Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Molecular Origin of Enhanced Proton Conductivity in Anhydrous Ionic Systems
My Activity

Figure 1Loading Img
    Article

    Molecular Origin of Enhanced Proton Conductivity in Anhydrous Ionic Systems
    Click to copy article linkArticle link copied!

    View Author Information
    Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
    Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
    § Centre For Pharmaceutical Engineering Science, Bradford School of Pharmacy, University of Bradford, Richmond Road, Bradford BD7 1DP, United Kingdom
    Institute of Physics, University of Rostock, Wismarsche Straße 43−45, 18057 Rostock, Germany
    School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, College Green, Dublin 2, Ireland
    Institute of Non-Ferrous Metals, ul. Sowinskiego 5, 44-100 Gliwice, Poland
    # Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
    Institute of Physical Chemistry, University of Rostock, Dr.-Lorenz-Weg 1, 18059 Rostock, Germany
    Faculty of Interdisciplinary Research, Department ‘‘Life, Light and Matter’’, University of Rostock, 18051 Rostock, Germany
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2015, 137, 3, 1157–1164
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja5103458
    Published December 31, 2014
    Copyright © 2014 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Ionic systems with enhanced proton conductivity are widely viewed as promising electrolytes in fuel cells and batteries. Nevertheless, a major challenge toward their commercial applications is determination of the factors controlling the fast proton hopping in anhydrous conditions. To address this issue, we have studied novel proton-conducting materials formed via a chemical reaction of lidocaine base with a series of acids characterized by a various number of proton-active sites. From ambient and high pressure experimental data, we have found that there are fundamental differences in the conducting properties of the examined salts. On the other hand, DFT calculations revealed that the internal proton hopping within the cation structure strongly affects the pathways of mobility of the charge carrier. These findings offer a fresh look on the Grotthuss-type mechanism in protic ionic glasses as well as provide new ideas for the design of anhydrous materials with exceptionally high proton conductivity.

    Copyright © 2014 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information file contains: synthesis of the examined ionic conductors, details of calorimetric experiments and characteristic of hydrogen bonds network in crystal structures of selected lidocaine salts. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 41 publications.

    1. Márta Gődény, Florian Joerg, Maximilian P.-P. Kovar, Christian Schröder. Updates to Protex for Simulating Proton Transfers in an Ionic Liquid. The Journal of Physical Chemistry B 2024, 128 (14) , 3416-3426. https://doi.org/10.1021/acs.jpcb.3c07356
    2. Beibei Yao, Marian Paluch, Jaroslaw Paturej, Shannon McLaughlin, Anne McGrogan, Malgorzata Swadzba-Kwasny, Jie Shen, Beatrice Ruta, Martin Rosenthal, Jiliang Liu, Danuta Kruk, Zaneta Wojnarowska. Self-Assembled Nanostructures in Aprotic Ionic Liquids Facilitate Charge Transport at Elevated Pressure. ACS Applied Materials & Interfaces 2023, 15 (33) , 39417-39425. https://doi.org/10.1021/acsami.3c08606
    3. Julija Zotova, Brendan Twamley, Lidia Tajber. Impact of the Dicarboxylic Acid Chain Length on Intermolecular Interactions with Lidocaine. Molecular Pharmaceutics 2022, 19 (8) , 2980-2991. https://doi.org/10.1021/acs.molpharmaceut.2c00381
    4. Zaneta Wojnarowska, Alyna Lange, Andreas Taubert, Marian Paluch. Ion and Proton Transport In Aqueous/Nonaqueous Acidic Ionic Liquids for Fuel-Cell Applications—Insight from High-Pressure Dielectric Studies. ACS Applied Materials & Interfaces 2021, 13 (26) , 30614-30624. https://doi.org/10.1021/acsami.1c06260
    5. Hikari Watanabe, Nana Arai, Yasuo Kameda, Richard Buchner, Yasuhiro Umebayashi. Effect of Brønsted Acidity on Ion Conduction in Fluorinated Acetic Acid and N-Methylimidazole Equimolar Mixtures as Pseudo-protic Ionic Liquids. The Journal of Physical Chemistry B 2020, 124 (49) , 11157-11164. https://doi.org/10.1021/acs.jpcb.0c07706
    6. Ki-Ho Nam, Kwangwon Seo, Sangrae Lee, Haksoo Han. Sulfur-Doped Hierarchically Porous Open Cellular Polymer/Acid Complex Electrolyte Membranes for Efficient Water-Free Proton Transport. ACS Sustainable Chemistry & Engineering 2020, 8 (43) , 16156-16163. https://doi.org/10.1021/acssuschemeng.0c04601
    7. Zaneta Wojnarowska, Małgorzata Musiał, Shinian Cheng, Jacek Gapinski, Adam Patkowski, Jürgen Pionteck, Marian Paluch. Revealing Fast Proton Transport in Condensed Matter by Means of Density Scaling Concept. The Journal of Physical Chemistry C 2020, 124 (29) , 15749-15756. https://doi.org/10.1021/acs.jpcc.0c03548
    8. V. Bocharova, A. P. Sokolov. Perspectives for Polymer Electrolytes: A View from Fundamentals of Ionic Conductivity. Macromolecules 2020, 53 (11) , 4141-4157. https://doi.org/10.1021/acs.macromol.9b02742
    9. Zhenghao Zhu, Xubo Luo, Alexei P. Sokolov, Stephen J. Paddison. Proton Transfer in Phosphoric Acid-Based Protic Ionic Liquids: Effects of the Base. The Journal of Physical Chemistry A 2020, 124 (20) , 4141-4149. https://doi.org/10.1021/acs.jpca.0c02863
    10. Shinian Cheng, Zaneta Wojnarowska, Małgorzata Musiał, Dimitri Flachard, Eric Drockenmuller, Marian Paluch. Access to Thermodynamic and Viscoelastic Properties of Poly(ionic liquid)s Using High-Pressure Conductivity Measurements. ACS Macro Letters 2019, 8 (8) , 996-1001. https://doi.org/10.1021/acsmacrolett.9b00355
    11. Z. Wojnarowska, L. Tajber, M. Paluch. Density Scaling in Ionic Glass Formers Controlled by Grotthuss Conduction. The Journal of Physical Chemistry B 2019, 123 (5) , 1156-1160. https://doi.org/10.1021/acs.jpcb.8b09396
    12. Maximilian Heres, Tyler Cosby, Emmanuel Urandu Mapesa, Hongjun Liu, Stefan Berdzinski, Veronika Strehmel, Mark Dadmun, Stephen J. Paddison, Joshua Sangoro. Ion Transport in Glassy Polymerized Ionic Liquids: Unraveling the Impact of the Molecular Structure. Macromolecules 2019, 52 (1) , 88-95. https://doi.org/10.1021/acs.macromol.8b01273
    13. Eric W. Stacy, Catalin P. Gainaru, Mallory Gobet, Zaneta Wojnarowska, Vera Bocharova, Steven G. Greenbaum, Alexei P. Sokolov. Fundamental Limitations of Ionic Conductivity in Polymerized Ionic Liquids. Macromolecules 2018, 51 (21) , 8637-8645. https://doi.org/10.1021/acs.macromol.8b01221
    14. Philip J. Griffin, Jessica L. Freyer, Nicholas Han, Noah Geller, Xiaodong Yin, Chirag D. Gheewala, Tristan H. Lambert, Luis M. Campos, Karen I. Winey. Ion Transport in Cyclopropenium-Based Polymerized Ionic Liquids. Macromolecules 2018, 51 (5) , 1681-1687. https://doi.org/10.1021/acs.macromol.7b02546
    15. Zaneta Wojnarowska, Hongbo Feng, Mariana Diaz, Alfredo Ortiz, Inmaculada Ortiz, Justyna Knapik-Kowalczuk, Miguel Vilas, Pedro Verdía, Emilia Tojo, Tomonori Saito, Eric W. Stacy, Nam-Goo Kang, Jimmy W. Mays, Danuta Kruk, Patryk Wlodarczyk, Alexei P. Sokolov, Vera Bocharova, and Marian Paluch . Revealing the Charge Transport Mechanism in Polymerized Ionic Liquids: Insight from High Pressure Conductivity Studies. Chemistry of Materials 2017, 29 (19) , 8082-8092. https://doi.org/10.1021/acs.chemmater.7b01658
    16. Zaneta Wojnarowska, Hongbo Feng, Yao Fu, Shiwang Cheng, Bobby Carroll, Rajeev Kumar, Vladimir N. Novikov, Alexander M. Kisliuk, Tomonori Saito, Nam-Goo Kang, Jimmy W. Mays, Alexei P. Sokolov, and Vera Bocharova . Effect of Chain Rigidity on the Decoupling of Ion Motion from Segmental Relaxation in Polymerized Ionic Liquids: Ambient and Elevated Pressure Studies. Macromolecules 2017, 50 (17) , 6710-6721. https://doi.org/10.1021/acs.macromol.7b01217
    17. Éadaoin McCourt, Zaneta Wojnarowska, Johan Jacquemin, Peter Nockemann, Haresh G. Manyar, Lukasz Hawelek, and Marian Paluch . Temperature- and Pressure-Induced Structural Changes of Cobalt(II) in a Phosphonium-Based Ionic Liquid. The Journal of Physical Chemistry C 2016, 120 (19) , 10156-10161. https://doi.org/10.1021/acs.jpcc.6b01325
    18. Z. Wojnarowska, J. Knapik, M. Rams-Baron, A. Jedrzejowska, M. Paczkowska, A. Krause, J. Cielecka-Piontek, M. Jaworska, P. Lodowski, and M. Paluch . Amorphous Protic Ionic Systems as Promising Active Pharmaceutical Ingredients: The Case of the Sumatriptan Succinate Drug. Molecular Pharmaceutics 2016, 13 (3) , 1111-1122. https://doi.org/10.1021/acs.molpharmaceut.5b00911
    19. Manesh Zachariah, Michela Romanini, Pragya Tripathi, María Barrio, Josep Lluís Tamarit, and Roberto Macovez . Self-Diffusion, Phase Behavior, and Li+ Ion Conduction in Succinonitrile-Based Plastic Cocrystals. The Journal of Physical Chemistry C 2015, 119 (49) , 27298-27306. https://doi.org/10.1021/acs.jpcc.5b09380
    20. Z. Wojnarowska, J. Knapik, J. Jacquemin, S. Berdzinski, V. Strehmel, J. R. Sangoro, and M. Paluch . Effect of Pressure on Decoupling of Ionic Conductivity from Segmental Dynamics in Polymerized Ionic Liquids. Macromolecules 2015, 48 (23) , 8660-8666. https://doi.org/10.1021/acs.macromol.5b02130
    21. Tyler Cosby, Adam Holt, Philip J. Griffin, Yangyang Wang, and Joshua Sangoro . Proton Transport in Imidazoles: Unraveling the Role of Supramolecular Structure. The Journal of Physical Chemistry Letters 2015, 6 (19) , 3961-3965. https://doi.org/10.1021/acs.jpclett.5b01887
    22. Wenkang Tu, Paulina Maksym, Kamil Kaminski, Katarzyna Chat, Karolina Adrjanowicz. Free-radical polymerization of 2-hydroxyethyl methacrylate (HEMA) supported by a high electric field. Polymer Chemistry 2022, 13 (19) , 2850-2859. https://doi.org/10.1039/D2PY00320A
    23. Julija Zotova, Zaneta Wojnarowska, Brendan Twamley, Lidia Tajber. Formation of stoichiometric and non-stoichiometric ionic liquid and cocrystal multicomponent phases of lidocaine with azelaic acid by changing counterion ratios. Journal of Molecular Liquids 2021, 344 , 117737. https://doi.org/10.1016/j.molliq.2021.117737
    24. Klaudia Bialek, Zaneta Wojnarowska, Marcin Skotnicki, Brendan Twamley, Marian Paluch, Lidia Tajber. Submerged Eutectic-Assisted, Solvent-Free Mechanochemical Formation of a Propranolol Salt and Its Other Multicomponent Solids. Pharmaceutics 2021, 13 (12) , 2125. https://doi.org/10.3390/pharmaceutics13122125
    25. Amanda R. Young-Gonzales, Stephen J. Paddison, Alexei P. Sokolov. Tuning proton conductivity and energy barriers for proton transfer. The Journal of Chemical Physics 2021, 154 (1) https://doi.org/10.1063/5.0032512
    26. Madalina Elena Culica, Mihaela Avadanei, Raluca Ioana Baron, Andreea Laura Chibac-Scutaru, Mihai Asandulesa, Gabriela Biliuta, Gabriela Lisa, Sergiu Coseri. The source of conductivity and proton dynamics study in TEMPO-oxidized cellulose doped with various heterocyclic molecules. Cellulose 2020, 27 (15) , 8585-8604. https://doi.org/10.1007/s10570-020-03372-7
    27. Arthur Markus Anton, Falk Frenzel, Jiayin Yuan, Martin Tress, Friedrich Kremer. Hydrogen bonding and charge transport in a protic polymerized ionic liquid. Soft Matter 2020, 16 (26) , 6091-6101. https://doi.org/10.1039/D0SM00337A
    28. Z. Wojnarowska, J. Zotowa, J. Knapik-Kowalczuk, L. Tajber, M. Paluch. Effect of electrostatic interactions on the relaxation dynamics of pharmaceutical eutectics. European Journal of Pharmaceutical Sciences 2019, 134 , 93-101. https://doi.org/10.1016/j.ejps.2019.04.014
    29. M. Pochylski, J. Gapiński, Z. Wojnarowska, M. Paluch, A. Patkowski. Nature of intramolecular dynamics in protic ionic glass-former: insight from ambient and high pressure Brillouin spectroscopy. Journal of Molecular Liquids 2019, 282 , 51-56. https://doi.org/10.1016/j.molliq.2019.02.131
    30. A. Kisliuk, V. Bocharova, I. Popov, C. Gainaru, A.P. Sokolov. Fundamental parameters governing ion conductivity in polymer electrolytes. Electrochimica Acta 2019, 299 , 191-196. https://doi.org/10.1016/j.electacta.2018.12.143
    31. Chin Han Chan, Hans-Werner Kammer. Characterization of polymer electrolytes by dielectric response using electrochemical impedance spectroscopy. Pure and Applied Chemistry 2018, 90 (6) , 939-953. https://doi.org/10.1515/pac-2017-0911
    32. Xuechao Ren, Chunhui Shen, Shanjun Gao, Yuan Yuan, Jiqin Chen. Proton Exchange Membrane with Enlarged Operating Temperature by Incorporating Phosphonic Acid Functionalized and Crosslinked Siloxane in Sulfonated Poly(ether ether ketone) (SPEEK) Matrix. Macromolecular Research 2018, 26 (2) , 173-181. https://doi.org/10.1007/s13233-018-6015-2
    33. Tamara J. Bednarchuk, Vasyl Kinzhybalo, Ewa Markiewicz, Bożena Hilczer, Adam Pietraszko. Structure, dielectric and electric properties of diisobutylammonium hydrogen sulfate crystal. Journal of Solid State Chemistry 2018, 258 , 753-761. https://doi.org/10.1016/j.jssc.2017.11.042
    34. Z. Wojnarowska, M. Rams-Baron, J. Knapik-Kowalczuk, A. Połatyńska, M. Pochylski, J. Gapinski, A. Patkowski, P. Wlodarczyk, M. Paluch. Experimental evidence of high pressure decoupling between charge transport and structural dynamics in a protic ionic glass-former. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-07136-5
    35. Shereen Shabaan Omara, Gamal Turky, Ahmed Ghoneim, Andreas F. Thünemann, Mona H. Abdel Rehim, Andreas Schönhals. Hyperbranched poly(amidoamine)/kaolinite nanocomposites: Structure and charge carrier dynamics. Polymer 2017, 121 , 64-74. https://doi.org/10.1016/j.polymer.2017.06.017
    36. Tamara J. Bednarchuk, Dorota Kowalska, Vasyl Kinzhybalo, Marek Wołcyrz. Temperature-induced reversible structural phase transition and X-ray diffuse scattering in 2-amino-3-nitropyridinium hydrogen sulfate. Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials 2017, 73 (3) , 337-346. https://doi.org/10.1107/S2052520617001524
    37. Paula Berton, Steven P. Kelley, Hui Wang, Allan S. Myerson, Robin D. Rogers. Separate mechanisms of ion oligomerization tune the physicochemical properties of n-butylammonium acetate: cation-base clusters vs. anion-acid dimers. Physical Chemistry Chemical Physics 2017, 19 (37) , 25544-25554. https://doi.org/10.1039/C7CP04078D
    38. Z. Wojnarowska, M. Paluch. High-Pressure Dielectric Spectroscopy for Studying the Charge Transfer in Ionic Liquids and Solids. 2016, 73-113. https://doi.org/10.1007/978-3-319-32489-0_4
    39. Evgeni Shoifet, Sergey P. Verevkin, Christoph Schick. Decoupling Between Structural and Conductivity Relaxation in Aprotic Ionic Liquids. 2016, 213-233. https://doi.org/10.1007/978-3-319-32489-0_9
    40. Martin Pulst, Jens Balko, Yury Golitsyn, Detlef Reichert, Karsten Busse, Jörg Kressler. Proton conductivity and phase transitions in 1,2,3-triazole. Physical Chemistry Chemical Physics 2016, 18 (8) , 6153-6163. https://doi.org/10.1039/C5CP07603J
    41. M. Rams-Baron, Z. Wojnarowska, A. Jedrzejowska, A. Swiety-Pospiech, M. Paluch. The implications of various molecular interactions on the dielectric behavior of cimetidine and cimetidine hydrochloride. RSC Advances 2016, 6 (114) , 112919-112930. https://doi.org/10.1039/C6RA17685B

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2015, 137, 3, 1157–1164
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja5103458
    Published December 31, 2014
    Copyright © 2014 American Chemical Society

    Article Views

    2339

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.