Excited-State Relaxation of Hydrated Thymine and Thymidine Measured by Liquid-Jet Photoelectron Spectroscopy: Experiment and SimulationClick to copy article linkArticle link copied!
Abstract
Time-resolved photoelectron spectroscopy is performed on thymine and thymidine in aqueous solution to study the excited-state relaxation dynamics of these molecules. We find two contributions with sub-ps lifetimes in line with recent excited-state QM/MM molecular dynamics simulations (J. Chem. Phys.2013, 139, 214304). The temporal evolution of ionization energies for the excited ππ* state along the QM/MM molecular dynamics trajectories were calculated and are compatible with experimental results, where the two contributions correspond to the relaxation paths in the ππ* state involving different conical intersections with the ground state. Theoretical calculations also show that ionization from the nπ* state is possible at the given photon energies, but we have not found any experimental indication for signal from the nπ* state. In contrast to currently accepted relaxation mechanisms, we suggest that the nπ* state is not involved in the relaxation process of thymine in aqueous solution.
1 Introduction
2 Experimental Section
Figure 1
Figure 1. Electronic potential energies of low-lying states of isolated and hydrated thymine around the FC region. Excited-state energies for the gas phase and solvatochromic shift of the nπ* state are taken from ref 20, and the ππ* energy of the hydrated molecule is taken from experimental values. (15) Ionization energies for gas phase are taken from ref 22, and ionization energies of hydrated molecules are taken from ref 13. The absorbed photon energy, i.e., the sum of pump photon energy hνpu and probe photon energy hνpr, is given by the horizontal line. The molecular structure and the numbering of the atoms is shown in the right part of the figure.
3 Computational Section

4 Results


Figure 2
Figure 2. Time-resolved photoelectron spectrum of thymine, globally analyzed by three spectral contributions. (a) Comparison between data (color) and global fit (contour lines), (b) decay associated spectra, (c) residuals (color) and global fit (contour lines), and (d) population dynamics of individual contributions. The color scale of the residuals covers a range of ±20% of the maximum photoelectron signal. Vertical lines in panel b mark the maximum kinetic energies for the individual contributions.
τ1/fs | τ2/fs | τt/ps | τ3–/fs | α | β | ||
---|---|---|---|---|---|---|---|
this work | Thy | 70 ± 10 | 410 ± 40 | 320 ± 40 | 0.69 | 0.08 | |
Thd | 120 ± 10 | 390 ± 10 | 290 ± 20 | 0.54 | 0.09 | ||
FU | Thy (15) | 195 ± 17 | 633 ± 18 | 0.56 ± 0.02 | |||
Thd (33) | 150 ± 20 | 720 ± 30 | 0.70 ± 0,02 | ||||
TA | Thy (16, 17) | 540 ± 40b | 30 ± 13 | 0.77 |
τ1-3 are derived lifetimes, where the superscript “–” refers to the value obtained for negative delay direction. Ai = ∫0∞Ai(Ekin) dEkin is the energy integrated signal associated with decay i at delay = 0. α = (A1+)/(A1+ + A2+) is the fraction of the signal of the faster decaying component A1+ in the total signal A1+ + A2+ in positive delay direction. β = (A–)/(A1+ + A2+) is the ratio between signal in negative delay direction A– to signal in positive delay direction A1+ + A2+. Uncertainties given correspond to one standard deviation as obtained from the fit.
Thd.

5 Assignment of the Relaxation Paths
Figure 3
Figure 3. Potential energy differences between the ππ* state and the neutral ground state, the nπ* state and the ionic ground state along representative trajectories taken from ref 20 that reach (ππ*(C5–C6)/S0)CI (left) and (ππ*(C4–O8)/S0)CI (right) regions. Gray-shaded areas (between red and black solid lines) show ionization windows of ππ* state for instantaneous and complete redistribution of excess energy (E(ππ*) + ℏωpr) in case of 5.2 eV probe pulses. Diamonds mark the total absorbed energy at temporal overlap (ℏωpu + ℏωpr + E(S0; t = 0)).
Figure 4
Figure 4. (left) Average population of trajectories in the ππ* state that can be ionized for the given pump–probe time delay and photon energy (ℏωpr = 5.2 eV) (black line). The trajectories are divided into two groups: trajectories that reach the (ππ*(C5–C6)/S0)CI and (ππ*(C4–O8)/S0)CI regions, and the average populations of each group are shown in blue and red dotted lines. (right) Kinetic energies of photoelectrons along the trajectories. The trajectories are again divided into two groups and shown in blue and red circles. The averages of kinetic energy at t = 0 over all trajectories are calculated to be 1.72 eV. The averages over trajectories that reach the (ππ*(C5–C6)/S0)CI and (ππ*(C4–O8)/S0)CI regions are 1.80 and 1.40 eV, respectively.
Figure 5
Figure 5. Potential energy difference between the D(π–1) and nπ* states (red line), and the D(n–1) and nπ* states (blue line) along the QM/MM-MD trajectories that are equilibrated in the nπ* state using the SA-CASSCF(12,9) calculations. The energies are recalculated by CASPT2(12,9) and CASPT2(11,9) for the neutral and cationic molecules, respectively. The energies of the cationic states are shifted using the correction described in the text, and the experimentally applied photon energy (5.2 eV) is shown by the dotted line.
6 Conclusions
Supporting Information
Details on the detection efficiency at low kinetic energy, the role of inelastic processes, global analysis, time-resolved photoelectron spectra, global analysis results for thymine and thymidine, an extended time scan for thymine, and a discussion of alternative signal assignment. This material is available free of charge via the Internet at http://pubs.acs.org.
Terms & Conditions
Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.
Acknowledgment
The authors thank F. Noack for his support by providing the laser system in the femtosecond application laboratory of the Max-Born-Institut Berlin. This work was financially supported by Deutsche Forschungsgemeinschaft, Project LU 1638/1-1, and by KAKENHI (Grant-in-Aid for Scientific Research). Part of the calculations was performed on supercomputers at Research Center for Computational Science, Okazaki, Japan.
References
This article references 41 other publications.
- 1Crespo-Hernández, C. E.; Cohen, B.; Hare, P. M.; Kohler, B. Chem. Rev. 2004, 104, 1977Google ScholarThere is no corresponding record for this reference.
- 2de Vries, M. S.; Hobza, P. Annu. Rev. Phys. Chem. 2007, 58, 585Google ScholarThere is no corresponding record for this reference.
- 3Middleton, C. T.; de La Harpe, K.; Su, C.; Law, Y. K.; Crespo-Hernández, C. E.; Kohler, B. Annu. Rev. Phys. Chem. 2009, 60, 217Google ScholarThere is no corresponding record for this reference.
- 4Kleinermanns, K.; Nachtigallová, D.; de Vries, M. S. Int. Rev. Phys. Chem. 2013, 32, 308Google Scholar4Excited state dynamics of DNA basesKleinermanns, Karl; Nachtigallova, Dana; de Vries, Mattanjah S.International Reviews in Physical Chemistry (2013), 32 (2), 308-342CODEN: IRPCDL; ISSN:0144-235X. (Taylor & Francis Ltd.)A review. Biochem. reactions are subject to the particular environmental conditions of planet earth, including solar irradn. How DNA responds to radiation is relevant to human health because radiation damage can affect genetic propagation and lead to cancer and is also important for our understanding of how life on earth developed. A reductionist approach to unraveling the detailed photochem. seeks to establish intrinsic properties of individual DNA building blocks, followed by extrapolation to larger systems, to incorporate interactions between the building blocks and the role of the biomol. environment. Advances in both exptl. and computational techniques have lead to increasingly detailed insights in the excited state dynamics of DNA bases in isolation as well as the role of the solvent and intermol. interactions. This review seeks to summarize current findings and understanding.
- 5Improta, R.; Barone, V. Top. Curr. Chem. 2014, 355, 329Google ScholarThere is no corresponding record for this reference.
- 6Abouaf, R.; Pommier, J.; Dunet, H. Chem. Phys. Lett. 2003, 381, 486Google ScholarThere is no corresponding record for this reference.
- 7Ullrich, S.; Schultz, T.; Zgierski, M. Z.; Stolow, A. Phys. Chem. Chem. Phys. 2004, 6, 2796Google ScholarThere is no corresponding record for this reference.
- 8Hudock, H. R.; Levine, B. G.; Thompson, A. L.; Satzger, H.; Townsend, D.; Gador, N.; Ullrich, S.; Stolow, A.; Martínez, T. J. J. Phys. Chem. A 2007, 111, 8500Google ScholarThere is no corresponding record for this reference.
- 9Szymczak, J. J.; Barbatti, M.; Hoo, J. T. S.; Adkins, J. A.; Windus, T. L.; Nachtigallová, D.; Lischka, H. J. Phys. Chem. A 2009, 113, 12686Google ScholarThere is no corresponding record for this reference.
- 10Merchán, M.; González-Luque, R.; Climent, T.; Serrano-Andrés, L.; Rodríguez, E.; Reguero, M.; Peláez, D. J. Phys. Chem. B 2006, 110, 26471Google ScholarThere is no corresponding record for this reference.
- 11Lan, Z.; Fabiano, E.; Thiel, W. J. Phys. Chem. B 2009, 113, 3548Google ScholarThere is no corresponding record for this reference.
- 12McFarland, B. K.; Farrell, J. P.; Miyabe, S.; Tarantelli, F.; Aguilar, A.; Berrah, N.; Bostedt, C.; Bozek, J. D.; Bucksbaum, P. H.; Castagna, J. C.; Coffee, R. N.; Cryan, J. P.; Fang, L.; Feifel, R.; Gaffney, K. J.; Glownia, J. M.; Martinez, T. J.; Mucke, M.; Murphy, B.; Natan, A.; Osipov, T.; Petrovíc, V. S.; Schorb, S.; Schultz, T.; Spector, L. S.; Swiggers, M.; Tenney, I.; Wang, S.; White, J. L.; White, W.; Gühr, M. Nat. Comm. 2014, 5, 4235Google Scholar12Ultrafast X-ray Auger probing of photoexcited molecular dynamicsMcFarland, B. K.; Farrell, J. P.; Miyabe, S.; Tarantelli, F.; Aguilar, A.; Berrah, N.; Bostedt, C.; Bozek, J. D.; Bucksbaum, P. H.; Castagna, J. C.; Coffee, R. N.; Cryan, J. P.; Fang, L.; Feifel, R.; Gaffney, K. J.; Glownia, J. M.; Martinez, T. J.; Mucke, M.; Murphy, B.; Natan, A.; Osipov, T.; Petrovic, V. S.; Schorb, S.; Schultz, Th.; Spector, L. S.; Swiggers, M.; Tenney, I.; Wang, S.; White, J. L.; White, W.; Guhr, M.Nature Communications (2014), 5 (), 4235CODEN: NCAOBW; ISSN:2041-1723. (Nature Publishing Group)Mols. can efficiently and selectively convert light energy into other degrees of freedom. Disentangling the underlying ultrafast motion of electrons and nuclei of the photoexcited mol. presents a challenge to current spectroscopic approaches. Here we explore the photoexcited dynamics of mols. by an interaction with an ultrafast X-ray pulse creating a highly localized core hole that decays via Auger emission. We discover that the Auger spectrum as a function of photoexcitation-X-ray-probe delay contains valuable information about the nuclear and electronic degrees of freedom from an element-specific point of view. For the nucleobase thymine, the oxygen Auger spectrum shifts towards high kinetic energies, resulting from a particular C-O bond stretch in the ππ* photoexcited state. A subsequent shift of the Auger spectrum towards lower kinetic energies displays the electronic relaxation of the initial photoexcited state within 200 fs. Ab-initio simulations reinforce our interpretation and indicate an electronic decay to the nπ* state.
- 13Seidel, R. Electronic-Structure Interactions in Aqueous Solutions: A Liquid-Jet Photoelectron-Spectroscopy Study. Ph.D. Thesis; Technische Universitaet Berlin: Berlin, 2011.Google ScholarThere is no corresponding record for this reference.
- 14Gustavsson, T.; Sharonov, A.; Markovitsi, D. Chem. Phys. Lett. 2002, 351, 195Google ScholarThere is no corresponding record for this reference.
- 15Gustavsson, T.; Bányász, A.; Lazzarotto, E.; Markovitsi, D.; Scalmani, G.; Frisch, M. J.; Barone, V.; Improta, R. J. Am. Chem. Soc. 2006, 128, 607Google ScholarThere is no corresponding record for this reference.
- 16Pecourt, J.-M. L.; Peon, J.; Kohler, B. J. Am. Chem. Soc. 2001, 132, 10370Google ScholarThere is no corresponding record for this reference.
- 17Hare, P. M.; Crespo-Hernández, C. E.; Kohler, B. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 435Google ScholarThere is no corresponding record for this reference.
- 18Gustavsson, T.; Bányász, A.; Sarkar, N.; Markovitsi, D.; Improta, R. Chem. Phys. 2008, 350, 186Google ScholarThere is no corresponding record for this reference.
- 19Improta, R.; Barone, V.; Lami, A.; Santoro, F. J. Phys. Chem. B 2009, 113, 14491Google ScholarThere is no corresponding record for this reference.
- 20Nakayama, A.; Arai, G.; Yamazaki, S.; Taketsugu, T. J. Chem. Phys. 2013, 139, 214304Google ScholarThere is no corresponding record for this reference.
- 21Minezawa, N. J. Chem. Phys. 2014, 141, 164118Google ScholarThere is no corresponding record for this reference.
- 22Urano, S.; Yang, X.; LeBreton, P. R. J. Mol. Struct. 1989, 214, 315Google ScholarThere is no corresponding record for this reference.
- 23Buchner, F.; Lübcke, A.; Heine, N.; Schultz, T. Rev. Sci. Instrum. 2010, 81, 113107Google Scholar23Time-resolved photoelectron spectroscopy of liquidsBuchner, Franziska; Luebcke, Andrea; Heine, Nadja; Schultz, ThomasReview of Scientific Instruments (2010), 81 (11), 113107/1-113107/6CODEN: RSINAK; ISSN:0034-6748. (American Institute of Physics)The authors present a novel setup for the study of ultrafast dynamic processes in a liq. jet using time-resolved photoelectron spectroscopy. A magnetic-bottle type spectrometer with a high collection efficiency allows the very sensitive detection of photoelectrons emitted from a 10 μm thick liq. jet. This translates into good signal/noise ratio and rapid data acquisition making femtosecond time-resolved expts. feasible. The authors describe the exptl. setup, a detailed spectrometer characterization based on the spectroscopy of nitric oxide in the gas phase, and results from femtosecond time-resolved expts. on NaI solns. The latter expts. reveal the formation and evolution of the solvated electron and the authors characterize 2 distinct spectral components corresponding to initially thermalized and unthermalized solvated electrons. The absence of dark states in photoionization, the direct measurement of electron binding energies, and the ability to resolve dynamic processes on the femtosecond time scale make time-resolved photoelectron spectroscopy from the liq. jet a very promising method for the characterization of photochem. processes in liqs. (c) 2010 American Institute of Physics.
- 24Preissler, N.; Buchner, F.; Schultz, T.; Lübcke, A. J. Phys. Chem. B 2013, 117, 2422Google ScholarThere is no corresponding record for this reference.
- 25Buchner, F.; Ritze, H.-H.; Lahl, J.; Lübcke, A. Phys. Chem. Chem. Phys. 2013, 15, 11402Google ScholarThere is no corresponding record for this reference.
- 26Wu, Y.; Tepper, H. L.; Voth, G. A. J. Chem. Phys. 2006, 124, 024503Google ScholarThere is no corresponding record for this reference.
- 27Werner, H. J.; Knowles, P. J.; Knizia, G.; Manby, F. R.; Celani, M. S. P.; Korona, T.; Lindh, R.; Mitrushenkov, A.; Rauhut, G.; Shamasundar, K. R.; Adler, T. B.; Amos, R. D.; Bernhardsson, A.; Berning, A.; Cooper, D. L.; Deegan, M. J. O.; Dobbyn, A. J.; Eckert, F.; Goll, E.; Hampel, C.; Hesselmann, A.; Hetzer, G.; Hrenar, T.; Jansen, G.; Köppl, C.; Liu, Y.; Lloyd, A. W.; Mata, R. A.; May, A. J.; McNicholas, S. J.; Meyer, W.; Mura, M. E.; Nicklaß, A.; O’Neill, D. P.; Palmieri, P.; Pflüger, K.; Pitzer, R.; Reiher, M.; Shiozaki, T.; Stoll, H.; Stone, A. J.; Tarroni, R.; Thorsteinsson, T.; Wang, M.; Wolf, A.MOLPRO version 2010.1 a package of ab initio programs; Birmingham, UK.Google ScholarThere is no corresponding record for this reference.
- 28Zechmann, G.; Barbatti, M. J. Phys. Chem. A 2008, 112, 8273Google ScholarThere is no corresponding record for this reference.
- 29Etinski, M.; Marian, C. M. Phys. Chem. Chem. Phys. 2010, 12, 4915Google ScholarThere is no corresponding record for this reference.
- 30Tao, H.; Levine, B. G.; Martínez, T. J. J. Phys. Chem. A 2009, 113, 13656Google ScholarThere is no corresponding record for this reference.
- 31Schreiber, M.; Silva-Junior, M. R.; Sauer, S. P. A.; Thiel, W. J. Chem. Phys. 2008, 128, 134110Google ScholarThere is no corresponding record for this reference.
- 33Onidas, D.; Markovitsi, D.; Marguet, S.; Sharonov, A.; Gustavsson, T. J. Phys. Chem. B 2002, 106, 11367Google ScholarThere is no corresponding record for this reference.
- 34Konovalov, V. V.; Raitsimring, A. M.; Tsvetkov, Y. D. Int. J. Rad. Appl. Instr. C Rad. Phys. Chem. 1988, 32, 623Google ScholarThere is no corresponding record for this reference.
- 35Plante, I.; Cucinotta, F. A. New J. Phys. 2009, 11, 063047Google ScholarThere is no corresponding record for this reference.
- 36Buchner, F.; Schultz, T.; Lübcke, A. Phys. Chem. Chem. Phys. 2012, 14, 5837Google ScholarThere is no corresponding record for this reference.
- 37Suzuki, Y.-I.; Nishizawa, K.; Kurahashi, N.; Suzuki, T. Phys. Rev. E 2014, 90, 010302(R)Google ScholarThere is no corresponding record for this reference.
- 38Matsika, S. J. Phys. Chem. A 2005, 109, 7538Google ScholarThere is no corresponding record for this reference.
- 39Kistler, K. A.; Matsika, S. J. Chem. Phys. 2008, 128, 215102Google ScholarThere is no corresponding record for this reference.
- 40González-Vázquez, J.; González, L. Chem. Phys. Chem. 2010, 11, 3617Google Scholar40A Time-Dependent Picture of the Ultrafast Deactivation of keto-Cytosine Including Three-State Conical IntersectionsGonzalez-Vazquez, Jesus; Gonzalez, LeticiaChemPhysChem (2010), 11 (17), 3617-3624CODEN: CPCHFT; ISSN:1439-4235. (Wiley-VCH Verlag GmbH & Co. KGaA)Using mixed quantum-classical dynamics, the lowest part of the UV absorption spectrum and the first deactivation steps of keto-cytosine have been investigated. The spectrum shows several strong peaks, which mainly come from the S1 and S2 states, with minor contributions from the S3. The semiclassical trajectories, launched from these three states, clearly indicate that at least four states are involved in the relaxation of keto-cytosine to the ground state. Non-adiabatic transfer between the ππ* and nπ* excited states and deactivation via three-state conical intersections is obsd. in the very early stage of the dynamics. In less than 100 fs, a large amt. of population is deactivated to the ground state via several mechanisms; some population remains trapped in the S2 state. The latter two events can be connected to the fs and ps transients obsd. exptl.
- 41Satzger, H.; Townsend, D.; Zgierski, M. Z.; Patchkovskii, S.; Ullrich, S.; Stolow, A. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 10196Google ScholarThere is no corresponding record for this reference.
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 61 publications.
- Yuki Obara, Srijon Ghosh, Alexander Humeniuk, Shota Kamibashira, Shunsuke Adachi, Toshinori Suzuki. Formation of Ground-State Intermediate during Electronic Relaxation of Pyrimidine Nucleobases. Journal of the American Chemical Society 2025, Article ASAP.
- Alessandro Loreti, Victor Manuel Freixas, Davide Avagliano, Francesco Segatta, Huajing Song, Sergei Tretiak, Shaul Mukamel, Marco Garavelli, Niranjan Govind, Artur Nenov. WFOT: A Wave Function Overlap Tool between Single- and Multi-Reference Electronic Structure Methods for Spectroscopy Simulation. Journal of Chemical Theory and Computation 2024, 20
(11)
, 4804-4819. https://doi.org/10.1021/acs.jctc.4c00310
- Juliana Cuéllar-Zuquin, Ana Julieta Pepino, Ignacio Fdez. Galván, Ivan Rivalta, Francesco Aquilante, Marco Garavelli, Roland Lindh, Javier Segarra-Martí. Characterizing Conical Intersections in DNA/RNA Nucleobases with Multiconfigurational Wave Functions of Varying Active Space Size. Journal of Chemical Theory and Computation 2023, 19
(22)
, 8258-8272. https://doi.org/10.1021/acs.jctc.3c00577
- Yo-ichi Yamamoto, Toshinori Suzuki. Distortion Correction of Low-Energy Photoelectron Spectra of Liquids Using Spectroscopic Data for Solvated Electrons. The Journal of Physical Chemistry A 2023, 127
(11)
, 2440-2452. https://doi.org/10.1021/acs.jpca.2c08046
- Natsumi Orimo, Yo-ichi Yamamoto, Shutaro Karashima, Alexie Boyer, Toshinori Suzuki. Ultrafast Electronic Relaxation in 6-Methyluracil and 5-Fluorouracil in Isolated and Aqueous Conditions: Substituent and Solvent Effects. The Journal of Physical Chemistry Letters 2023, 14
(11)
, 2758-2763. https://doi.org/10.1021/acs.jpclett.3c00195
- Yuta Miura, Yo-ichi Yamamoto, Shutaro Karashima, Natsumi Orimo, Ayano Hara, Kanae Fukuoka, Tatsuya Ishiyama, Toshinori Suzuki. Formation of Long-Lived Dark States during Electronic Relaxation of Pyrimidine Nucleobases Studied Using Extreme Ultraviolet Time-Resolved Photoelectron Spectroscopy. Journal of the American Chemical Society 2023, 145
(6)
, 3369-3381. https://doi.org/10.1021/jacs.2c09803
- William G. Fortune, Michael S. Scholz, Helen H. Fielding. UV Photoelectron Spectroscopy of Aqueous Solutions. Accounts of Chemical Research 2022, 55
(24)
, 3631-3640. https://doi.org/10.1021/acs.accounts.2c00523
- Zachary N. Heim, Daniel M. Neumark. Nonadiabatic Dynamics Studied by Liquid-Jet Time-Resolved Photoelectron Spectroscopy. Accounts of Chemical Research 2022, 55
(24)
, 3652-3662. https://doi.org/10.1021/acs.accounts.2c00609
- Qiushuang Xu, Daniel Aranda, Martha Yaghoubi Jouybari, Yanli Liu, Meishan Wang, Javier Cerezo, Roberto Improta, Fabrizio Santoro. Nonadiabatic Vibrational Resonance Raman Spectra from Quantum Dynamics Propagations with LVC Models. Application to Thymine. The Journal of Physical Chemistry A 2022, 126
(41)
, 7468-7479. https://doi.org/10.1021/acs.jpca.2c05271
- Michael S. Scholz, William G. Fortune, Omri Tau, Helen H. Fielding. Accurate Vertical Ionization Energy of Water and Retrieval of True Ultraviolet Photoelectron Spectra of Aqueous Solutions. The Journal of Physical Chemistry Letters 2022, 13
(30)
, 6889-6895. https://doi.org/10.1021/acs.jpclett.2c01768
- Yeonsig Nam, Francesco Montorsi, Daniel Keefer, Stefano M. Cavaletto, Jin Yong Lee, Artur Nenov, Marco Garavelli, Shaul Mukamel. Time-Resolved Optical Pump-Resonant X-ray Probe Spectroscopy of 4-Thiouracil: A Simulation Study. Journal of Chemical Theory and Computation 2022, 18
(5)
, 3075-3088. https://doi.org/10.1021/acs.jctc.2c00064
- Shota Tsuru, Bikramjit Sharma, Masanari Nagasaka, Christof Hättig. Solvent Effects in the Ultraviolet and X-ray Absorption Spectra of Pyridazine in Aqueous Solution. The Journal of Physical Chemistry A 2021, 125
(33)
, 7198-7206. https://doi.org/10.1021/acs.jpca.1c05183
- Conaill F. Perry, Inga Jordan, Pengju Zhang, Aaron von Conta, Fernanda B. Nunes, Hans Jakob Wörner. Photoelectron Spectroscopy of Liquid Water with Tunable Extreme-Ultraviolet Radiation: Effects of Electron Scattering. The Journal of Physical Chemistry Letters 2021, 12
(11)
, 2990-2996. https://doi.org/10.1021/acs.jpclett.0c03424
- Blake A. Erickson, Zachary N. Heim, Elisa Pieri, Erica Liu, Todd J. Martinez, Daniel M. Neumark. Relaxation Dynamics of Hydrated Thymine, Thymidine, and Thymidine Monophosphate Probed by Liquid Jet Time-Resolved Photoelectron Spectroscopy. The Journal of Physical Chemistry A 2019, 123
(50)
, 10676-10684. https://doi.org/10.1021/acs.jpca.9b08258
- Johan Hummert, Geert Reitsma, Nicola Mayer, Evgenii Ikonnikov, Martin Eckstein, Oleg Kornilov. Femtosecond Extreme Ultraviolet Photoelectron Spectroscopy of Organic Molecules in Aqueous Solution. The Journal of Physical Chemistry Letters 2018, 9
(22)
, 6649-6655. https://doi.org/10.1021/acs.jpclett.8b02937
- Bert M. Pilles, Benjamin Maerz, Jinquan Chen, Dominik B. Bucher, Peter Gilch, Bern Kohler, Wolfgang Zinth, Benjamin P. Fingerhut, Wolfgang J. Schreier. Decay Pathways of Thymine Revisited. The Journal of Physical Chemistry A 2018, 122
(21)
, 4819-4828. https://doi.org/10.1021/acs.jpca.8b02050
- Jamie W. Riley, Bingxing Wang, Joanne L. Woodhouse, Mariana Assmann, Graham A. Worth, and Helen H. Fielding . Unravelling the Role of an Aqueous Environment on the Electronic Structure and Ionization of Phenol Using Photoelectron Spectroscopy. The Journal of Physical Chemistry Letters 2018, 9
(4)
, 678-682. https://doi.org/10.1021/acs.jpclett.7b03310
- Javier Cerezo, Yanli Liu, Na Lin, Xian Zhao, Roberto Improta, and Fabrizio Santoro . Mixed Quantum/Classical Method for Nonadiabatic Quantum Dynamics in Explicit Solvent Models: The ππ*/nπ* Decay of Thymine in Water as a Test Case. Journal of Chemical Theory and Computation 2018, 14
(2)
, 820-832. https://doi.org/10.1021/acs.jctc.7b01015
- Markus Kowalewski, Benjamin P. Fingerhut, Konstantin E. Dorfman, Kochise Bennett, and Shaul Mukamel . Simulating Coherent Multidimensional Spectroscopy of Nonadiabatic Molecular Processes: From the Infrared to the X-ray Regime. Chemical Reviews 2017, 117
(19)
, 12165-12226. https://doi.org/10.1021/acs.chemrev.7b00081
- Ana Julieta Pepino, Javier Segarra-Martí, Artur Nenov, Roberto Improta, and Marco Garavelli . Resolving Ultrafast Photoinduced Deactivations in Water-Solvated Pyrimidine Nucleosides. The Journal of Physical Chemistry Letters 2017, 8
(8)
, 1777-1783. https://doi.org/10.1021/acs.jpclett.7b00316
- Valentyn I. Prokhorenko, Alessandra Picchiotti, Martina Pola, Arend G. Dijkstra, and R. J. Dwayne Miller . New Insights into the Photophysics of DNA Nucleobases. The Journal of Physical Chemistry Letters 2016, 7
(22)
, 4445-4450. https://doi.org/10.1021/acs.jpclett.6b02085
- Wilmer Arbelo-González, Rachel Crespo-Otero, and Mario Barbatti . Steady and Time-Resolved Photoelectron Spectra Based on Nuclear Ensembles. Journal of Chemical Theory and Computation 2016, 12
(10)
, 5037-5049. https://doi.org/10.1021/acs.jctc.6b00704
- Roberto Improta, Fabrizio Santoro, and Lluís Blancafort . Quantum Mechanical Studies on the Photophysics and the Photochemistry of Nucleic Acids and Nucleobases. Chemical Reviews 2016, 116
(6)
, 3540-3593. https://doi.org/10.1021/acs.chemrev.5b00444
- Javier Segarra-Martí, Marco Garavelli, and Francesco Aquilante . Multiconfigurational Second-Order Perturbation Theory with Frozen Natural Orbitals Extended to the Treatment of Photochemical Problems. Journal of Chemical Theory and Computation 2015, 11
(8)
, 3772-3784. https://doi.org/10.1021/acs.jctc.5b00479
- Shota Tsuru, Bikramjit Sharma, Christof Hättig, Dominik Marx. Nuclear Quantum Effects Have a Significant Impact on UV/Vis Absorption Spectra of Chromophores in Water. Angewandte Chemie International Edition 2025, 64
(3)
https://doi.org/10.1002/anie.202416058
- Shota Tsuru, Bikramjit Sharma, Christof Hättig, Dominik Marx. Nuclear Quantum Effects Have a Significant Impact on UV/Vis Absorption Spectra of Chromophores in Water. Angewandte Chemie 2025, 137
(3)
https://doi.org/10.1002/ange.202416058
- Danillo Valverde, Sean J. Hoehn, Eduardo D. Koyanagui, Sarah E. Krul, Carlos E. Crespo‐Hernández, Antonio Carlos Borin. Theoretical and Experimental Evaluation of the Electronic Relaxation Mechanisms of 2‐Pyrimidinone: The Primary UVA Absorbing Moiety of the DNA and RNA (6–4) Photolesion. ChemPhotoChem 2024, 8
(12)
https://doi.org/10.1002/cptc.202400070
- Piao Xu, Dongdong Wang, Duoduo Li, Jinyou Long, Song Zhang, Bing Zhang. UV wavelength-dependent photoionization quantum yields for the dark
1
nπ* state of aqueous thymidine. Physical Chemistry Chemical Physics 2024, 26
(41)
, 26251-26257. https://doi.org/10.1039/D4CP02594F
- Do Hyung Kang, Masafumi Koga, Neal Haldar, Daniel M. Neumark. Dynamics of photoexcited 5-bromouracil and 5-bromo-2′-deoxyuridine studied by extreme ultraviolet time-resolved photoelectron spectroscopy in liquid flat jets. Chemical Science 2024, 15
(41)
, 17245-17255. https://doi.org/10.1039/D4SC03920C
- Piao Xu, Jianduo Lu, Dongdong Wang, Duoduo Li, Jinyou Long, Song Zhang, Bing Zhang. Ultraviolet photoemission spectra of aqueous thymidine by liquid-microjet photoelectron spectroscopy: A combined experimental error assessment. Chinese Journal of Chemical Physics 2024, 37
(3)
, 439-448. https://doi.org/10.1063/1674-0068/cjcp2402024
- Dennis Mayer, Fabiano Lever, Markus Gühr. Time‐resolved x‐ray spectroscopy of nucleobases and their thionated analogs. Photochemistry and Photobiology 2024, 100
(2)
, 275-290. https://doi.org/10.1111/php.13903
- Davide Avagliano, Irene Conti, Mohsen M.T. El-Tahawy, Vishal K. Jaiswal, Artur Nenov, Marco Garavelli. Hybrid QM/MM Approach for the Calculation of Excited States in Complex Environments. 2024, 158-187. https://doi.org/10.1016/B978-0-12-821978-2.00059-3
- Yusuke Tsutsui. Fundamental Principles of Impedance Spectroscopy and its Biological Applications. 2022, 101-123. https://doi.org/10.1002/9781119886358.ch4
- Rocío Borrego-Varillas, Artur Nenov, Piotr Kabaciński, Irene Conti, Lucia Ganzer, Aurelio Oriana, Vishal Kumar Jaiswal, Ines Delfino, Oliver Weingart, Cristian Manzoni, Ivan Rivalta, Marco Garavelli, Giulio Cerullo. Tracking excited state decay mechanisms of pyrimidine nucleosides in real time. Nature Communications 2021, 12
(1)
https://doi.org/10.1038/s41467-021-27535-7
- Irene Conti, Matteo Bonfanti, Artur Nenov, Ivan Rivalta, Marco Garavelli. Photo-Active Biological Molecular Materials: From Photoinduced Dynamics to Transient Electronic Spectroscopies. 2021, 77-142. https://doi.org/10.1007/978-3-030-57721-6_2
- Vishal K. Jaiswal, Javier Segarra-Martí, Marco Marazzi, Elena Zvereva, Xavier Assfeld, Antonio Monari, Marco Garavelli, Ivan Rivalta. First-principles characterization of the singlet excited state manifold in DNA/RNA nucleobases. Physical Chemistry Chemical Physics 2020, 22
(27)
, 15496-15508. https://doi.org/10.1039/D0CP01823F
- Mohammadhassan Valadan, Enrico Pomarico, Bartolomeo Della Ventura, Felice Gesuele, Raffaele Velotta, Angela Amoresano, Gabriella Pinto, Majed Chergui, Roberto Improta, Carlo Altucci. A multi-scale time-resolved study of photoactivated dynamics in 5-benzyl uracil, a model for DNA/protein interactions. Physical Chemistry Chemical Physics 2019, 21
(48)
, 26301-26310. https://doi.org/10.1039/C9CP03839F
- Toshinori Suzuki. Ultrafast photoelectron spectroscopy of aqueous solutions. The Journal of Chemical Physics 2019, 151
(9)
https://doi.org/10.1063/1.5098402
- Jamie W. Riley, Bingxing Wang, Michael A. Parkes, Helen H. Fielding. Design and characterization of a recirculating liquid-microjet photoelectron spectrometer for multiphoton ultraviolet photoelectron spectroscopy. Review of Scientific Instruments 2019, 90
(8)
https://doi.org/10.1063/1.5099040
- Alice Kunin, Daniel M. Neumark. Time-resolved radiation chemistry: femtosecond photoelectron spectroscopy of electron attachment and photodissociation dynamics in iodide–nucleobase clusters. Physical Chemistry Chemical Physics 2019, 21
(14)
, 7239-7255. https://doi.org/10.1039/C8CP07831A
- Pengli Li, Jiadan Xue, Xuming Zheng. Decay dynamics of 6‐azauracil from the light absorbing S
2
(ππ*) state. Journal of Raman Spectroscopy 2019, 50
(3)
, 345-359. https://doi.org/10.1002/jrs.5518
- Alice Kunin, Daniel M. Neumark. Femtosecond Time-Resolved Photoelectron Spectroscopy of Molecular Anions. 2019, 307-335. https://doi.org/10.1007/978-981-13-9371-6_11
- Gaurav Kumar, Anirban Roy, Ryan S. McMullen, Shanmukh Kutagulla, Stephen E. Bradforth. The influence of aqueous solvent on the electronic structure and non-adiabatic dynamics of indole explored by liquid-jet photoelectron spectroscopy. Faraday Discussions 2018, 212 , 359-381. https://doi.org/10.1039/C8FD00123E
- Inga Jordan, Arohi Jain, Thomas Gaumnitz, Jun Ma, Hans Jakob Wörner. Photoelectron spectrometer for liquid and gas-phase attosecond spectroscopy with field-free and magnetic bottle operation modes. Review of Scientific Instruments 2018, 89
(5)
https://doi.org/10.1063/1.5011657
- Ana Julieta Pepino, Javier Segarra-Martí, Artur Nenov, Ivan Rivalta, Roberto Improta, Marco Garavelli. UV-induced long-lived decays in solvated pyrimidine nucleosides resolved at the MS-CASPT2/MM level. Physical Chemistry Chemical Physics 2018, 20
(10)
, 6877-6890. https://doi.org/10.1039/C7CP08235E
- L. Martinez-Fernandez, T. Fahleson, P. Norman, F. Santoro, S. Coriani, R. Improta. Optical absorption and magnetic circular dichroism spectra of thiouracils: a quantum mechanical study in solution. Photochemical & Photobiological Sciences 2017, 16
(9)
, 1415-1423. https://doi.org/10.1039/c7pp00105c
- François Dehez, Hugo Gattuso, Emmanuelle Bignon, Christophe Morell, Elise Dumont, Antonio Monari. Conformational polymorphism or structural invariance in DNA photoinduced lesions: implications for repair rates. Nucleic Acids Research 2017, 45
(7)
, 3654-3662. https://doi.org/10.1093/nar/gkx148
- Sebastian Mai, Martin Richter, Philipp Marquetand, Leticia González. The DNA nucleobase thymine in motion – Intersystem crossing simulated with surface hopping. Chemical Physics 2017, 482 , 9-15. https://doi.org/10.1016/j.chemphys.2016.10.003
- Shuai Sun, Alex Brown. Effects of hydrogen bonding with H2O on the resonance Raman spectra of uracil and thymine. Computational and Theoretical Chemistry 2017, 1100 , 70-82. https://doi.org/10.1016/j.comptc.2016.12.014
- Hongjuan Wang, Xuebo Chen. How Does Thymine DNA Survive Ultrafast Dimerization Damage?. Molecules 2017, 22
(1)
, 60. https://doi.org/10.3390/molecules22010060
- Javier Segarra-Martí, Antonio Francés-Monerris, Daniel Roca-Sanjuán, Manuela Merchán. Assessment of the Potential Energy Hypersurfaces in Thymine within Multiconfigurational Theory: CASSCF vs. CASPT2. Molecules 2016, 21
(12)
, 1666. https://doi.org/10.3390/molecules21121666
- D. A. Horke, H. M. Watts, A. D. Smith, E. Jager, E. Springate, O. Alexander, C. Cacho, R. T. Chapman, R. S. Minns. Hydrogen Bonds in Excited State Proton Transfer. Physical Review Letters 2016, 117
(16)
https://doi.org/10.1103/PhysRevLett.117.163002
- Vasilios G. Stavros, Jan R.R. Verlet. Gas-Phase Femtosecond Particle Spectroscopy: A Bottom-Up Approach to Nucleotide Dynamics. Annual Review of Physical Chemistry 2016, 67
(1)
, 211-232. https://doi.org/10.1146/annurev-physchem-040215-112428
- Angelo Giussani, Javier Segarra-Martí, Artur Nenov, Ivan Rivalta, Alessandra Tolomelli, Shaul Mukamel, Marco Garavelli. Spectroscopic fingerprints of DNA/RNA pyrimidine nucleobases in third-order nonlinear electronic spectra. Theoretical Chemistry Accounts 2016, 135
(5)
https://doi.org/10.1007/s00214-016-1867-z
- Bing Xue, Atsushi Yabushita, Takayoshi Kobayashi. Ultrafast dynamics of uracil and thymine studied using a sub-10 fs deep ultraviolet laser. Physical Chemistry Chemical Physics 2016, 18
(25)
, 17044-17053. https://doi.org/10.1039/C5CP07861J
- Barbara Marchetti, Tolga N. V. Karsili, Michael N. R. Ashfold, Wolfgang Domcke. A ‘bottom up’, ab initio computational approach to understanding fundamental photophysical processes in nitrogen containing heterocycles, DNA bases and base pairs. Physical Chemistry Chemical Physics 2016, 18
(30)
, 20007-20027. https://doi.org/10.1039/C6CP00165C
- XinZhong Hua, LinQiang Hua, XiaoJun Liu. The methyl- and aza-substituent effects on nonradiative decay mechanisms of uracil in water: a transient absorption study in the UV region. Physical Chemistry Chemical Physics 2016, 18
(20)
, 13904-13911. https://doi.org/10.1039/C6CP00732E
- Katharina Röttger, Hugo J. B. Marroux, Hendrik Böhnke, David T. J. Morris, Angus T. Voice, Friedrich Temps, Gareth M. Roberts, Andrew J. Orr-Ewing. Probing the excited state relaxation dynamics of pyrimidine nucleosides in chloroform solution. Faraday Discussions 2016, 194 , 683-708. https://doi.org/10.1039/C6FD00068A
- Akira Nakayama. A QM/MM study of absorption spectra of uracil derivatives in aqueous solution. 2016, 020018. https://doi.org/10.1063/1.4968644
- I. Jordan, M. Huppert, M. A. Brown, J. A. van Bokhoven, H. J. Wörner. Photoelectron spectrometer for attosecond spectroscopy of liquids and gases. Review of Scientific Instruments 2015, 86
(12)
https://doi.org/10.1063/1.4938175
- Franziska Buchner, Berit Heggen, Hans-Hermann Ritze, Walter Thiel, Andrea Lübcke. Excited-state dynamics of guanosine in aqueous solution revealed by time-resolved photoelectron spectroscopy: experiment and theory. Physical Chemistry Chemical Physics 2015, 17
(47)
, 31978-31987. https://doi.org/10.1039/C5CP04394H
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.
Recommended Articles
Abstract
Figure 1
Figure 1. Electronic potential energies of low-lying states of isolated and hydrated thymine around the FC region. Excited-state energies for the gas phase and solvatochromic shift of the nπ* state are taken from ref 20, and the ππ* energy of the hydrated molecule is taken from experimental values. (15) Ionization energies for gas phase are taken from ref 22, and ionization energies of hydrated molecules are taken from ref 13. The absorbed photon energy, i.e., the sum of pump photon energy hνpu and probe photon energy hνpr, is given by the horizontal line. The molecular structure and the numbering of the atoms is shown in the right part of the figure.
Figure 2
Figure 2. Time-resolved photoelectron spectrum of thymine, globally analyzed by three spectral contributions. (a) Comparison between data (color) and global fit (contour lines), (b) decay associated spectra, (c) residuals (color) and global fit (contour lines), and (d) population dynamics of individual contributions. The color scale of the residuals covers a range of ±20% of the maximum photoelectron signal. Vertical lines in panel b mark the maximum kinetic energies for the individual contributions.
Figure 3
Figure 3. Potential energy differences between the ππ* state and the neutral ground state, the nπ* state and the ionic ground state along representative trajectories taken from ref 20 that reach (ππ*(C5–C6)/S0)CI (left) and (ππ*(C4–O8)/S0)CI (right) regions. Gray-shaded areas (between red and black solid lines) show ionization windows of ππ* state for instantaneous and complete redistribution of excess energy (E(ππ*) + ℏωpr) in case of 5.2 eV probe pulses. Diamonds mark the total absorbed energy at temporal overlap (ℏωpu + ℏωpr + E(S0; t = 0)).
Figure 4
Figure 4. (left) Average population of trajectories in the ππ* state that can be ionized for the given pump–probe time delay and photon energy (ℏωpr = 5.2 eV) (black line). The trajectories are divided into two groups: trajectories that reach the (ππ*(C5–C6)/S0)CI and (ππ*(C4–O8)/S0)CI regions, and the average populations of each group are shown in blue and red dotted lines. (right) Kinetic energies of photoelectrons along the trajectories. The trajectories are again divided into two groups and shown in blue and red circles. The averages of kinetic energy at t = 0 over all trajectories are calculated to be 1.72 eV. The averages over trajectories that reach the (ππ*(C5–C6)/S0)CI and (ππ*(C4–O8)/S0)CI regions are 1.80 and 1.40 eV, respectively.
Figure 5
Figure 5. Potential energy difference between the D(π–1) and nπ* states (red line), and the D(n–1) and nπ* states (blue line) along the QM/MM-MD trajectories that are equilibrated in the nπ* state using the SA-CASSCF(12,9) calculations. The energies are recalculated by CASPT2(12,9) and CASPT2(11,9) for the neutral and cationic molecules, respectively. The energies of the cationic states are shifted using the correction described in the text, and the experimentally applied photon energy (5.2 eV) is shown by the dotted line.
References
This article references 41 other publications.
- 1Crespo-Hernández, C. E.; Cohen, B.; Hare, P. M.; Kohler, B. Chem. Rev. 2004, 104, 1977There is no corresponding record for this reference.
- 2de Vries, M. S.; Hobza, P. Annu. Rev. Phys. Chem. 2007, 58, 585There is no corresponding record for this reference.
- 3Middleton, C. T.; de La Harpe, K.; Su, C.; Law, Y. K.; Crespo-Hernández, C. E.; Kohler, B. Annu. Rev. Phys. Chem. 2009, 60, 217There is no corresponding record for this reference.
- 4Kleinermanns, K.; Nachtigallová, D.; de Vries, M. S. Int. Rev. Phys. Chem. 2013, 32, 3084Excited state dynamics of DNA basesKleinermanns, Karl; Nachtigallova, Dana; de Vries, Mattanjah S.International Reviews in Physical Chemistry (2013), 32 (2), 308-342CODEN: IRPCDL; ISSN:0144-235X. (Taylor & Francis Ltd.)A review. Biochem. reactions are subject to the particular environmental conditions of planet earth, including solar irradn. How DNA responds to radiation is relevant to human health because radiation damage can affect genetic propagation and lead to cancer and is also important for our understanding of how life on earth developed. A reductionist approach to unraveling the detailed photochem. seeks to establish intrinsic properties of individual DNA building blocks, followed by extrapolation to larger systems, to incorporate interactions between the building blocks and the role of the biomol. environment. Advances in both exptl. and computational techniques have lead to increasingly detailed insights in the excited state dynamics of DNA bases in isolation as well as the role of the solvent and intermol. interactions. This review seeks to summarize current findings and understanding.
- 5Improta, R.; Barone, V. Top. Curr. Chem. 2014, 355, 329There is no corresponding record for this reference.
- 6Abouaf, R.; Pommier, J.; Dunet, H. Chem. Phys. Lett. 2003, 381, 486There is no corresponding record for this reference.
- 7Ullrich, S.; Schultz, T.; Zgierski, M. Z.; Stolow, A. Phys. Chem. Chem. Phys. 2004, 6, 2796There is no corresponding record for this reference.
- 8Hudock, H. R.; Levine, B. G.; Thompson, A. L.; Satzger, H.; Townsend, D.; Gador, N.; Ullrich, S.; Stolow, A.; Martínez, T. J. J. Phys. Chem. A 2007, 111, 8500There is no corresponding record for this reference.
- 9Szymczak, J. J.; Barbatti, M.; Hoo, J. T. S.; Adkins, J. A.; Windus, T. L.; Nachtigallová, D.; Lischka, H. J. Phys. Chem. A 2009, 113, 12686There is no corresponding record for this reference.
- 10Merchán, M.; González-Luque, R.; Climent, T.; Serrano-Andrés, L.; Rodríguez, E.; Reguero, M.; Peláez, D. J. Phys. Chem. B 2006, 110, 26471There is no corresponding record for this reference.
- 11Lan, Z.; Fabiano, E.; Thiel, W. J. Phys. Chem. B 2009, 113, 3548There is no corresponding record for this reference.
- 12McFarland, B. K.; Farrell, J. P.; Miyabe, S.; Tarantelli, F.; Aguilar, A.; Berrah, N.; Bostedt, C.; Bozek, J. D.; Bucksbaum, P. H.; Castagna, J. C.; Coffee, R. N.; Cryan, J. P.; Fang, L.; Feifel, R.; Gaffney, K. J.; Glownia, J. M.; Martinez, T. J.; Mucke, M.; Murphy, B.; Natan, A.; Osipov, T.; Petrovíc, V. S.; Schorb, S.; Schultz, T.; Spector, L. S.; Swiggers, M.; Tenney, I.; Wang, S.; White, J. L.; White, W.; Gühr, M. Nat. Comm. 2014, 5, 423512Ultrafast X-ray Auger probing of photoexcited molecular dynamicsMcFarland, B. K.; Farrell, J. P.; Miyabe, S.; Tarantelli, F.; Aguilar, A.; Berrah, N.; Bostedt, C.; Bozek, J. D.; Bucksbaum, P. H.; Castagna, J. C.; Coffee, R. N.; Cryan, J. P.; Fang, L.; Feifel, R.; Gaffney, K. J.; Glownia, J. M.; Martinez, T. J.; Mucke, M.; Murphy, B.; Natan, A.; Osipov, T.; Petrovic, V. S.; Schorb, S.; Schultz, Th.; Spector, L. S.; Swiggers, M.; Tenney, I.; Wang, S.; White, J. L.; White, W.; Guhr, M.Nature Communications (2014), 5 (), 4235CODEN: NCAOBW; ISSN:2041-1723. (Nature Publishing Group)Mols. can efficiently and selectively convert light energy into other degrees of freedom. Disentangling the underlying ultrafast motion of electrons and nuclei of the photoexcited mol. presents a challenge to current spectroscopic approaches. Here we explore the photoexcited dynamics of mols. by an interaction with an ultrafast X-ray pulse creating a highly localized core hole that decays via Auger emission. We discover that the Auger spectrum as a function of photoexcitation-X-ray-probe delay contains valuable information about the nuclear and electronic degrees of freedom from an element-specific point of view. For the nucleobase thymine, the oxygen Auger spectrum shifts towards high kinetic energies, resulting from a particular C-O bond stretch in the ππ* photoexcited state. A subsequent shift of the Auger spectrum towards lower kinetic energies displays the electronic relaxation of the initial photoexcited state within 200 fs. Ab-initio simulations reinforce our interpretation and indicate an electronic decay to the nπ* state.
- 13Seidel, R. Electronic-Structure Interactions in Aqueous Solutions: A Liquid-Jet Photoelectron-Spectroscopy Study. Ph.D. Thesis; Technische Universitaet Berlin: Berlin, 2011.There is no corresponding record for this reference.
- 14Gustavsson, T.; Sharonov, A.; Markovitsi, D. Chem. Phys. Lett. 2002, 351, 195There is no corresponding record for this reference.
- 15Gustavsson, T.; Bányász, A.; Lazzarotto, E.; Markovitsi, D.; Scalmani, G.; Frisch, M. J.; Barone, V.; Improta, R. J. Am. Chem. Soc. 2006, 128, 607There is no corresponding record for this reference.
- 16Pecourt, J.-M. L.; Peon, J.; Kohler, B. J. Am. Chem. Soc. 2001, 132, 10370There is no corresponding record for this reference.
- 17Hare, P. M.; Crespo-Hernández, C. E.; Kohler, B. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 435There is no corresponding record for this reference.
- 18Gustavsson, T.; Bányász, A.; Sarkar, N.; Markovitsi, D.; Improta, R. Chem. Phys. 2008, 350, 186There is no corresponding record for this reference.
- 19Improta, R.; Barone, V.; Lami, A.; Santoro, F. J. Phys. Chem. B 2009, 113, 14491There is no corresponding record for this reference.
- 20Nakayama, A.; Arai, G.; Yamazaki, S.; Taketsugu, T. J. Chem. Phys. 2013, 139, 214304There is no corresponding record for this reference.
- 21Minezawa, N. J. Chem. Phys. 2014, 141, 164118There is no corresponding record for this reference.
- 22Urano, S.; Yang, X.; LeBreton, P. R. J. Mol. Struct. 1989, 214, 315There is no corresponding record for this reference.
- 23Buchner, F.; Lübcke, A.; Heine, N.; Schultz, T. Rev. Sci. Instrum. 2010, 81, 11310723Time-resolved photoelectron spectroscopy of liquidsBuchner, Franziska; Luebcke, Andrea; Heine, Nadja; Schultz, ThomasReview of Scientific Instruments (2010), 81 (11), 113107/1-113107/6CODEN: RSINAK; ISSN:0034-6748. (American Institute of Physics)The authors present a novel setup for the study of ultrafast dynamic processes in a liq. jet using time-resolved photoelectron spectroscopy. A magnetic-bottle type spectrometer with a high collection efficiency allows the very sensitive detection of photoelectrons emitted from a 10 μm thick liq. jet. This translates into good signal/noise ratio and rapid data acquisition making femtosecond time-resolved expts. feasible. The authors describe the exptl. setup, a detailed spectrometer characterization based on the spectroscopy of nitric oxide in the gas phase, and results from femtosecond time-resolved expts. on NaI solns. The latter expts. reveal the formation and evolution of the solvated electron and the authors characterize 2 distinct spectral components corresponding to initially thermalized and unthermalized solvated electrons. The absence of dark states in photoionization, the direct measurement of electron binding energies, and the ability to resolve dynamic processes on the femtosecond time scale make time-resolved photoelectron spectroscopy from the liq. jet a very promising method for the characterization of photochem. processes in liqs. (c) 2010 American Institute of Physics.
- 24Preissler, N.; Buchner, F.; Schultz, T.; Lübcke, A. J. Phys. Chem. B 2013, 117, 2422There is no corresponding record for this reference.
- 25Buchner, F.; Ritze, H.-H.; Lahl, J.; Lübcke, A. Phys. Chem. Chem. Phys. 2013, 15, 11402There is no corresponding record for this reference.
- 26Wu, Y.; Tepper, H. L.; Voth, G. A. J. Chem. Phys. 2006, 124, 024503There is no corresponding record for this reference.
- 27Werner, H. J.; Knowles, P. J.; Knizia, G.; Manby, F. R.; Celani, M. S. P.; Korona, T.; Lindh, R.; Mitrushenkov, A.; Rauhut, G.; Shamasundar, K. R.; Adler, T. B.; Amos, R. D.; Bernhardsson, A.; Berning, A.; Cooper, D. L.; Deegan, M. J. O.; Dobbyn, A. J.; Eckert, F.; Goll, E.; Hampel, C.; Hesselmann, A.; Hetzer, G.; Hrenar, T.; Jansen, G.; Köppl, C.; Liu, Y.; Lloyd, A. W.; Mata, R. A.; May, A. J.; McNicholas, S. J.; Meyer, W.; Mura, M. E.; Nicklaß, A.; O’Neill, D. P.; Palmieri, P.; Pflüger, K.; Pitzer, R.; Reiher, M.; Shiozaki, T.; Stoll, H.; Stone, A. J.; Tarroni, R.; Thorsteinsson, T.; Wang, M.; Wolf, A.MOLPRO version 2010.1 a package of ab initio programs; Birmingham, UK.There is no corresponding record for this reference.
- 28Zechmann, G.; Barbatti, M. J. Phys. Chem. A 2008, 112, 8273There is no corresponding record for this reference.
- 29Etinski, M.; Marian, C. M. Phys. Chem. Chem. Phys. 2010, 12, 4915There is no corresponding record for this reference.
- 30Tao, H.; Levine, B. G.; Martínez, T. J. J. Phys. Chem. A 2009, 113, 13656There is no corresponding record for this reference.
- 31Schreiber, M.; Silva-Junior, M. R.; Sauer, S. P. A.; Thiel, W. J. Chem. Phys. 2008, 128, 134110There is no corresponding record for this reference.
- 33Onidas, D.; Markovitsi, D.; Marguet, S.; Sharonov, A.; Gustavsson, T. J. Phys. Chem. B 2002, 106, 11367There is no corresponding record for this reference.
- 34Konovalov, V. V.; Raitsimring, A. M.; Tsvetkov, Y. D. Int. J. Rad. Appl. Instr. C Rad. Phys. Chem. 1988, 32, 623There is no corresponding record for this reference.
- 35Plante, I.; Cucinotta, F. A. New J. Phys. 2009, 11, 063047There is no corresponding record for this reference.
- 36Buchner, F.; Schultz, T.; Lübcke, A. Phys. Chem. Chem. Phys. 2012, 14, 5837There is no corresponding record for this reference.
- 37Suzuki, Y.-I.; Nishizawa, K.; Kurahashi, N.; Suzuki, T. Phys. Rev. E 2014, 90, 010302(R)There is no corresponding record for this reference.
- 38Matsika, S. J. Phys. Chem. A 2005, 109, 7538There is no corresponding record for this reference.
- 39Kistler, K. A.; Matsika, S. J. Chem. Phys. 2008, 128, 215102There is no corresponding record for this reference.
- 40González-Vázquez, J.; González, L. Chem. Phys. Chem. 2010, 11, 361740A Time-Dependent Picture of the Ultrafast Deactivation of keto-Cytosine Including Three-State Conical IntersectionsGonzalez-Vazquez, Jesus; Gonzalez, LeticiaChemPhysChem (2010), 11 (17), 3617-3624CODEN: CPCHFT; ISSN:1439-4235. (Wiley-VCH Verlag GmbH & Co. KGaA)Using mixed quantum-classical dynamics, the lowest part of the UV absorption spectrum and the first deactivation steps of keto-cytosine have been investigated. The spectrum shows several strong peaks, which mainly come from the S1 and S2 states, with minor contributions from the S3. The semiclassical trajectories, launched from these three states, clearly indicate that at least four states are involved in the relaxation of keto-cytosine to the ground state. Non-adiabatic transfer between the ππ* and nπ* excited states and deactivation via three-state conical intersections is obsd. in the very early stage of the dynamics. In less than 100 fs, a large amt. of population is deactivated to the ground state via several mechanisms; some population remains trapped in the S2 state. The latter two events can be connected to the fs and ps transients obsd. exptl.
- 41Satzger, H.; Townsend, D.; Zgierski, M. Z.; Patchkovskii, S.; Ullrich, S.; Stolow, A. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 10196There is no corresponding record for this reference.
Supporting Information
Supporting Information
Details on the detection efficiency at low kinetic energy, the role of inelastic processes, global analysis, time-resolved photoelectron spectra, global analysis results for thymine and thymidine, an extended time scan for thymine, and a discussion of alternative signal assignment. This material is available free of charge via the Internet at http://pubs.acs.org.
Terms & Conditions
Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.