ACS Publications. Most Trusted. Most Cited. Most Read
Poly(quinoxaline-2,3-diyl)s Bearing (S)-3-Octyloxymethyl Side Chains as an Efficient Amplifier of Alkane Solvent Effect Leading to Switch of Main-Chain Helical Chirality
My Activity

Figure 1Loading Img
    Communication

    Poly(quinoxaline-2,3-diyl)s Bearing (S)-3-Octyloxymethyl Side Chains as an Efficient Amplifier of Alkane Solvent Effect Leading to Switch of Main-Chain Helical Chirality
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 606-8501, Japan
    CREST, Japan Science and Technology Agency (JST), Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
    Other Access OptionsSupporting Information (2)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2014, 136, 45, 15901–15904
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja509531t
    Published October 24, 2014
    Copyright © 2014 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Poly(quinoxaline-2,3-diyl) containing (S)-3-octyloxymethyl side chains was synthesized to investigate the induction of a single-handed helical sense to the main chain in various alkane solvents. The polymer showed an efficient solvent dependent helix inversion between n-octane (M-helix) and cyclooctane (P-helix). After a screening of alkane solvents, it was found that linear alkanes having large molecular aspect ratios induced M-helical structure, and branched or cyclic alkanes having small molecular aspect ratios induced P-helical structure. A polymer ligand containing (S)-3-octyloxymethyl side chains and diphenylphosphino pendants also exhibited solvent-dependent helical inversion between n-octane and cyclooctane, leading to the highly enantioselective production of the both enantiomeric product in a palladium-catalyzed asymmetric hydrosilylation reaction of styrene (R-product 94% ee in n-octane and S-product 90% ee in cyclooctane).

    Copyright © 2014 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Experimental procedures and spectral data for the new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 86 publications.

    1. Yun-Han Yang, Jin-Jian Wei, Ling Zhang. Water-Regulated Evolution of Inversion, Reinversion, and Amplification of Circularly Polarized Luminescence of Supramolecular Organogels Based on Glutamide–Cyanostilbene Amphiphile. Langmuir 2024, 40 (22) , 11548-11557. https://doi.org/10.1021/acs.langmuir.4c00652
    2. Xue Song, Yan-Xiang Li, Li Zhou, Na Liu, Zong-Quan Wu. Controlled Synthesis of One-Handed Helical Polymers Carrying Achiral Organoiodine Pendants for Enantioselective Synthesis of Quaternary All-Carbon Stereogenic Centers. Macromolecules 2022, 55 (11) , 4441-4449. https://doi.org/10.1021/acs.macromol.2c00810
    3. Yasuteru Mawatari, Muneki Oouchi, Yoshiaki Yoshida, Toshifumi Hiraoki, Masayoshi Tabata. Rate Control of Helix Oscillation of Poly(arylacetylene)s Achieved by Design of Side-Group Structures. Macromolecules 2021, 54 (16) , 7400-7408. https://doi.org/10.1021/acs.macromol.1c00790
    4. Tomoyuki Ikai, Mitsuka Ando, Masaki Ito, Ryoma Ishidate, Nozomu Suzuki, Katsuhiro Maeda, Eiji Yashima. Emergence of Highly Enantioselective Catalytic Activity in a Helical Polymer Mediated by Deracemization of Racemic Pendants. Journal of the American Chemical Society 2021, 143 (32) , 12725-12735. https://doi.org/10.1021/jacs.1c05620
    5. Yukako Yoshinaga, Takeshi Yamamoto, Michinori Suginome. Enantioconvergent Cu-Catalyzed Intramolecular C–C Coupling at Boron-Bound C(sp3) Atoms of α-Aminoalkylboronates Using a C1-Symmetrical 2,2′-Bipyridyl Ligand Attached to a Helically Chiral Macromolecular Scaffold. Journal of the American Chemical Society 2020, 142 (43) , 18317-18323. https://doi.org/10.1021/jacs.0c09080
    6. Tomoyuki Ikai, Ryoma Ishidate, Kazuya Inoue, Kübra Kaygisiz, Katsuhiro Maeda, Eiji Yashima. Chiral/Achiral Copolymers of Biphenylylacetylenes Bearing Various Substituents: Chiral Amplification through Copolymerization, Followed by Enhancement/Inversion and Memory of the Macromolecular Helicity. Macromolecules 2020, 53 (3) , 973-981. https://doi.org/10.1021/acs.macromol.9b02727
    7. Zhaoran Hao, Kai Zhang, Pu Wang, Xumin Lu, Zhiyun Lu, Weiguo Zhu, Yu Liu. Deep Red Iridium(III) Complexes Based on Pyrene-Substituted Quinoxaline Ligands for Solution-Processed Phosphorescent Organic Light-Emitting Diodes. Inorganic Chemistry 2020, 59 (1) , 332-342. https://doi.org/10.1021/acs.inorgchem.9b02477
    8. Naoya Kanbayashi, Taka-aki Okamura, Kiyotaka Onitsuka. Living Cyclocopolymerization through Alternating Insertion of Isocyanide and Allene via Controlling the Reactivity of the Propagation Species: Detailed Mechanistic Investigation. Journal of the American Chemical Society 2019, 141 (38) , 15307-15317. https://doi.org/10.1021/jacs.9b07431
    9. Lei Xu, Li Yang, Zongxia Guo, Na Liu, Yuan-Yuan Zhu, Zhibo Li, Zong-Quan Wu. Helix-Sense-Specific and Enantiomer-Specific Living Polymerizations of Phenyl Isocyanides Using Chiral Palladium(II) Catalysts. Macromolecules 2019, 52 (15) , 5698-5706. https://doi.org/10.1021/acs.macromol.9b00926
    10. Yuuya Nagata, Ryohei Takeda, Michinori Suginome. Asymmetric Catalysis in Chiral Solvents: Chirality Transfer with Amplification of Homochirality through a Helical Macromolecular Scaffold. ACS Central Science 2019, 5 (7) , 1235-1240. https://doi.org/10.1021/acscentsci.9b00330
    11. Shogo Kuriyama, Yuuya Nagata, Michinori Suginome. Telechelic Helical Poly(quinoxaline-2,3-diyl)s Containing a Structurally Defined, Circularly Polarized Luminescent Terquinoxaline Core: Synthesis by Core-Initiated Bidirectional Living Polymerization. ACS Macro Letters 2019, 8 (4) , 479-485. https://doi.org/10.1021/acsmacrolett.9b00165
    12. Jaeho Lee, Suyong Shin, Tae-Lim Choi. Fast Living Polymerization of Challenging Aryl Isocyanides Using an Air-Stable Bisphosphine-Chelated Nickel(II) Initiator. Macromolecules 2018, 51 (19) , 7800-7806. https://doi.org/10.1021/acs.macromol.8b01090
    13. Dario Pasini, Daisuke Takeuchi. Cyclopolymerizations: Synthetic Tools for the Precision Synthesis of Macromolecular Architectures. Chemical Reviews 2018, 118 (18) , 8983-9057. https://doi.org/10.1021/acs.chemrev.8b00286
    14. Naoya Kanbayashi, Jun Ikegami, Yuki Kataoka, Taka-aki Okamura, Kiyotaka Onitsuka. Cyclocopolymerization Based on Alternating Insertions of Isocyanide and Allene Units into a Palladium–Carbon Bond. Macromolecules 2018, 51 (15) , 6092-6098. https://doi.org/10.1021/acs.macromol.8b01554
    15. Hyesong Park, Ka Young Kim, Sung Ho Jung, Yeonweon Choi, Hisako Sato, Jong Hwa Jung. Different Origins of Strain-Induced Chirality Inversion of Co2+-Triggered Supramolecular Peptide Polymers. Chemistry of Materials 2018, 30 (6) , 2074-2083. https://doi.org/10.1021/acs.chemmater.8b00057
    16. Yuuya Nagata, Tsuyoshi Nishikawa, Michinori Suginome, Sota Sato, Masaaki Sugiyama, Lionel Porcar, Anne Martel, Rintaro Inoue, and Nobuhiro Sato . Elucidating the Solvent Effect on the Switch of the Helicity of Poly(quinoxaline-2,3-diyl)s: A Conformational Analysis by Small-Angle Neutron Scattering. Journal of the American Chemical Society 2018, 140 (8) , 2722-2726. https://doi.org/10.1021/jacs.7b11626
    17. Katsuhiro Maeda, Kouhei Shimomura, Tomoyuki Ikai, Shigeyoshi Kanoh, and Eiji Yashima . Static Memory of Enantiomeric Helices Induced in a Poly(biphenylylacetylene) by a Single Enantiomer Assisted by Temperature- and Solvent-Driven Helix Inversion. Macromolecules 2017, 50 (19) , 7801-7806. https://doi.org/10.1021/acs.macromol.7b01955
    18. Chidambar Kulkarni, Peter A. Korevaar, Karteek K. Bejagam, Anja R. A. Palmans, E. W. Meijer, and Subi J. George . Solvent Clathrate Driven Dynamic Stereomutation of a Supramolecular Polymer with Molecular Pockets. Journal of the American Chemical Society 2017, 139 (39) , 13867-13875. https://doi.org/10.1021/jacs.7b07639
    19. Yukako Yoshinaga, Takeshi Yamamoto, and Michinori Suginome . Chirality-Switchable 2,2′-Bipyridine Ligands Attached to Helical Poly(quinoxaline-2,3-diyl)s for Copper-Catalyzed Asymmetric Cyclopropanation of Alkenes. ACS Macro Letters 2017, 6 (7) , 705-710. https://doi.org/10.1021/acsmacrolett.7b00352
    20. Giuseppe Romanazzi, Leonardo Degennaro, Piero Mastrorilli, and Renzo Luisi . Chiral Switchable Catalysts for Dynamic Control of Enantioselectivity. ACS Catalysis 2017, 7 (6) , 4100-4114. https://doi.org/10.1021/acscatal.7b00827
    21. Tsuyoshi Nishikawa, Yuuya Nagata, and Michinori Suginome . Poly(quinoxaline-2,3-diyl) as a Multifunctional Chiral Scaffold for Circularly Polarized Luminescent Materials: Color Tuning, Energy Transfer, and Switching of the CPL Handedness. ACS Macro Letters 2017, 6 (4) , 431-435. https://doi.org/10.1021/acsmacrolett.7b00131
    22. Lu Zheng, Yulin Zhan, Chengyuan Yu, Fu Huang, Ying Wang, and Hua Jiang . Controlling Helix Sense at N- and C-Termini in Quinoline Oligoamide Foldamers by β-Pinene-Derived Pyridyl Moieties. Organic Letters 2017, 19 (6) , 1482-1485. https://doi.org/10.1021/acs.orglett.7b00510
    23. Takeshi Yamamoto, Ryo Murakami, and Michinori Suginome . Single-Handed Helical Poly(quinoxaline-2,3-diyl)s Bearing Achiral 4-Aminopyrid-3-yl Pendants as Highly Enantioselective, Reusable Chiral Nucleophilic Organocatalysts in the Steglich Reaction. Journal of the American Chemical Society 2017, 139 (7) , 2557-2560. https://doi.org/10.1021/jacs.6b12349
    24. Eiji Yashima, Naoki Ousaka, Daisuke Taura, Kouhei Shimomura, Tomoyuki Ikai, and Katsuhiro Maeda . Supramolecular Helical Systems: Helical Assemblies of Small Molecules, Foldamers, and Polymers with Chiral Amplification and Their Functions. Chemical Reviews 2016, 116 (22) , 13752-13990. https://doi.org/10.1021/acs.chemrev.6b00354
    25. Sheng Wang, Xuanyu Feng, Zhiyuan Zhao, Jie Zhang, and Xinhua Wan . Reversible Cis-Cisoid to Cis-Transoid Helical Structure Transition in Poly(3,5-disubstituted phenylacetylene)s. Macromolecules 2016, 49 (22) , 8407-8417. https://doi.org/10.1021/acs.macromol.6b02116
    26. Yuuya Nagata, Tsuyoshi Nishikawa, and Michinori Suginome . Solvent Effect on the Sergeants-and-Soldiers Effect Leading to Bidirectional Induction of Single-Handed Helical Sense of Poly(quinoxaline-2,3-diyl)s Copolymers in Aromatic Solvents. ACS Macro Letters 2016, 5 (4) , 519-522. https://doi.org/10.1021/acsmacrolett.6b00191
    27. Alaric Desmarchelier, Xavier Caumes, Matthieu Raynal, Anton Vidal-Ferran, Piet W. N. M. van Leeuwen, and Laurent Bouteiller . Correlation between the Selectivity and the Structure of an Asymmetric Catalyst Built on a Chirally Amplified Supramolecular Helical Scaffold. Journal of the American Chemical Society 2016, 138 (14) , 4908-4916. https://doi.org/10.1021/jacs.6b01306
    28. Jun Shen and Yoshio Okamoto . Efficient Separation of Enantiomers Using Stereoregular Chiral Polymers. Chemical Reviews 2016, 116 (3) , 1094-1138. https://doi.org/10.1021/acs.chemrev.5b00317
    29. Katsuhiro Maeda, Toyoharu Miyagawa, Akira Furuko, Hisanari Onouchi, and Eiji Yashima . Dual Memory of Enantiomeric Helices in Poly(phenylacetylene)s Induced by a Single Enantiomer through Helix Inversion and Dual Storage of the Enantiomeric Helicity Memories. Macromolecules 2015, 48 (13) , 4281-4293. https://doi.org/10.1021/acs.macromol.5b01269
    30. Naoyuki Hisano, Tomoki Kodama, Soichiro Koya, Takeharu Haino. Helical Supramolecular Polymers Formed via Head‐to‐Tail Host‐Guest Complexation of Chiral Bisporphyrin Monomers with Trinitrofluorenone. Chemistry – A European Journal 2024, https://doi.org/10.1002/chem.202404210
    31. Yu Ozawa, Shingo Hashimoto, Yuta Sato, Kazuya Sato, Takumi Yokoyama, Yoshihito Machida, Steven De Feyter, Yoshito Tobe, Kazukuni Tahara. Adsorption of Prochiral Solvent Molecules by Surface‐Confined Chiral Supramolecular Assemblies: How Solvent Impacts on‐Surface Chirality. Chemistry – A European Journal 2024, 36 https://doi.org/10.1002/chem.202401885
    32. R. Inoue, Y. Nagata, T. Tominaga, S. Sato, Y. Kawakita, T. Yamawaki, K. Morishima, M. Suginome, M. Sugiyama. Dynamics of side chains in poly(quinoxaline-2,3-diyl)s studied via quasielastic neutron scattering. The Journal of Chemical Physics 2024, 161 (5) https://doi.org/10.1063/5.0215603
    33. Abilesh Kumar Ravikumar, Tatsuya Nishimura, Tsuyoshi Taniguchi, Katsuhiro Maeda. Optically active poly(diphenylacetylene)s showing solvent-dependent helix inversion accompanied by modulation of helix inversion barriers. Chemical Communications 2024, 60 (64) , 8379-8382. https://doi.org/10.1039/D4CC02656J
    34. Masahiro Ikeshita, Ayumu Kuroda, Seika Suzuki, Yoshitane Imai, Takashi Tsuno. Switching of Circularly Polarized Luminescence via Dynamic Axial Chirality Control of Chiral Bis(Boron Difluoride) Complexes with Salen Ligands. ChemPhotoChem 2024, 86 https://doi.org/10.1002/cptc.202400110
    35. Mingyue Zhang, Minju Kim, Woosung Choi, Jinyoung Choi, Dong Ha Kim, Yijiang Liu, Zhiqun Lin. Chiral macromolecules and supramolecular assemblies: Synthesis, properties and applications. Progress in Polymer Science 2024, 151 , 101800. https://doi.org/10.1016/j.progpolymsci.2024.101800
    36. Zong-Quan Wu, Xue Song, Yan-Xiang Li, Li Zhou, Yuan-Yuan Zhu, Zheng Chen, Na Liu. Achiral organoiodine-functionalized helical polyisocyanides for multiple asymmetric dearomative oxidations. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-36327-0
    37. Sheng Wang, Xiaoqian Sun, Hua Zeng, Jie Zhang, Xinhua Wan. Fast Visualized Conformational Transition of Polyphenylacetylenes with Stepwise Tunable Circularly Polarized Luminescence. Chemistry – A European Journal 2023, 29 (42) https://doi.org/10.1002/chem.202301080
    38. Guofeng Liu, Mark G. Humphrey, Chi Zhang, Yanli Zhao. Self-assembled stereomutation with supramolecular chirality inversion. Chemical Society Reviews 2023, 52 (13) , 4443-4487. https://doi.org/10.1039/D2CS00476C
    39. Tomoyuki Ikai, Sayaka Miyoshi, Kosuke Oki, Ranajit Saha, Yuh Hijikata, Eiji Yashima. Defect‐Free Synthesis of a Fully π‐Conjugated Helical Ladder Polymer and Resolution into a Pair of Enantiomeric Helical Ladders**. Angewandte Chemie 2023, 135 (20) https://doi.org/10.1002/ange.202301962
    40. Tomoyuki Ikai, Sayaka Miyoshi, Kosuke Oki, Ranajit Saha, Yuh Hijikata, Eiji Yashima. Defect‐Free Synthesis of a Fully π‐Conjugated Helical Ladder Polymer and Resolution into a Pair of Enantiomeric Helical Ladders**. Angewandte Chemie International Edition 2023, 62 (20) https://doi.org/10.1002/anie.202301962
    41. Keisuke Wada, Misaki Suzuki, Takahiro Kakuta, Tada‐aki Yamagishi, Shunsuke Ohtani, Shixin Fa, Kenichi Kato, Shigehisa Akine, Tomoki Ogoshi. Dynamic‐to‐Static Planar Chirality Conversion in Pillar[5]arenes Regulated by Guest Solvents or Amplified by Crystallization. Angewandte Chemie 2023, 135 (19) https://doi.org/10.1002/ange.202217971
    42. Keisuke Wada, Misaki Suzuki, Takahiro Kakuta, Tada‐aki Yamagishi, Shunsuke Ohtani, Shixin Fa, Kenichi Kato, Shigehisa Akine, Tomoki Ogoshi. Dynamic‐to‐Static Planar Chirality Conversion in Pillar[5]arenes Regulated by Guest Solvents or Amplified by Crystallization. Angewandte Chemie International Edition 2023, 62 (19) https://doi.org/10.1002/anie.202217971
    43. Takeshi Yamamoto, Yukako Yoshinaga, Michinori Suginome. Development of Dynamically Chiral Helical Polymer Catalysts Based on Post-Polymerization Modification of Boronyl Pendants. Journal of Synthetic Organic Chemistry, Japan 2023, 81 (4) , 324-332. https://doi.org/10.5059/yukigoseikyokaishi.81.324
    44. Masahiro Ikeshita, Hongxi He, Maho Kitahara, Yoshitane Imai, Takashi Tsuno. External environment sensitive circularly polarized luminescence properties of a chiral boron difluoride complex. RSC Advances 2022, 12 (53) , 34790-34796. https://doi.org/10.1039/D2RA07386B
    45. Yiran Liu, Penghui Zhang, Hanting Wang, Zhixia Wang, Xuan Dong, Menghua Du, Yanyu Qi, Yuanyuan Wang, Lukang Ji. Dual switch of helicity and fluorescent emission in amphiphilic glutamide Pyridine-Cyanostilbene based supramolecular gel. Journal of Molecular Liquids 2022, 366 , 120322. https://doi.org/10.1016/j.molliq.2022.120322
    46. Goutam Ghosh, Anwesha Chakraborty, Prasun Pal, Biman Jana, Suhrit Ghosh. Direct Participation of Solvent Molecules in the Formation of Supramolecular Polymers. Chemistry – A European Journal 2022, 28 (39) https://doi.org/10.1002/chem.202201082
    47. Masahiro Ikeshita, Momo Mizugaki, Takahiro Ishikawa, Kana Matsudaira, Maho Kitahara, Yoshitane Imai, Takashi Tsuno. Sign control of circularly polarized luminescence of chiral Schiff-base Zn( ii ) complexes through coordination geometry changes. Chemical Communications 2022, 58 (54) , 7503-7506. https://doi.org/10.1039/D2CC01959K
    48. Paméla Aoun, Ahmad Hammoud, Mayte A. Martínez-Aguirre, Laurent Bouteiller, Matthieu Raynal. Asymmetric hydroamination with far fewer chiral species than copper centers achieved by tuning the structure of supramolecular helical catalysts. Catalysis Science & Technology 2022, 12 (3) , 834-842. https://doi.org/10.1039/D1CY02168K
    49. Diptiprava Sahoo, Renitta Benny, Nithish Kumar KS, Soumen De. Stimuli‐Responsive Chiroptical Switching. ChemPlusChem 2022, 87 (2) https://doi.org/10.1002/cplu.202100322
    50. Eiji Yashima, Katsuhiro Maeda. Helical Polymers with Dynamic and Static Macromolecular Helicity Memory: The Power of Helicity Memory for Helical Polymer Synthesis and Applications. Bulletin of the Chemical Society of Japan 2021, 94 (11) , 2637-2661. https://doi.org/10.1246/bcsj.20210282
    51. Xiaoxiao Cheng, Tengfei Miao, Yafei Ma, Xiaoyan Zhu, Wei Zhang, Xiulin Zhu. Controlling the Multiple Chiroptical Inversion in Biphasic Liquid‐Crystalline Polymers. Angewandte Chemie 2021, 133 (46) , 24635-24641. https://doi.org/10.1002/ange.202109084
    52. Xiaoxiao Cheng, Tengfei Miao, Yafei Ma, Xiaoyan Zhu, Wei Zhang, Xiulin Zhu. Controlling the Multiple Chiroptical Inversion in Biphasic Liquid‐Crystalline Polymers. Angewandte Chemie International Edition 2021, 60 (46) , 24430-24436. https://doi.org/10.1002/anie.202109084
    53. Xiaoxiao Cheng, Tengfei Miao, Haotian Ma, Jiandong Zhang, Zhengbiao Zhang, Wei Zhang, Xiulin Zhu. Polymerization‐Induced Helicity Inversion Driven by Stacking Modes and Self‐Assembly Pathway Differentiation. Small 2021, 17 (46) https://doi.org/10.1002/smll.202103177
    54. Lukang Ji, Yiran Liu, Zujian Li, Guanghui Ouyang, Minghua Liu. Solvent-regulated chiral exciton coupling and CPL sign inversion of an amphiphilic glutamide-cyanostilbene. Chemical Communications 2021, 57 (86) , 11314-11317. https://doi.org/10.1039/D1CC04471K
    55. Shoma Ikeda, Ryohei Takeda, Takaya Fujie, Naoto Ariki, Yuuya Nagata, Michinori Suginome. Protected amino acids as a nonbonding source of chirality in induction of single-handed screw-sense to helical macromolecular catalysts. Chemical Science 2021, 12 (25) , 8811-8816. https://doi.org/10.1039/D1SC01764K
    56. Li Zhou, Xun‐Hui Xu, Zhi‐Qiang Jiang, Lei Xu, Ben‐Fa Chu, Na Liu, Zong‐Quan Wu. Selective Synthesis of Single‐Handed Helical Polymers from Achiral Monomer and a Mechanism Study on Helix‐Sense‐Selective Polymerization. Angewandte Chemie 2021, 133 (2) , 819-825. https://doi.org/10.1002/ange.202011661
    57. Li Zhou, Xun‐Hui Xu, Zhi‐Qiang Jiang, Lei Xu, Ben‐Fa Chu, Na Liu, Zong‐Quan Wu. Selective Synthesis of Single‐Handed Helical Polymers from Achiral Monomer and a Mechanism Study on Helix‐Sense‐Selective Polymerization. Angewandte Chemie International Edition 2021, 60 (2) , 806-812. https://doi.org/10.1002/anie.202011661
    58. Li Zhang, Han-Xiao Wang, Shuai Li, Minghua Liu. Supramolecular chiroptical switches. Chemical Society Reviews 2020, 49 (24) , 9095-9120. https://doi.org/10.1039/D0CS00191K
    59. Yuuya Nagata, Misaki Suzuki, Yasuo Shimada, Hiroki Sengoku, Shungo Nishida, Takahiro Kakuta, Tada-aki Yamagishi, Michinori Suginome, Tomoki Ogoshi. Holding of planar chirality of pillar[5]arene by kinetic trapping using host–guest interactions with achiral guest solvents. Chemical Communications 2020, 56 (60) , 8424-8427. https://doi.org/10.1039/D0CC03413D
    60. Akiharu Satake. The Solvent Effect on Weak Interactions in Supramolecular Polymers: Differences between Small Molecular Probes and Supramolecular Polymers. ChemPlusChem 2020, 85 (7) , 1542-1548. https://doi.org/10.1002/cplu.202000400
    61. Mai Nozaki, Daisuke Hirose, Katsuhiro Maeda. Synthesis of a poly(diphenylacetylene) bearing optically active anilide pendants and its application to a chiral stationary phase for high-performance liquid chromatography. Journal of Chromatography A 2020, 1622 , 461173. https://doi.org/10.1016/j.chroma.2020.461173
    62. Yan Li, Laurent Bouteiller, Matthieu Raynal. Catalysts Supported by Homochiral Molecular Helices: A New Concept to Implement Asymmetric Amplification in Catalytic Science. ChemCatChem 2019, 11 (21) , 5212-5226. https://doi.org/10.1002/cctc.201901246
    63. Michinori Suginome. Molecular Technology for Switch and Amplification of Chirality in Asymmetric Catalysis Using a Helically Dynamic Macromolecular Scaffold as a Source of Chirality. 2019, 77-94. https://doi.org/10.1002/9783527823987.vol4_c4
    64. Xiaofu Li, Rong Wang, Chunji Wu, Junxian Chen, Jie Zhang, Dongmei Cui, Xinhua Wan. Effect of the tactic structure on the chiroptical properties of helical vinylbiphenyl polymers. Polymer Chemistry 2019, 10 (28) , 3887-3894. https://doi.org/10.1039/C9PY00481E
    65. Yangxue Li, Haiyang Yu, Feifan Xu, Qiaoyuan Guo, Zhigang Xie, Zhiyong Sun. Solvent controlled self-assembly of π-stacked/H-bonded supramolecular organic frameworks from a C 3 -symmetric monomer for iodine adsorption. CrystEngComm 2019, 21 (11) , 1742-1749. https://doi.org/10.1039/C8CE01800F
    66. Yan Li, Xavier Caumes, Matthieu Raynal, Laurent Bouteiller. Modulation of catalyst enantioselectivity through reversible assembly of supramolecular helices. Chemical Communications 2019, 55 (15) , 2162-2165. https://doi.org/10.1039/C8CC09819K
    67. Yuuya Nagata, Tsuyoshi Nishikawa, Ken Terao, Hirokazu Hasegawa, Michinori Suginome. A bidirectional screw‐sense induction of poly(quinoxaline‐2,3‐diyl)s that depends on the degree of polymerization. Journal of Polymer Science Part A: Polymer Chemistry 2019, 57 (3) , 260-263. https://doi.org/10.1002/pola.29224
    68. Jorge S. Valera, Rafael Gómez, Luis Sánchez. Kinetic Traps to Activate Stereomutation in Supramolecular Polymers. Angewandte Chemie 2019, 131 (2) , 520-524. https://doi.org/10.1002/ange.201809272
    69. Jorge S. Valera, Rafael Gómez, Luis Sánchez. Kinetic Traps to Activate Stereomutation in Supramolecular Polymers. Angewandte Chemie International Edition 2019, 58 (2) , 510-514. https://doi.org/10.1002/anie.201809272
    70. Ka Young Kim, Jaehyeong Kim, Hyesong Park, Yeonweon Choi, Ki‐Young Kwon, Jong Hwa Jung. Helical Inversion of Peptide‐based Supramolecular Co 2+ Complexes. Bulletin of the Korean Chemical Society 2018, 39 (8) , 988-994. https://doi.org/10.1002/bkcs.11540
    71. Yuuya Nagata, Michinori Suginome. Controlling the Chiral Molecular Space Using Helical Polymers. 2018, 165-182. https://doi.org/10.1007/978-981-13-1256-4_8
    72. Yuuya Nagata, Tsuyoshi Nishikawa, Michinori Suginome. Abnormal sergeants-and-soldiers effects of poly(quinoxaline-2,3-diyl)s enabling discrimination of one-carbon homologous n -alkanes through a highly sensitive solvent-dependent helix inversion. Chemical Communications 2018, 54 (50) , 6867-6870. https://doi.org/10.1039/C8CC02836B
    73. Binfang Yuan, Rongxing He, Xiaogang Guo, Wei Shen, Fengying Zhang, Yanyan Xu, Ming Li. DFT study on the Au( i )-catalyzed cyclization of indole-allenoate: counterion and solvent effects. New Journal of Chemistry 2018, 42 (19) , 15618-15628. https://doi.org/10.1039/C8NJ02375A
    74. A. R. A. Palmans. Deracemisations under kinetic and thermodynamic control. Molecular Systems Design & Engineering 2017, 2 (1) , 34-46. https://doi.org/10.1039/C6ME00088F
    75. Michinori Suginome, Yuuya Nagata, Takeshi Yamamoto. New Chiral Functions Based on the Dynamic Induction of Macromolecular Helical Chirality by Chiral Side Chains. Journal of Synthetic Organic Chemistry, Japan 2017, 75 (5) , 476-490. https://doi.org/10.5059/yukigoseikyokaishi.75.476
    76. Peng Zhang, Zekun Wang, Liang Zhang, Hui Wang, Danwei Zhang, Junli Hou, Zhanting Li. Aromatic Amide Polymers that Form Two Helical Conformations with Twist Sense Bias in Water. Chinese Journal of Chemistry 2016, 34 (7) , 678-682. https://doi.org/10.1002/cjoc.201600140
    77. Peng Zhang, Liang Zhang, Ze‐Kun Wang, Yun‐Chang Zhang, Rong Guo, Hui Wang, Dan‐Wei Zhang, Zhan‐Ting Li. Guest‐Induced Arylamide Polymer Helicity: Twist‐Sense Bias and Solvent‐Dependent Helicity Inversion. Chemistry – An Asian Journal 2016, 11 (11) , 1725-1730. https://doi.org/10.1002/asia.201600289
    78. Shingo Ito. Chain-growth polymerization enabling formation/introduction of arylene groups into polymer main chains. Polymer Journal 2016, 48 (6) , 667-677. https://doi.org/10.1038/pj.2016.18
    79. Haiyang Zhang, Jianping Deng. Helical Polymers Showing Inverse Helicity and Synergistic Effect in Chiral Catalysis: Catalytic Functionality Determining Enantioconfiguration and Helical Frameworks Providing Asymmetric Microenvironment. Macromolecular Chemistry and Physics 2016, 217 (7) , 880-888. https://doi.org/10.1002/macp.201500522
    80. Takashi Hirose, Natsuki Ito, Hiromu Kubo, Tohru Sato, Kenji Matsuda. Fluorescence behavior of 5,10-disubstituted [5]helicene derivatives in solution and the effect of self-assembly on their radiative and non-radiative rate constants. Journal of Materials Chemistry C 2016, 4 (14) , 2811-2819. https://doi.org/10.1039/C5TC03675E
    81. Masaki Yamamura, Kimiya Sukegawa, Daichi Okada, Yohei Yamamoto, Tatsuya Nabeshima. Chiroptical switching caused by crystalline/liquid crystalline phase transition of a chiral bowl-shaped molecule. Chemical Communications 2016, 52 (24) , 4585-4588. https://doi.org/10.1039/C6CC00995F
    82. Lijia Liu, Naoki Ousaka, Miki Horie, Fumihiko Mamiya, Eiji Yashima. Helix–helix inversion of an optically-inactive π-conjugated foldamer triggered by concentration changes of a single enantiomeric guest leading to a change in the helical stability. Chemical Communications 2016, 52 (79) , 11752-11755. https://doi.org/10.1039/C6CC05753E
    83. Rong Wang, Yijun Zheng, Xiaofu Li, Junxian Chen, Jiaxi Cui, Jie Zhang, Xinhua Wan. Optically active helical vinylbiphenyl polymers with reversible thermally induced stereomutation. Polymer Chemistry 2016, 7 (18) , 3134-3144. https://doi.org/10.1039/C6PY00447D
    84. Yuuya Nagata, Ryohei Takeda, Michinori Suginome. High-pressure circular dichroism spectroscopy up to 400 MPa using polycrystalline yttrium aluminum garnet (YAG) as pressure-resistant optical windows. RSC Advances 2016, 6 (111) , 109726-109729. https://doi.org/10.1039/C6RA23736C
    85. Alaric Desmarchelier, Matthieu Raynal, Patrick Brocorens, Nicolas Vanthuyne, Laurent Bouteiller. Revisiting the assembly of amino ester-based benzene-1,3,5-tricarboxamides: chiral rods in solution. Chemical Communications 2015, 51 (34) , 7397-7400. https://doi.org/10.1039/C5CC01513H
    86. Michinori Suginome, Takeshi Yamamoto, Yuuya Nagata. Poly(quinoxaline-2,3-diyl)s: A Fascinating Helical Macromolecular Scaffold for New Chiral Functions. Journal of Synthetic Organic Chemistry, Japan 2015, 73 (11) , 1141-1155. https://doi.org/10.5059/yukigoseikyokaishi.73.1141

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2014, 136, 45, 15901–15904
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja509531t
    Published October 24, 2014
    Copyright © 2014 American Chemical Society

    Article Views

    3587

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.