ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

New Class of Bioluminogenic Probe Based on Bioluminescent Enzyme-Induced Electron Transfer: BioLeT

View Author Information
† ‡ Graduate School of Pharmaceutical Sciences, Graduate School of Medicine, Open Innovation Center for Drug Discovery, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
⊥ # Basic Research Program, #CREST, PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
§ Department of Organ Fabrication, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
Cite this: J. Am. Chem. Soc. 2015, 137, 12, 4010–4013
Publication Date (Web):March 11, 2015
https://doi.org/10.1021/ja511014w
Copyright © 2015 American Chemical Society

    Article Views

    7156

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (1 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Bioluminescence imaging (BLI) has advantages for investigating biological phenomena in deep tissues of living animals, but few design strategies are available for functional bioluminescent substrates. We propose a new design strategy (designated as bioluminescent enzyme-induced electron transfer: BioLeT) for luciferin-based bioluminescence probes. Luminescence measurements of a series of aminoluciferin derivatives confirmed that bioluminescence can be controlled by means of BioLeT. Based on this concept, we developed bioluminescence probes for nitric oxide that enabled quantitative and sensitive detection even in vivo. Our design strategy should be applicable to develop a wide range of practically useful bioluminogenic probes.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Experimental procedures, characterization of synthesized compounds, and supplementary data. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 60 publications.

    1. Tingting Dai, Jinghang Xie, Joseph A. Buonomo, Angel Moreno, Niaz Banaei, Carolyn R. Bertozzi, Jianghong Rao. Bioluminogenic Probe for Rapid, Ultrasensitive Detection of β-Lactam-Resistant Bacteria. Analytical Chemistry 2023, 95 (18) , 7329-7335. https://doi.org/10.1021/acs.analchem.3c00478
    2. Marieh B. Al-Handawi, Srujana Polavaram, Anastasiya Kurlevskaya, Patrick Commins, Stefan Schramm, César Carrasco-López, Nathan M. Lui, Kyril M. Solntsev, Sergey P. Laptenok, Isabelle Navizet, Panče Naumov. Spectrochemistry of Firefly Bioluminescence. Chemical Reviews 2022, 122 (16) , 13207-13234. https://doi.org/10.1021/acs.chemrev.1c01047
    3. Anuj K. Yadav, Michael C. Lee, Melissa Y. Lucero, Shengzhang Su, Christopher J. Reinhardt, Jefferson Chan. Activity-Based NIR Bioluminescence Probe Enables Discovery of Diet-Induced Modulation of the Tumor Microenvironment via Nitric Oxide. ACS Central Science 2022, 8 (4) , 461-472. https://doi.org/10.1021/acscentsci.1c00317
    4. Dan-Dan Wang, Li-Wei Zou, Qiang Jin, Xiao-Qing Guan, Yang Yu, Ya-Di Zhu, Jian Huang, Peng Gao, Ping Wang, Guang-Bo Ge, Ling Yang. Bioluminescent Sensor Reveals that Carboxylesterase 1A is a Novel Endoplasmic Reticulum-Derived Serologic Indicator for Hepatocyte Injury. ACS Sensors 2020, 5 (7) , 1987-1995. https://doi.org/10.1021/acssensors.0c00384
    5. Karim A. Bahou, D. Christopher Braddock, Adam G. Meyer, G. Paul Savage, Zhensheng Shi, Tianyou He. A Relay Strategy Actuates Pre-Existing Trisubstituted Olefins in Monoterpenoids for Cross-Metathesis with Trisubstituted Alkenes. The Journal of Organic Chemistry 2020, 85 (7) , 4906-4917. https://doi.org/10.1021/acs.joc.0c00067
    6. Yuxing Lin, Zhao Ma, Zhenzhen Li, Yuqi Gao, Xiaojun Qin, Zheng Zhang, Guankai Wang, Lupei Du, Minyong Li. Bioluminescent Probe for Monitoring Endogenous Fibroblast Activation Protein-Alpha. Analytical Chemistry 2019, 91 (23) , 14873-14878. https://doi.org/10.1021/acs.analchem.9b02117
    7. Zhenwei Yuan, Lijuan Gui, Jinrong Zheng, Yisha Chen, Sisi Qu, Yuanzhi Shen, Fei Wang, Murat Er, Yueqing Gu, Haiyan Chen. GSH-Activated Light-Up Near-Infrared Fluorescent Probe with High Affinity to αvβ3 Integrin for Precise Early Tumor Identification. ACS Applied Materials & Interfaces 2018, 10 (37) , 30994-31007. https://doi.org/10.1021/acsami.8b09841
    8. Stephen C. Miller, David M. Mofford, Spencer T. Adams, Jr.. Lessons Learned from Luminous Luciferins and Latent Luciferases. ACS Chemical Biology 2018, 13 (7) , 1734-1740. https://doi.org/10.1021/acschembio.7b00964
    9. Anqi Wang, Jiesi Feng, Yulong Li, Peng Zou. Beyond Fluorescent Proteins: Hybrid and Bioluminescent Indicators for Imaging Neural Activities. ACS Chemical Neuroscience 2018, 9 (4) , 639-650. https://doi.org/10.1021/acschemneuro.7b00455
    10. Yu Lin Jiang, Yun Zhu, Alfred B. Moore, Kayla Miller, and Ann-Marie Broome . Biotinylated Bioluminescent Probe for Long Lasting Targeted in Vivo Imaging of Xenografted Brain Tumors in Mice. ACS Chemical Neuroscience 2018, 9 (1) , 100-106. https://doi.org/10.1021/acschemneuro.7b00111
    11. David M. Mofford, Kate L. Liebmann, Ganapathy Subramanian Sankaran, G. S. Kiran Kumar Reddy, G. Randheer Reddy, and Stephen C. Miller . Luciferase Activity of Insect Fatty Acyl-CoA Synthetases with Synthetic Luciferins. ACS Chemical Biology 2017, 12 (12) , 2946-2951. https://doi.org/10.1021/acschembio.7b00813
    12. Deepak K. Sharma, Spencer T. Adams, Jr., Kate L. Liebmann, and Stephen C. Miller . Rapid Access to a Broad Range of 6′-Substituted Firefly Luciferin Analogues Reveals Surprising Emitters and Inhibitors. Organic Letters 2017, 19 (21) , 5836-5839. https://doi.org/10.1021/acs.orglett.7b02806
    13. Chun-Guang Dai, Ji-Long Wang, Ying-Long Fu, Hong-Ping Zhou, and Qin-Hua Song . Selective and Real-Time Detection of Nitric Oxide by a Two-Photon Fluorescent Probe in Live Cells and Tissue Slices. Analytical Chemistry 2017, 89 (19) , 10511-10519. https://doi.org/10.1021/acs.analchem.7b02680
    14. Ning Cai, Yuta Takano, Tomohiro Numata, Ryuji Inoue, Yasuo Mori, Tatsuya Murakami, and Hiroshi Imahori . Strategy to Attain Remarkably High Photoinduced Charge-Separation Yield of Donor–Acceptor Linked Molecules in Biological Environment via Modulating Their Cationic Moieties. The Journal of Physical Chemistry C 2017, 121 (32) , 17457-17465. https://doi.org/10.1021/acs.jpcc.7b04466
    15. Peiyao Chen, Zhen Zheng, Yunxia Zhu, Yu Dong, Fuqiang Wang, and Gaolin Liang . Bioluminescent Turn-On Probe for Sensing Hypochlorite in Vitro and in Tumors. Analytical Chemistry 2017, 89 (11) , 5693-5696. https://doi.org/10.1021/acs.analchem.7b01103
    16. Ajaz A. Dar, M. Shadab, Suman Khan, Nahid Ali, and Abu T. Khan . One-Pot Synthesis and Evaluation of Antileishmanial Activities of Functionalized S-Alkyl/Aryl Benzothiazole-2-carbothioate Scaffold. The Journal of Organic Chemistry 2016, 81 (8) , 3149-3160. https://doi.org/10.1021/acs.joc.6b00113
    17. Jinming Hu, Michael R. Whittaker, John F. Quinn, and Thomas P. Davis . Nitric Oxide (NO) Endows Arylamine-Containing Block Copolymers with Unique Photoresponsive and Switchable LCST Properties. Macromolecules 2016, 49 (7) , 2741-2749. https://doi.org/10.1021/acs.macromol.6b00054
    18. Malcolm D. E. Forbes . What We Talk About When We Talk About Light. ACS Central Science 2015, 1 (7) , 354-363. https://doi.org/10.1021/acscentsci.5b00261
    19. Xianbao Sun, Lingling Xu, Xiaoyang Liu, Hai-Dong Xu, Wenjun Zhan, Gaolin Liang. Activatable small molecular luminescence probes for autofluorescence-free bioimaging. TrAC Trends in Analytical Chemistry 2023, 168 , 117326. https://doi.org/10.1016/j.trac.2023.117326
    20. Chongzhao Ran, James R. Mansfield, Mingfeng Bai, Nerissa T. Viola, Abhishek Mahajan, E. James Delikatny. Practical Guidance for Developing Small-Molecule Optical Probes for In Vivo Imaging. Molecular Imaging and Biology 2023, 25 (1) , 240-264. https://doi.org/10.1007/s11307-023-01800-1
    21. Lan‐Ying Guo, Jin‐Song Zhao, Hong‐Shang Peng. Fluorescent Probes for Sensing and Imaging Biological Hydrogen Sulfide. Analysis & Sensing 2022, 2 (6) https://doi.org/10.1002/anse.202200025
    22. Xingye Yang, Xiaojun Qin, Huimin Ji, Lupei Du, Minyong Li. Constructing firefly luciferin bioluminescence probes for in vivo imaging. Organic & Biomolecular Chemistry 2022, 20 (7) , 1360-1372. https://doi.org/10.1039/D1OB01940F
    23. Bo Li, Yujin Lisa Kim, Alexander Ryan Lippert. Chemiluminescence Measurement of Reactive Sulfur and Nitrogen Species. Antioxidants & Redox Signaling 2022, 36 (4-6) , 337-353. https://doi.org/10.1089/ars.2021.0195
    24. Yong Zhang, Chengli Jia, Yuesong Wang, Haoli Yu, Min Ji. Hemicyanine-based turn-off fluorescent probe for monitoring of nitric oxide in living cells. Dyes and Pigments 2022, 197 , 109871. https://doi.org/10.1016/j.dyepig.2021.109871
    25. Aisha J. Syed, James C. Anderson. Applications of bioluminescence in biotechnology and beyond. Chemical Society Reviews 2021, 50 (9) , 5668-5705. https://doi.org/10.1039/D0CS01492C
    26. Hideo Takakura. Molecular Design of d-Luciferin-Based Bioluminescence and 1,2-Dioxetane-Based Chemiluminescence Substrates for Altered Output Wavelength and Detecting Various Molecules. Molecules 2021, 26 (6) , 1618. https://doi.org/10.3390/molecules26061618
    27. Zixuan Zhan, Yongcheng Dai, Qiuyan Li, Yi Lv. Small molecule-based bioluminescence and chemiluminescence probes for sensing and imaging of reactive species. TrAC Trends in Analytical Chemistry 2021, 134 , 116129. https://doi.org/10.1016/j.trac.2020.116129
    28. Yi Chen. Recent developments of fluorescent probes for detection and bioimaging of nitric oxide. Nitric Oxide 2020, 98 , 1-19. https://doi.org/10.1016/j.niox.2020.02.002
    29. Lizhen Wang, Juan Zhang, Xue An, Hongdong Duan. Recent progress on the organic and metal complex-based fluorescent probes for monitoring nitric oxide in living biological systems. Organic & Biomolecular Chemistry 2020, 18 (8) , 1522-1549. https://doi.org/10.1039/C9OB02561H
    30. Chen Li, Wen-Jian Tang, Wei Feng, Chao Liu, Qin-Hua Song. A rapid-response and ratiometric fluorescent probe for nitric oxide: From the mitochondria to the nucleus in live cells. Analytica Chimica Acta 2020, 1096 , 148-158. https://doi.org/10.1016/j.aca.2019.10.047
    31. . Imaging of Intracellular Reactive Nitrogen Species and Reactive Sulfur Species. 2020, 170-210. https://doi.org/10.1039/9781839160455-00170
    32. Michael C. Pirrung, Andrew D. Carlson, Natalie De Howitt, Jiayu Liao. Synthesis and bioluminescence of thioluciferin. Bioorganic & Medicinal Chemistry Letters 2019, 29 (19) , 126591. https://doi.org/10.1016/j.bmcl.2019.07.050
    33. Zhiliang Yu, Junliang Zhou, Xiaochun Dong, Weili Zhao, Zhongjian Chen. Visualizing Nitric oxide in mitochondria and lysosomes of living cells with N-Nitrosation of BODIPY-based fluorescent probes. Analytica Chimica Acta 2019, 1067 , 88-97. https://doi.org/10.1016/j.aca.2019.03.048
    34. Hsien-Wei Yeh, Hui-Wang Ai. Development and Applications of Bioluminescent and Chemiluminescent Reporters and Biosensors. Annual Review of Analytical Chemistry 2019, 12 (1) , 129-150. https://doi.org/10.1146/annurev-anchem-061318-115027
    35. Jun-Bin Li, Qianqian Wang, Hong-Wen Liu, Lin Yuan, Xiao-Bing Zhang. A bioluminescent probe for imaging endogenous hydrogen polysulfides in live cells and a murine model of bacterial infection. Chemical Communications 2019, 55 (31) , 4487-4490. https://doi.org/10.1039/C9CC01699F
    36. Yuxing Yan, Shuo Wang, Fuli Xie, Xiaofeng Fang, Yu-Mo Zhang, Sean Xiao-An Zhang. Firefly-Inspired Approach to Develop New Chemiluminescence Materials. iScience 2019, 13 , 478-487. https://doi.org/10.1016/j.isci.2019.02.003
    37. Chenchen Xu, Chenqi Xin, Changmin Yu, Meirong Wu, Jiajia Xu, Wenjing Qin, Yang Ding, Xuchun Wang, Lin Li, Wei Huang. Fast response two-photon fluorogenic probe based on Schiff base derivatives for monitoring nitric oxide levels in living cells and zebrafish. Chemical Communications 2018, 54 (96) , 13491-13494. https://doi.org/10.1039/C8CC06698A
    38. Peisheng Zhang, Yong Tian, Hui Liu, Junyu Ren, Hong Wang, Rongjin Zeng, Yunfei Long, Jian Chen. In vivo imaging of hepatocellular nitric oxide using a hepatocyte-targeting fluorescent sensor. Chemical Communications 2018, 54 (52) , 7231-7234. https://doi.org/10.1039/C8CC03240H
    39. Qing Wang, Xiaojie Jiao, Chang Liu, Song He, Liancheng Zhao, Xianshun Zeng. A rhodamine-based fast and selective fluorescent probe for monitoring exogenous and endogenous nitric oxide in live cells. Journal of Materials Chemistry B 2018, 6 (24) , 4096-4103. https://doi.org/10.1039/C8TB00646F
    40. Koichi Nishiyama. Intravital molecular imaging for visualization and pathological analysis of microcirculation. Journal of the Japanese Coronary Association 2018, 24 (3) , 150-155. https://doi.org/10.7793/jcoron.24.028
    41. Shuang Li, Rui Hu, Chenlin Yang, Xin Zhang, Yi Zeng, Shuangqing Wang, Xudong Guo, Yi Li, Xiaopin Cai, Shirui Li, Chengwu Han, Guoqiang Yang. An ultrasensitive bioluminogenic probe of γ-Glutamyltranspeptidase in vivo and in human serum for tumor diagnosis. Biosensors and Bioelectronics 2017, 98 , 325-329. https://doi.org/10.1016/j.bios.2017.06.059
    42. Zhijie Chen, Tan Truong, Hui-wang Ai. Illuminating Brain Activities with Fluorescent Protein-Based Biosensors. Chemosensors 2017, 5 (4) , 32. https://doi.org/10.3390/chemosensors5040032
    43. Kazushi Suzuki, Takeharu Nagai. Recent progress in expanding the chemiluminescent toolbox for bioimaging. Current Opinion in Biotechnology 2017, 48 , 135-141. https://doi.org/10.1016/j.copbio.2017.04.001
    44. Allegra T. Aron, Marie C. Heffern, Zachery R. Lonergan, Mark N. Vander Wal, Brian R. Blank, Benjamin Spangler, Yaofang Zhang, Hyo Min Park, Andreas Stahl, Adam R. Renslo, Eric P. Skaar, Christopher J. Chang. In vivo bioluminescence imaging of labile iron accumulation in a murine model of Acinetobacter baumannii infection. Proceedings of the National Academy of Sciences 2017, 114 (48) , 12669-12674. https://doi.org/10.1073/pnas.1708747114
    45. Michio Kakiuchi, Soichiro Ito, Masahiro Kiyama, Fumiya Goto, Takuto Matsuhashi, Minoru Yamaji, Shojiro Maki, Takashi Hirano. Electronic and Steric Effects of Cyclic Amino Substituents of Luciferin Analogues on a Firefly Luciferin–Luciferase Reaction. Chemistry Letters 2017, 46 (8) , 1090-1092. https://doi.org/10.1246/cl.170361
    46. Jianguang Wang, Tae Sup Lee, Zhe Zhang, Ching-Hsuan Tung. A Bioluminogenic Probe for Monitoring Tyrosinase Activity. Chemistry - An Asian Journal 2017, 12 (4) , 397-400. https://doi.org/10.1002/asia.201601659
    47. Baoping Zhai, Wei Hu, Jinyu Sun, Siyu Chi, Yidi Lei, Fang Zhang, Cheng Zhong, Zhihong Liu. A two-photon fluorescent probe for nitroreductase imaging in living cells, tissues and zebrafish under hypoxia conditions. The Analyst 2017, 142 (9) , 1545-1553. https://doi.org/10.1039/C7AN00058H
    48. Mingliang Yuan, Xiaojie Ma, Tianyu Jiang, Yuqi Gao, Yuanyuan Cui, Chaochao Zhang, Xingye Yang, Yun Huang, Lupei Du, Ilia Yampolsky, Minyong Li. Prolonged bioluminescence imaging in living cells and mice using novel pro-substrates for Renilla luciferase. Organic & Biomolecular Chemistry 2017, 15 (48) , 10238-10244. https://doi.org/10.1039/C7OB01656E
    49. Takao Iwawaki. Transgenic Mouse Models for Molecular Optical Imaging In Vivo . Nippon Laser Igakkaishi 2017, 37 (4) , 454-458. https://doi.org/10.2530/jslsm.jslsm-37_0036
    50. Zhen Zheng, Lin Wang, Wei Tang, Peiyao Chen, Hui Zhu, Yue Yuan, Gongyu Li, Huafeng Zhang, Gaolin Liang. Hydrazide d-luciferin for in vitro selective detection and intratumoral imaging of Cu2+. Biosensors and Bioelectronics 2016, 83 , 200-204. https://doi.org/10.1016/j.bios.2016.04.067
    51. Tingting Xu, Dan Close, Winode Handagama, Enolia Marr, Gary Sayler, Steven Ripp. The Expanding Toolbox of In Vivo Bioluminescent Imaging. Frontiers in Oncology 2016, 6 https://doi.org/10.3389/fonc.2016.00150
    52. Spencer T. Adams, David M. Mofford, G. S. Kiran Kumar Reddy, Stephen C. Miller. Firefly Luciferase Mutants Allow Substrate-Selective Bioluminescence Imaging in the Mouse Brain. Angewandte Chemie International Edition 2016, 55 (16) , 4943-4946. https://doi.org/10.1002/anie.201511350
    53. Spencer T. Adams, David M. Mofford, G. S. Kiran Kumar Reddy, Stephen C. Miller. Firefly Luciferase Mutants Allow Substrate-Selective Bioluminescence Imaging in the Mouse Brain. Angewandte Chemie 2016, 128 (16) , 5027-5030. https://doi.org/10.1002/ange.201511350
    54. Junfeng Miao, Yingying Huo, Xin Lv, Zhe Li, Hualiang Cao, Heping Shi, Yawei Shi, Wei Guo. Fast-response and highly selective fluorescent probes for biological signaling molecule NO based on N-nitrosation of electron-rich aromatic secondary amines. Biomaterials 2016, 78 , 11-19. https://doi.org/10.1016/j.biomaterials.2015.11.011
    55. Yuta Takano, Tomohiro Numata, Kazuto Fujishima, Kazuaki Miyake, Kazuya Nakao, Wesley David Grove, Ryuji Inoue, Mineko Kengaku, Shigeyoshi Sakaki, Yasuo Mori, Tatsuya Murakami, Hiroshi Imahori. Optical control of neuronal firing via photoinduced electron transfer in donor–acceptor conjugates. Chemical Science 2016, 7 (5) , 3331-3337. https://doi.org/10.1039/C5SC04135J
    56. Sai-Ho Lee, Iain M. Blake, Allan G. Larsen, James A. McDonald, Kei Ohkubo, Shunichi Fukuzumi, Jeffrey R. Reimers, Maxwell J. Crossley. Synthetically tuneable biomimetic artificial photosynthetic reaction centres that closely resemble the natural system in purple bacteria. Chemical Science 2016, 7 (10) , 6534-6550. https://doi.org/10.1039/C6SC01076H
    57. Zhiqiang Mao, Wenqi Feng, Zhen Li, Lingyu Zeng, Weijie Lv, Zhihong Liu. NIR in, far-red out: developing a two-photon fluorescent probe for tracking nitric oxide in deep tissue. Chemical Science 2016, 7 (8) , 5230-5235. https://doi.org/10.1039/C6SC01313A
    58. Ryosuke Kojima, Hideo Takakura, Mako Kamiya, Eiji Kobayashi, Toru Komatsu, Tasuku Ueno, Takuya Terai, Kenjiro Hanaoka, Tetsuo Nagano, Yasuteru Urano. Development of a Sensitive Bioluminogenic Probe for Imaging Highly Reactive Oxygen Species in Living Rats. Angewandte Chemie 2015, 127 (49) , 14981-14984. https://doi.org/10.1002/ange.201507530
    59. Ryosuke Kojima, Hideo Takakura, Mako Kamiya, Eiji Kobayashi, Toru Komatsu, Tasuku Ueno, Takuya Terai, Kenjiro Hanaoka, Tetsuo Nagano, Yasuteru Urano. Development of a Sensitive Bioluminogenic Probe for Imaging Highly Reactive Oxygen Species in Living Rats. Angewandte Chemie International Edition 2015, 54 (49) , 14768-14771. https://doi.org/10.1002/anie.201507530
    60. Tian-Chao Zhang, Lu-Pei Du, Min-Yong Li. BioLeT: A new design strategy for functional bioluminogenic probes. Chinese Chemical Letters 2015, 26 (8) , 919-921. https://doi.org/10.1016/j.cclet.2015.06.020

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect