Chemical Society 2017, 139 (8) , 2912-2915. https://doi.org/10.1021/jacs.6b13357
    25. Ryan M. Clarke and Tim Storr . Tuning Electronic Structure To Control Manganese Nitride Activation. Journal of the American Chemical Society 2016, 138 (47) , 15299-15302. https://doi.org/10.1021/jacs.6b09576
    26. Deven P. Estes, Georges Siddiqi, Florian Allouche, Kirill V. Kovtunov, Olga V. Safonova, Alexander L. Trigub, Igor V. Koptyug, and Christophe Copéret . C–H Activation on Co,O Sites: Isolated Surface Sites versus Molecular Analogs. Journal of the American Chemical Society 2016, 138 (45) , 14987-14997. https://doi.org/10.1021/jacs.6b08705
    27. Lauren N. Grant, Maria E. Carroll, Patrick J. Carroll, and Daniel J. Mindiola . An Unusual Cobalt Azide Adduct That Produces a Nitrene Species for Carbon–Hydrogen Insertion Chemistry. Inorganic Chemistry 2016, 55 (16) , 7997-8002. https://doi.org/10.1021/acs.inorgchem.6b01114
    28. Amanda R. Corcos, József S. Pap, Tzuhsiung Yang, and John F. Berry . A Synthetic Oxygen Atom Transfer Photocycle from a Diruthenium Oxyanion Complex. Journal of the American Chemical Society 2016, 138 (31) , 10032-10040. https://doi.org/10.1021/jacs.6b05942
    29. Markus G. Scheibel, Josh Abbenseth, Markus Kinauer, Frank W. Heinemann, Christian Würtele, Bas de Bruin, and Sven Schneider . Homolytic N–H Activation of Ammonia: Hydrogen Transfer of Parent Iridium Ammine, Amide, Imide, and Nitride Species. Inorganic Chemistry 2015, 54 (19) , 9290-9302. https://doi.org/10.1021/acs.inorgchem.5b00829
    30. Long Zhang, Yuesheng Liu, and Liang Deng . Three-Coordinate Cobalt(IV) and Cobalt(V) Imido Complexes with N-Heterocyclic Carbene Ligation: Synthesis, Structure, and Their Distinct Reactivity in C–H Bond Amination. Journal of the American Chemical Society 2014, 136 (44) , 15525-15528. https://doi.org/10.1021/ja509731z
    31. Samyadeb Mahato, Warren VandeVen, Gregory A. MacNeil, Jason M. Pulfer, Tim Storr. Untangling ancillary ligand donation versus locus of oxidation effects on metal nitride reactivity. Chemical Science 2024, 15 (6) , 2211-2220. https://doi.org/10.1039/D3SC05403A
    32. P. A. Petrov, S. A. Nikolaevskii, D. S. Yambulatov, A. A. Starikova, T. S. Sukhikh, M. A. Kiskin, M. N. Sokolov, I. L. Eremenko. Heteroleptic Anionic Cobalt(II) Pivalate Complex with a Bridging Trimethylsiloxy Ligand: Synthesis, Structure, and Formation Mechanism. Russian Journal of Inorganic Chemistry 2023, 68 (9) , 1228-1236. https://doi.org/10.1134/S0036023623601460
    33. P. A. Petrov, S. A. Nikolaevskii, D. S. Yambulatov, T. S. Sukhikh, A. A. Starikova, M. A. Kiskin, M. N. Sokolov, I. L. Eremenko. Heteroleptic Cobalt Complexes with Abnormally Coordinated N-Heterocyclic Carbene. Russian Journal of Coordination Chemistry 2023, 49 (7) , 407-413. https://doi.org/10.1134/S1070328423600274
    34. Megan Keener, Leonor Maria, Marinella Mazzanti. Progress in the chemistry of molecular actinide-nitride compounds. Chemical Science 2023, 14 (24) , 6493-6521. https://doi.org/10.1039/D3SC01435E
    35. Nora Almutairi, Srikanth Vijjamarri, Guodong Du. Manganese Salan Complexes as Catalysts for Hydrosilylation of Aldehydes and Ketones. Catalysts 2023, 13 (4) , 665. https://doi.org/10.3390/catal13040665
    36. Tim P. Schlachta, Fritz E. Kühn. Cyclic iron tetra N-heterocyclic carbenes: synthesis, properties, reactivity, and catalysis. Chemical Society Reviews 2023, 52 (6) , 2238-2277. https://doi.org/10.1039/D2CS01064J
    37. Dominik Munz. Late transition metal-ligand multiple bonds: Covalency and reactivity. 2023, 189-236. https://doi.org/10.1016/bs.adioch.2023.08.005
    38. Matthias Dorn, Nathan Roy East, Christoph Förster, Winald Robert Kitzmann, Johannes Moll, Florian Reichenauer, Thomas Reuter, Laura Stein, Katja Heinze. d-d and charge transfer photochemistry of 3d metal complexes. 2023, 707-788. https://doi.org/10.1016/B978-0-12-823144-9.00063-7
    39. Xiaoqing Xin, Iskander Douair, Thayalan Rajeshkumar, Yue Zhao, Shuao Wang, Laurent Maron, Congqing Zhu. Photochemical Synthesis of Transition Metal-Stabilized Uranium(VI) Nitride Complexes. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-31582-z
    40. Dirk J. Schild, Lucie Nurdin, Marc‐Etienne Moret, Paul H. Oyala, Jonas C. Peters. Characterization of a Proposed Terminal Iron(III) Nitride Intermediate of Nitrogen Fixation Stabilized by a Trisphosphine‐Borane Ligand. Angewandte Chemie 2022, 134 (43) https://doi.org/10.1002/ange.202209655
    41. Dirk J. Schild, Lucie Nurdin, Marc‐Etienne Moret, Paul H. Oyala, Jonas C. Peters. Characterization of a Proposed Terminal Iron(III) Nitride Intermediate of Nitrogen Fixation Stabilized by a Trisphosphine‐Borane Ligand. Angewandte Chemie International Edition 2022, 61 (43) https://doi.org/10.1002/anie.202209655
    42. Vera Seidl, Angel H. Romero, Frank W. Heinemann, Andreas Scheurer, Carola S. Vogel, Tobias Unruh, Peter Wasserscheid, Karsten Meyer. A New Class of Task‐Specific Imidazolium Salts and Ionic Liquids and Their Corresponding Transition‐Metal Complexes for Immobilization on Electrochemically Active Surfaces. Chemistry – A European Journal 2022, 28 (20) https://doi.org/10.1002/chem.202200100
    43. Liang Deng, Zhenbo Mo. Organometallic Chemistry of NHCs and Analogues. 2022, 339-372. https://doi.org/10.1016/B978-0-12-820206-7.00027-5
    44. Aleksa Radović, Shilpa Bhatia, Michael L. Neidig. Characterization Methods for Paramagnetic Organometallic Complexes. 2022, 135-175. https://doi.org/10.1016/B978-0-12-820206-7.00059-7
    45. Thomas Simler, Andreas A. Danopoulos, Pierre Braunstein. N-Heterocyclic Carbene Complexes of Cobalt. 2022, 632-758. https://doi.org/10.1016/B978-0-12-820206-7.00109-8
    46. Weiqing Mao, Dominik Fehn, Frank W. Heinemann, Andreas Scheurer, Dominik Munz, Karsten Meyer. A Pair of Cobalt(III/IV) Terminal Imido Complexes. Angewandte Chemie 2021, 133 (30) , 16616-16622. https://doi.org/10.1002/ange.202103170
    47. Weiqing Mao, Dominik Fehn, Frank W. Heinemann, Andreas Scheurer, Dominik Munz, Karsten Meyer. A Pair of Cobalt(III/IV) Terminal Imido Complexes. Angewandte Chemie International Edition 2021, 60 (30) , 16480-16486. https://doi.org/10.1002/anie.202103170
    48. Yoonsu Park, Scott P. Semproni, Hongyu Zhong, Paul J. Chirik. Synthesis, Electronic Structure, and Reactivity of a Planar Four‐Coordinate, Cobalt–Imido Complex. Angewandte Chemie 2021, 133 (26) , 14497-14501. https://doi.org/10.1002/ange.202104320
    49. Yoonsu Park, Scott P. Semproni, Hongyu Zhong, Paul J. Chirik. Synthesis, Electronic Structure, and Reactivity of a Planar Four‐Coordinate, Cobalt–Imido Complex. Angewandte Chemie International Edition 2021, 60 (26) , 14376-14380. https://doi.org/10.1002/anie.202104320
    50. Basujit Chatterjee, Wei‐Chieh Chang, Christophe Werlé. Molecularly Controlled Catalysis – Targeting Synergies Between Local and Non‐local Environments. ChemCatChem 2021, 13 (7) , 1659-1682. https://doi.org/10.1002/cctc.202001431
    51. Katrin Warm, Jennifer Deutscher, Kallol Ray. Metal-Ligand Multiple Bonds With Group 9–11 Metals. 2021, 171-187. https://doi.org/10.1016/B978-0-08-102688-5.00064-7
    52. Tony Stüker, Thomas Hohmann, Helmut Beckers, Sebastian Riedel. Fluoro Nitrenoid Complexes FN=MF 2 (M=Co, Rh, Ir): Electronic Structure Dichotomy and Formation of Nitrido Fluorides N≡MF 3. Angewandte Chemie 2020, 132 (51) , 23374-23379. https://doi.org/10.1002/ange.202010950
    53. Tony Stüker, Thomas Hohmann, Helmut Beckers, Sebastian Riedel. Fluoro Nitrenoid Complexes FN=MF 2 (M=Co, Rh, Ir): Electronic Structure Dichotomy and Formation of Nitrido Fluorides N≡MF 3. Angewandte Chemie International Edition 2020, 59 (51) , 23174-23179. https://doi.org/10.1002/anie.202010950
    54. Jian Sun, Josh Abbenseth, Hendrik Verplancke, Martin Diefenbach, Bas de Bruin, David Hunger, Christian Würtele, Joris van Slageren, Max C. Holthausen, Sven Schneider. A platinum(ii) metallonitrene with a triplet ground state. Nature Chemistry 2020, 12 (11) , 1054-1059. https://doi.org/10.1038/s41557-020-0522-4
    55. Anuvab Das, Gerard Pierre Van Trieste, David C. Powers. Crystallography of Reactive Intermediates. Comments on Inorganic Chemistry 2020, 40 (3) , 116-158. https://doi.org/10.1080/02603594.2020.1747054
    56. Filip Vlahovic, Maja Gruden, Stepan Stepanovic, Marcel Swart. Density functional approximations for consistent spin and oxidation states of oxoiron complexes. International Journal of Quantum Chemistry 2020, 120 (5) https://doi.org/10.1002/qua.26121
    57. Yulia Budnikova, Olga Bochkova, Mikhail Khrizanforov, Irek Nizameev, Kirill Kholin, Tatyana Gryaznova, Artem Laskin, Yulia Dudkina, Sofia Strekalova, Svetlana Fedorenko, Aleksandr Kononov, Asia Mustafina. Selective C(sp 2 )‐H Amination Catalyzed by High‐Valent Cobalt(III)/(IV)‐bpy Complex Immobilized on Silica Nanoparticles. ChemCatChem 2019, 11 (22) , 5615-5624. https://doi.org/10.1002/cctc.201901391
    58. Brian J. Cook, Samantha I. Johnson, Geoffrey M. Chambers, Werner Kaminsky, R. Morris Bullock. Triple hydrogen atom abstraction from Mn–NH 3 complexes results in cyclophosphazenium cations. Chemical Communications 2019, 55 (93) , 14058-14061. https://doi.org/10.1039/C9CC06915A
    59. Christophe Rebreyend, Valentinos Mouarrawis, Maxime A. Siegler, Jarl Ivar van der Vlugt, Bas de Bruin. Steric Protection of Rhodium‐Nitridyl Radical Species. European Journal of Inorganic Chemistry 2019, 2019 (39-40) , 4249-4255. https://doi.org/10.1002/ejic.201900591
    60. Luis I. Domenianni, Reinhold Fligg, Annett Schäfermeier, Steffen Straub, Julia Beerhues, Biprajit Sarkar, Peter Vöhringer. Molecular and electronic structure of an azidocobalt( iii ) complex derived from X-ray crystallography, linear spectroscopy and quantum chemical calculations. Physical Chemistry Chemical Physics 2019, 21 (36) , 20393-20402. https://doi.org/10.1039/C9CP04350K
    61. Meaghan M. Deegan, Jonas C. Peters. O -Functionalization of a cobalt carbonyl generates a terminal cobalt carbyne. Chemical Communications 2019, 55 (64) , 9531-9534. https://doi.org/10.1039/C9CC04032C
    62. Teera Chantarojsiri, Alexander H. Reath, Jenny Y. Yang. Cationic Charges Leading to an Inverse Free‐Energy Relationship for N−N Bond Formation by Mn VI Nitrides. Angewandte Chemie 2018, 130 (43) , 14233-14238. https://doi.org/10.1002/ange.201805832
    63. Teera Chantarojsiri, Alexander H. Reath, Jenny Y. Yang. Cationic Charges Leading to an Inverse Free‐Energy Relationship for N−N Bond Formation by Mn VI Nitrides. Angewandte Chemie International Edition 2018, 57 (43) , 14037-14042. https://doi.org/10.1002/anie.201805832
    64. Changguang Yao, Xiufang Wang, Kuo-Wei Huang. Nitrogen atom transfer mediated by a new PN 3 P-pincer nickel core via a putative nitrido nickel intermediate. Chemical Communications 2018, 54 (32) , 3940-3943. https://doi.org/10.1039/C7CC09804A
    65. Peng Cui, Qiuran Wang, Samuel P. McCollom, Brian C. Manor, Patrick J. Carroll, Neil C. Tomson. Ring‐Size‐Modulated Reactivity of Putative Dicobalt‐Bridging Nitrides: C−H Activation versus Phosphinimide Formation. Angewandte Chemie 2017, 129 (50) , 16195-16199. https://doi.org/10.1002/ange.201708966
    66. Peng Cui, Qiuran Wang, Samuel P. McCollom, Brian C. Manor, Patrick J. Carroll, Neil C. Tomson. Ring‐Size‐Modulated Reactivity of Putative Dicobalt‐Bridging Nitrides: C−H Activation versus Phosphinimide Formation. Angewandte Chemie International Edition 2017, 56 (50) , 15979-15983. https://doi.org/10.1002/anie.201708966
    67. Christophe Rebreyend, Yann Gloaguen, Martin Lutz, Jarl Ivar van der Vlugt, Inke Siewert, Sven Schneider, Bas de Bruin. Electrocatalytic Azide Oxidation Mediated by a Rh(PNP) Pincer Complex. Chemistry – A European Journal 2017, 23 (69) , 17438-17443. https://doi.org/10.1002/chem.201702938
    68. Erick L. Bastos, Caroline O. Machado. Recent Advances in Acid–Base and Solvation Properties of Metal Phenolates. 2017, 1-60. https://doi.org/10.1002/9780470682531.pat0848
    69. Valentine Charra, Pierre de Frémont, Pierre Braunstein. Multidentate N-heterocyclic carbene complexes of the 3d metals: Synthesis, structure, reactivity and catalysis. Coordination Chemistry Reviews 2017, 341 , 53-176. https://doi.org/10.1016/j.ccr.2017.03.007
    70. Kévin Fauché, Lionel Nauton, Laurent Jouffret, Federico Cisnetti, Arnaud Gautier. A catalytic intramolecular nitrene insertion into a copper( i )–N-heterocyclic carbene bond yielding fused nitrogen heterocycles. Chemical Communications 2017, 53 (15) , 2402-2405. https://doi.org/10.1039/C6CC09160A
    71. Sophie Hameury, Pierre de Frémont, Pierre Braunstein. Metal complexes with oxygen-functionalized NHC ligands: synthesis and applications. Chemical Society Reviews 2017, 46 (3) , 632-733. https://doi.org/10.1039/C6CS00499G
    72. Yixin Zhang, Peng Tong, Dawei Yang, Jianzhe Li, Baomin Wang, Jingping Qu. Migratory insertion and hydrogenation of a bridging azide in a thiolate-bridged dicobalt reaction platform. Chemical Communications 2017, 53 (71) , 9854-9857. https://doi.org/10.1039/C7CC05092E
    73. V. Vreeken, L. Baij, B. de Bruin, M. A. Siegler, J. I. van der Vlugt. N-Atom transfer via thermal or photolytic activation of a Co-azido complex with a PNP pincer ligand. Dalton Transactions 2017, 46 (22) , 7145-7149. https://doi.org/10.1039/C7DT01712J
    74. Christian M. Wallen, Lukáš Palatinus, John Bacsa, Christopher C. Scarborough. Hydrogen Peroxide Coordination to Cobalt(II) Facilitated by Second‐Sphere Hydrogen Bonding. Angewandte Chemie 2016, 128 (39) , 12081-12085. https://doi.org/10.1002/ange.201606561
    75. Christian M. Wallen, Lukáš Palatinus, John Bacsa, Christopher C. Scarborough. Hydrogen Peroxide Coordination to Cobalt(II) Facilitated by Second‐Sphere Hydrogen Bonding. Angewandte Chemie International Edition 2016, 55 (39) , 11902-11906. https://doi.org/10.1002/anie.201606561
    76. Miguel Mena, Adrián Pérez‐Redondo, Carlos Yélamos. Heterometallic Cube‐Type Molecular Nitrides. European Journal of Inorganic Chemistry 2016, 2016 (12) , 1762-1778. https://doi.org/10.1002/ejic.201600135
    77. Jingzhen Du, Linbo Wang, Meihua Xie, Liang Deng. A Two‐Coordinate Cobalt(II) Imido Complex with NHC Ligation: Synthesis, Structure, and Reactivity. Angewandte Chemie 2015, 127 (43) , 12831-12835. https://doi.org/10.1002/ange.201505937
    78. Jingzhen Du, Linbo Wang, Meihua Xie, Liang Deng. A Two‐Coordinate Cobalt(II) Imido Complex with NHC Ligation: Synthesis, Structure, and Reactivity. Angewandte Chemie International Edition 2015, 54 (43) , 12640-12644. https://doi.org/10.1002/anie.201505937
    79. Vincent Vreeken, Maxime A. Siegler, Bas de Bruin, Joost N. H. Reek, Martin Lutz, Jarl Ivar van der Vlugt. CH Activation of Benzene by a Photoactivated Ni II (azide): Formation of a Transient Nickel Nitrido Complex. Angewandte Chemie 2015, 127 (24) , 7161-7165. https://doi.org/10.1002/ange.201501437
    80. Vincent Vreeken, Maxime A. Siegler, Bas de Bruin, Joost N. H. Reek, Martin Lutz, Jarl Ivar van der Vlugt. CH Activation of Benzene by a Photoactivated Ni II (azide): Formation of a Transient Nickel Nitrido Complex. Angewandte Chemie International Edition 2015, 54 (24) , 7055-7059. https://doi.org/10.1002/anie.201501437
    81. . Anorganische Chemie 2014. Nachrichten aus der Chemie 2015, 227-255. https://doi.org/10.1002/nadc.201590090
    82. Ellen M. Matson, Yun Ji Park, Jeffery A. Bertke, Alison R. Fout. Synthesis and characterization of M( ii ) (M = Mn, Fe and Co) azafulvene complexes and their X 3 − derivatives. Dalton Transactions 2015, 44 (22) , 10377-10384. https://doi.org/10.1039/C5DT00985E

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect