ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Cation-Dependent Intrinsic Electrical Conductivity in Isostructural Tetrathiafulvalene-Based Microporous Metal–Organic Frameworks

View Author Information
Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
Cite this: J. Am. Chem. Soc. 2015, 137, 5, 1774–1777
Publication Date (Web):January 18, 2015
https://doi.org/10.1021/ja512437u

Copyright © 2015 American Chemical Society. This publication is licensed under these Terms of Use.

  • Open Access

Article Views

15323

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
PDF (1 MB)
Supporting Info (4)»

Abstract

Isostructural metal–organic frameworks (MOFs) M2(TTFTB) (M = Mn, Co, Zn, and Cd; H4TTFTB = tetrathiafulvalene tetrabenzoate) exhibit a striking correlation between their single-crystal conductivities and the shortest S···S interaction defined by neighboring TTF cores, which inversely correlates with the ionic radius of the metal ions. The larger cations cause a pinching of the S···S contact, which is responsible for better orbital overlap between pz orbitals on neighboring S and C atoms. Density functional theory calculations show that these orbitals are critically involved in the valence band of these materials, such that modulation of the S···S distance has an important effect on band dispersion and, implicitly, on the conductivity. The Cd analogue, with the largest cation and shortest S···S contact, shows the largest electrical conductivity, σ = 2.86 (±0.53) × 10–4 S/cm, which is also among the highest in microporous MOFs. These results describe the first demonstration of tunable intrinsic electrical conductivity in this class of materials and serve as a blueprint for controlling charge transport in MOFs with π-stacked motifs.

Imbuing metal–organic frameworks (MOFs) with properties that complement their porosity will add a new dimension to the range of potential applications for these materials. (1) Chief among these would be those that employ the extended nature of the MOFs’ structures to impart emerging properties that are not available in the molecular precursors. Cooperative magnetism, exciton transport, or charge transport phenomena are some examples that are slowly emerging along this line. (2) Among these, electrical conductivity is particularly difficult to engineer in MOFs (3) because these materials generally have flat bands determined by highly localized organic states and weak hybridization with the inorganic secondary building units (SBUs). Indeed, of the many hundreds of microporous MOFs, only a few exhibit intrinsic conductivity. (4) Nevertheless, should electrical conductivity be enabled in such materials, their crystalline structures may provide highly ordered and nearly defect-free infinite charge transport pathways, (5) leading to superior electrical properties relative to typical conductive polymers, which suffer from chain recoiling and disorder that limit their charge mobility. (6) The challenge, then, sits squarely in the realm of synthetic chemistry: how can one control the supramolecular arrangement of molecular building blocks to enable electrical conductivity in a microporous MOF?

Three charge transport mechanisms can be operative in molecular conductors such as MOFs: one relies on π-stacking (through-space charge transport); another involves charge transport through the covalent bonds, as in molecular wires; and the third is charge hopping. (7-10) The first two mechanisms are ideally based on band transport, while the hopping mechanism is governed by Marcus theory. (11) Recently, it has been shown that all three mechanisms can be exploited to synthesize MOFs with excellent intrinsic charge mobility and conductivity. Tetrathiafulvalene tetrabenzoic acid (H4TTFTB) forms a zinc MOF with infinite π-stacked TTF columns that shows a charge mobility of 0.2 cm2/V·s, as determined by time-resolved microwave conductivity. (12) Triazole- and sulfur-ligated MOFs, such as metal triazolates, (13) Mn2(DSBDC) (DSBDC = 2,5-disulfhydrylterephthalate) (4f) and Cu[Ni(pdt)2] (pdt2– = pyrazine-2,3-dithiolate), (14) have also shown promising electrical properties. Recent work has also highlighted the excellent properties of two-dimensional graphite-like materials, (15) with Ni3(HITP)2 (HITP = hexaiminotriphenylene) reaching the same bulk conductivity as graphite. (16)

One of the more exciting aspects of producing conductive MOFs, in addition to their potential utility in electronic devices, is the ability to tune their electrical properties. This has been shown with Cu3(BTC)2 (BTC = 1,3,5-benzenetricarboxylate), for instance, whose conductivity can be tuned by six orders of magnitude when various amounts of tetracyanoquinodimethane (TCNQ) are introduced in the pores. (5b) To our knowledge, there are no examples where the conductivity of a MOF can be tuned in the absence of intentional doping or other external factors that often reduce the available surface area by pore blocking. Here, we show that varying the metal cation employed in the synthesis of TTFTB-based MOFs from Zn2+ to Co2+, Mn2+, and Cd2+ changes the shortest S···S distance between neighboring TTF cores in the infinite π-stacked columns. This causes a modulation of the single-crystal conductivity by nearly 2 orders of magnitude in the absence of any other external variables. The variation correlates very well with the S···S distance and is confirmed by conductivity measurements of over 20 single crystals for each sample.

As previously reported, reaction of H4TTFTB with Zn(NO3)2 produces Zn2(TTFTB), wherein TTF ligands form a chiral π-stack with 65 symmetry and are connected to infinite zinc benzoate chains (Figure 1b). Because π–π interactions are weaker than covalent interactions, we surmised that changing the metal cation would maintain the overall structure of the covalent lattice. At the same time, we hypothesized that increasing the ionic radius of the metal cation would lengthen the metal–carboxylate chains, thereby possibly pinching the TTF stack, leading to a shorter intermolecular S···S distance. Decreasing this parameter would increase the dispersion of the band formed by the sulfur 3pz orbitals because it would increase the overlap integral for these orbitals. (17) Overall, this should have a positive effect on the electrical properties of isostructural MOFs made with cations of increasing radius.

Figure 1

Figure 1. (a) Calculated band structure and projected density of states of Zn2(TTFTB). The work function, ϕ, and absolute energy scale are aligned to vacuum according to ref 20. The coordinates of the reciprocal space points are Γ = (0, 0, 0) and A = (0, 0, 1/2). Corresponding pictorial representation of the valence band orbitals in Zn2(TTFTB) (b) and one of the TTF cores (c). Zn atoms and their coordination sphere are represented by black polyhedra. Gold, red, black, and white spheres represent S, O, C, and H atoms, respectively.

To verify these hypotheses, we employed density functional theory to calculate the band structure of the reported Zn2(TTFTB) material. Several important facts emerge from this calculation, which is shown in Figure 1. First, the width of the upper valence band is 400 meV. This is much larger than that reported for many other MOFs, (18) whose bands are so narrow that they may be more prosaically described as discrete energy levels. (19) The valence band is also considerably wider than the conduction band, as expected for a hole conductor based on electron-donating TTF units. Finally, the p orbitals of the sulfur and central carbon atoms on TTF define the valence band, suggesting that indeed the likely pathway for charge transport involves these orbitals and that, according to the extended Hückel theory, the band dispersion of a TTF stack would be dramatically varied as the overlap of these p orbitals changes. A qualitatively similar picture is observed for the Cd analogue of this material (vide infra and Figure S1).

Reacting H4TTFTB with Mn(NO3)2·xH2O, Co(NO3)2·6H2O, or Cd(NO3)2·4H2O under conditions mimicking those used for the synthesis of Zn2(TTFTB) produced [Mn2(C34H16O8S4)(H2O)2]·(DMF)0.7(H2O)1.75 (Mn2(TTFTB)), [Co2(C34H16O8S4)(H2O)2]·(DMF)1.75(H2O)2 (Co2(TTFTB)), and [Cd2(C34H16O8S4)(μ2-OH2)(H2O)]·(DMF)1.5(H2O)2 (Cd2(TTFTB)) as dark red needles. Powder X-ray diffraction confirmed the homogeneity of the bulk crystalline samples, which are all isostructural with Zn2(TTFTB) (Figure S2). Single-crystal X-ray diffraction confirmed that all three compounds crystallize in the P65 space group, where the 65 screw axis is slightly offset from the central ethylene unit of the TTF core, such that the TTF units are rotated by 60° relative to one another and translated in the c direction (Figure 2). The plane containing the TTF core is not perfectly perpendicular to the screw axis, which results in only one relatively close S···S contact between each pair of neighboring TTF units. SBUs are helical chains of corner-sharing metal–oxygen polyhedra joined by helical stacks of benzoates pertaining to TTFTB4–. Whereas the Zn, Co, and Mn materials exhibit corner-sharing pseudo-octahedra, Cd2(TTFTB) exhibits alternating seven- and six-coordinate metal ions.

Figure 2

Figure 2. Helical TTF stack with a depiction of the shortest intermolecular S···S contacts (dashed red line): (a) view along the ab plane; (b) view down the c axis. Yellow and gray spheres represent S and C atoms, respectively. Phenyl rings and metal atoms were omitted for clarity.

Thermogravimetric analysis coupled with elemental analysis of samples desolvated at 200 °C and 4 mTorr showed that Mn2(TTFTB) and Co2(TTFTB) lose both coordinated and guest solvent molecules, while Cd2(TTFTB) loses the coordinated water molecules only above ∼220 °C (Figure S3). All show permanent microporosity evidenced by N2 adsorption isotherms at 77 K, which revealed uptakes of ∼150, ∼170, and ∼140 cm3/g of N2 and BET surface areas of 470, 531, and 521 m2/mmol, respectively for Mn2(TTFTB), Co2(TTFTB), and Cd2(TTFTB) (Figure S4). These are comparable with the surface area of Zn2(TTFTB) (537 m2/mmol).

Most importantly, the shortest S···S distance observed in each of the materials follows the predicted pattern and increases from 3.6538(23) Å in Cd2(TTFTB) to 3.6929(6), 3.7568(13), and 3.7732(26) Å in Mn2(TTFTB), Zn2(TTFTB), and Co2(TTFTB), respectively. The respective ionic radii vary inversely from 109 pm for Cd2+ to 97, 88, and 88.5 pm for high-spin Mn2+, Zn2+, and Co2+. (21) These values are summarized in Table 1. These short intermolecular S···S distances are comparable to those found in charge transfer salts such as TTF-TCNQ (dS···S = 3.75 Å), (22) TTF-dicyanoquinodiimine (dS···S = 3.69 Å), (23) and TTF3Cl (dS···S = 3.60 Å). (24)

Table 1. Closest Interatomic S···S Distance between Neighboring TTF Cores
 ionic radius of MII (pm)S···S (Å)
Co2(TTFTB)88.53.7732(26)
Zn2(TTFTB)883.7568(13)
Mn2(TTFTB)973.6929(6)
Cd2(TTFTB)1093.6538(23)

To assess the influence of the S···S separation on the intrinsic electrical properties of each material, we performed single-crystal conductivity measurements, which are less affected by grain boundaries than bulk pellet measurements (see Supporting Information for experimental details). Because conductivity is the product of charge mobility and charge carrier density and the width of the valence band was expected to influence the mobility but not the carrier density, we needed to estimate the latter in each case. To this end, it is well-known that the lengths of the C–S and C═C bonds in TTF are sensitive to the level of doping in stacked TTF materials. (25) As shown in Table S4, we found that among the M2(TTFTB) materials these bonds vary by less than 0.0025 and 0.019 Å for the C–S and C═C bonds, respectively. Although small variations in charge carrier densities associated with slightly different positions of the Fermi level may not be apparent in these distances and may yet influence conductivity, this analysis suggests that the level of doping is similar in each material.

Single crystal conductivity measurements were performed along the crystallographic c axis of millimeter-sized needle-shaped crystals, using two gold probes attached by carbon paste at each end of a crystal. (26) Current–voltage curves were measured by sweeping the voltage from −1 to 1 V. Ohmic contacts were observed in this potential interval. To eliminate variations stemming from batch/device preparation and microscopic defects, we performed measurements on more than 20 crystals coming from 4–5 independent batches for each M2(TTFTB) variant. A histogram of the results is shown in Figure 3. Average conductivity values obtained under these conditions, plotted against the observed S···S distance in Figure 4, show a remarkable variation among the four isostructural MOFs. Cd2(TTFTB), which exhibits the shortest S···S distance, has an average conductivity of 2.86 (±0.53) × 10–4 S/cm. This is 72 times higher than the average conductivity of Zn2(TTFTB) (σ = 3.95 (±0.56) × 10–6 S/cm). Mn2(TTFTB) and Co2(TTFTB), which display intermediate S···S distances between those observed in the Zn and Cd analogues, also show intermediate conductivity values of 8.64 (±1.21) × 10–5 and 1.49 (±0.29) × 10–5 S/cm, respectively, both tracking inversely with increasing S···S distance. We note that four-point probe conductivity measurements of single crystals of Cd2(TTFTB), Mn2(TTFTB), and Co2(TTFTB) revealed values of 6.79 × 10–4, 1 × 10–4, and 5 × 10–5 S/cm, respectively. These show a trend that is in line with that observed by two-probe measurements, suggesting that contact resistances are not responsible for the observed differences among the four analogues. The consistently smaller size of the Zn2(TTFTB) crystals prevented us from performing a similar experiment on this material. On the other hand, measurement of the single-crystal conductivity of Zn2(TTFTB) in a direction perpendicular to the c axis, performed by attaching two gold leads parallel to the ab plane (see Figure S9), revealed a value of 2.03 × 10–7 S/cm. Thus, the conductivity of M2(TTFTB) is anisotropic and is largest along the direction of the TTF column. Overall, the conductivity values of all M2(TTFTB) are among the highest for any microporous coordination polymer.

Figure 3

Figure 3. Histograms with the distribution of single crystal electrical conductivities for Cd2(TTFTB), Mn2(TTFTB), Zn2(TTFTB), and Co2(TTFTB).

Figure 4

Figure 4. Correlation between S···S distance and electrical conductivity in M2(TTFTB).

In conclusion, we showed that using increasingly larger cations causes an elongation of the one-dimensional SBUs and a concomitant contraction of the inter-TTF distance in M2(TTFTB), a series of MOFs with π-stacked TTF columns. By decreasing the S···S distance between neighboring TTF cores, we were able to increase the overlap between the sulfur 3pz orbitals, which are critically involved in the charge transport pathway, as revealed by DFT calculations. This led to the isolation of a series of new, permanently porous MOFs with high intrinsic conductivity and an improvement of nearly two orders of magnitude for Cd2(TTFTB) over the original analogous zinc compound. These results provide a systematic blueprint for designing new electrically conductive MOFs based on the through-space charge transport formalism.

Supporting Information

ARTICLE SECTIONS
Jump To

Detailed experimental procedures and computational details, X-ray crystal data (PXRD and single crystal), N2 adsorption isotherms, conductivity measurements, and TGAs. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

ARTICLE SECTIONS
Jump To

  • Corresponding Author
    • Mircea Dincă - Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
  • Authors
    • Sarah S. Park - Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
    • Eric R. Hontz - Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
    • Lei Sun - Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
    • Christopher H. Hendon - Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
    • Aron Walsh - Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
    • Troy Van Voorhis - Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
  • Notes
    The authors declare no competing financial interest.

Acknowledgment

ARTICLE SECTIONS
Jump To

All experimental work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences (U.S. DOE-BES, Award No. DE-SC0006937). S.S.P. is partially supported by a NSF GRFP (Award No. 1122374). Computational work at MIT was supported as part of the Center for Excitonics, an Energy Frontier Research Center funded by the U.S. DOE-BES (Award No. DE-SC0001088). T.V.V. thanks the David and Lucille Packard Foundation for a Fellowship. Work in the UK benefited from access to ARCHER through membership of the UK’s HPC Materials Chemistry Consortium, which is funded by EPSRC (Grant No. EP/L00202). We thank M. Campbell and C. Brozek for helpful discussions, and T. Narayan for initial crystallization experiments. M.D. also thanks the Sloan Foundation, the Research Corporation for Science Advancement (Cottrell Scholar), and 3M for nontenured faculty support.

References

ARTICLE SECTIONS
Jump To

This article references 26 other publications.

  1. 1
    (a) Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. Science 2013, 341, 1230444
    (b) He, Y.; Zhou, W.; Qian, G.; Chen, B. Chem. Soc. Rev. 2014, 43, 5657
    (c) Sumida, K.; Rogow, D. L.; Mason, J. A.; Mcdonald, T. M.; Bloch, E. D.; Herm, Z. R.; Bae, T.-H.; Long, J. R. Chem. Rev. 2012, 112, 724
    (d) Suh, M. P.; Park, H. J.; Prasad, T. K.; Lim, D.-W. Chem. Rev. 2012, 112, 782
    (e) Wu, H.; Gong, Q.; Olson, D. H.; Li, J. Chem. Rev. 2012, 112, 836
    (f) Li, J.-R.; Sculley, J.; Zhou, H.-C. Chem. Rev. 2012, 112, 869
    (g) Murray, L. J.; Dincă, M.; Long, J. R. Chem. Soc. Rev. 2009, 38, 1294
  2. 2
    (a) Jin, S.; Son, H.-J.; Farha, O. K.; Wiederrecht, G. P.; Hupp, J. T. J. Am. Chem. Soc. 2013, 135, 955
    (b) Coronado, E.; Espallargas, G. M. Chem. Soc. Rev. 2013, 42, 1525
    (c) Ameloot, R.; Aubrey, M.; Wiers, B. M.; Gómora-Figueroa, A. P.; Patel, S. N.; Balsara, N. P.; Long, J. R. Chem.—Eur. J. 2013, 19, 5533
    (d) Bag, S.; Gaudette, A. F.; Bussell, M. E.; Kanatzidis, M. G. Nat. Chem. 2009, 1, 217
    (e) Zheng, N.; Bu, X.; Feng, P. Nature 2003, 426, 428
    (f) Dechambenoit, P.; Long, J. R. Chem. Soc. Rev. 2011, 40, 3249
  3. 3
    (a) Stavila, V.; Talin, A. A.; Allendorf, M. D. Chem. Soc. Rev. 2014, 43, 5994
    (b) Allendorf, M. D.; Schwartzberg, A.; Stavila, V.; Talin, A. A. Chem.—Eur. J. 2011, 17, 11372
  4. 4
    (a) Avendano, C.; Zhang, Z.; Ota, A.; Zhao, H.; Dunbar, K. R. Angew. Chem., Int. Ed. 2011, 50, 6543
    (b) Cui, J.; Xu, Z. Chem. Commun. 2014, 50, 3986
    (c) Hmadeh, M.; Lu, Z.; Liu, Z.; Gándara, F.; Furukawa, H.; Wan, S.; Augustyn, V.; Chang, R.; Liao, L.; Zhou, F.; Perre, E.; Ozolins, V.; Suenaga, K.; Duan, X.; Dunn, B.; Yamamto, Y.; Terasaki, O.; Yaghi, O. M. Chem. Mater. 2012, 24, 3511
    (d) Takaishi, S.; Hosoda, M.; Kajiwara, T.; Miyasaka, H.; Yamashita, M.; Nakanishi, Y.; Kitagawa, Y.; Yamaguchi, K.; Kobayashi, A.; Kitagawa, H. Inorg. Chem. 2009, 48, 9048
    (e) Kambe, T.; Sakamoto, R.; Hoshiko, K.; Takada, K.; Miyachi, M.; Ryu, J.-H.; Sasaki, S.; Kim, J.; Nakazato, K.; Takata, M.; Nishihara, H. J. Am. Chem. Soc. 2013, 135, 2462
    (f) Sun, L.; Miyakai, T.; Seki, S.; Dincă, M. J. Am. Chem. Soc. 2013, 135, 8185
  5. 5
    (a) Wiers, B. M.; Foo, M.-L.; Balsara, N. P.; Long, J. R. J. Am. Chem. Soc. 2011, 133, 14522
    (b) Talin, A. A.; Centrone, A.; Ford, A. C.; Foster, M. E.; Stavila, V.; Haney, P.; Kinney, R. A.; Szalai, V.; Gabaly, F. E.; Yoon, H. P.; Léonard, F.; Allendorf, M. D. Science 2014, 343, 66
  6. 6
    (a) Dong, H.; Fu, X.; Liu, J.; Wang, Z.; Hu, W. Adv. Mater. 2013, 25, 6158
    (b) Grozema, F. C.; Siebbeles, L. D. A. In Charge and Exciton Transport through Molecular Wires; Siebbeles, L. D. A.; Grozema, F. C., Eds.; Wiley-VCH; Weinheim, Germany, 2011; Chapter 9.
  7. 7
    Hoffmann, R. Acc. Chem. Res. 1971, 4, 1
  8. 8
    Batra, A.; Kladnik, G.; Vázquez, H.; Meisner, J. S.; Floreano, L.; Nuckolls, C.; Cvetko, D.; Morgante, A.; Venkataraman, L. Nat. Commun. 2012, 3, 1086
  9. 9
    Sirringhaus, H.; Brown, P. J.; Friend, R. H.; Nielsen, M. M.; Bechgaard, K.; Langeveld-Voss, B. M. W.; Spiering, A. J. H.; Janssen, R. A. J.; Meljer, E. W.; Herwig, P.; de Leeuw, D. M. Nature 1999, 401, 685
  10. 10
    Yoshizawa, K. Acc. Chem. Res. 2012, 45, 1612
  11. 11
    (a) Marcus, R. A. Angew. Chem., Int. Ed. Engl. 1993, 32, 1111
    (b) Winkler, J. R.; Gray, H. B. J. Am. Chem. Soc. 2014, 136, 2930
  12. 12
    (a) Narayan, T. C.; Miyakai, T.; Seki, S.; Dincă, M. J. Am. Chem. Soc. 2012, 134, 12932
    (b) Saeki, A.; Koizumi, Y.; Aida, T.; Seki, S. Acc. Chem. Res. 2012, 45, 1193
  13. 13
    Gándara, F.; Uribe-Romo, F. J.; Britt, D. K.; Furukawa, H.; Lei, L.; Cheng, R.; Duan, X.; O’Keeffe, M.; Yaghi, O. M. Chem.—Eur. J. 2012, 18, 10595
  14. 14
    Kobayashi, Y.; Jacobs, B.; Allendorf, M. D.; Long, J. R. Chem. Mater. 2010, 22, 4120
  15. 15
    (a) Sproules, S.; Wieghardt, K. Coord. Chem. Rev. 2011, 255, 837
    (b) Eisenberg, R.; Gray, H. B. Inorg. Chem. 2011, 50, 9741
    (c) Cui, J.; Xu, Z. Chem. Commun. 2014, 50, 3986
    (d) Hmadeh, M.; Lu, Z.; Liu, Z.; Gándara, F.; Furukawa, H.; Wan, S.; Augustyn, V.; Chang, R.; Liao, L.; Zhou, F.; Perre, E.; Ozolins, V.; Suenaga, K.; Duan, X.; Dunn, B.; Yamamto, Y.; Terasaki, O.; Yaghi, O. M. Chem. Mater. 2012, 24, 3511
  16. 16
    Sheberla, D.; Sun, L.; Blood-Forythe, M. A.; Er, S.; Wade, C. R.; Brozek, C. K.; Aspuru-Guzik, A.; Dincă, M. J. Am. Chem. Soc. 2014, 136, 8859
  17. 17
    Hoffmann, R. Angew. Chem., Int. Ed. Engl. 1987, 26, 846
  18. 18
    (a) Pham, H. Q.; Mai, T.; Pham-Tran, N.-N. J. Phys. Chem. C 2014, 118, 4567
    (b) Musho, T.; Li, J.; Wu, N. Phys. Chem. Chem. Phys. 2014, 16, 23646
    (c) Yang, L.-M.; Fang, G.-Y.; Ma, J.; Ganz, E.; Han, S. S. Cryst. Growth Des. 2014, 14, 2532
  19. 19
    Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T. Chem. Rev. 2012, 112, 1105
  20. 20
    Butler, K. T.; Hendon, C. H.; Walsh, A. J. Am. Chem. Soc. 2014, 136, 2703
  21. 21
    Shannon, R. D. Acta Crystallogr. 1976, A32, 751
  22. 22
    Blessing, R. H.; Coppens, P. Solid State Commun. 1974, 15, 215
  23. 23
    Aumüller, A.; Erk, P.; Hünig, S.; von Schütz, J. U.; Werner, H.-P.; Wolf, H. C.; Klebe, G. Chem. Ber. 1991, 124, 1445
  24. 24
    Williams, R.; Lowe, M. C.; Samson, S.; Khanna, S. K.; Somoano, R. B. J. Chem. Phys. 1980, 72, 3781
  25. 25
    (a) Pop, F.; Auban-Senzier, P.; Frąckowiak, A.; Ptaszyński, K.; Olejniczak, I.; Wallis, J. D.; Canadell, E.; Avarvari, N. J. Am. Chem. Soc. 2013, 135, 17176
    (b) Augusto, D.; Marzotto, A. J. Mater. Chem. 1996, 6, 941
  26. 26
    Givaja, G.; Amo-Ocha, P.; Gómez-García, C. J.; Zamora, F. Chem. Soc. Rev. 2012, 41, 115

Cited By

ARTICLE SECTIONS
Jump To

This article is cited by 351 publications.

  1. Walter Orellana. Metal Substitutions in the MOF-5 Metal–Organic Framework: A Hybrid Density Functional Theory Study. The Journal of Physical Chemistry C 2024, Article ASAP.
  2. Rajat Saha, Kajal Gupta, Carlos J. Gómez García. Strategies to Improve Electrical Conductivity in Metal–Organic Frameworks: A Comparative Study. Crystal Growth & Design 2024, 24 (5) , 2235-2265. https://doi.org/10.1021/acs.cgd.3c01162
  3. Li-Jun Ma, Chen-Yue Luo, Ruo-Nan Wang, Yu-Chuan Tan, Jin-Le Hou, Qin-Yu Zhu. A Tetrathiafulvalene-based Bimetal–Organic Framework for a Hybrid Lithium-Ion Capacitor: The Role of Bimetallic Centers in Charge Storage and Stability. ACS Energy Letters 2023, 8 (10) , 4427-4437. https://doi.org/10.1021/acsenergylett.3c01677
  4. Katsuhiro Wakamatsu, Soichiro Furuno, Yoshihiko Yamaguchi, Ryo Matsushima, Takeshi Shimizu, Naoki Tanifuji, Hirofumi Yoshikawa. Electron Storage Performance of Metal–Organic Frameworks Based on Tetrathiafulvalene–Tetrabenzoate as Cathode Active Materials in Lithium- and Sodium-Ion Batteries. ACS Applied Energy Materials 2023, 6 (18) , 9124-9135. https://doi.org/10.1021/acsaem.2c03537
  5. Anupam Dey, Faruk Ahamed Rahimi, Parul Verma, Sneha Suresh, Tapas Kumar Maji. Charge-Transfer-Regulated Selective Solar Fuel Production in Aqueous Medium by a Tetrathiafulvalene-Based Redox-Active Metal–Organic Framework. ACS Applied Energy Materials 2023, 6 (18) , 9179-9187. https://doi.org/10.1021/acsaem.3c00244
  6. Myung-Ho Choi, Tae Hwan Moon, Yunseung Kuk, Kang Min Ok. Green and Red Photoluminescent Manganese Bromides with Aminomethylpyridine Isomers. Inorganic Chemistry 2023, 62 (30) , 12058-12066. https://doi.org/10.1021/acs.inorgchem.3c01573
  7. Xiaoyan Peng, Xuanhao Wu, Mingming Zhang, Hongye Yuan. Metal–Organic Framework Coated Devices for Gas Sensing. ACS Sensors 2023, 8 (7) , 2471-2492. https://doi.org/10.1021/acssensors.3c00362
  8. James Nyakuchena, Sarah Ostresh, Jens Neu, Daniel Streater, Claire Cody, Reagan Hooper, Xiaoyi Zhang, Benjamin Reinhart, Gary W. Brudvig, Jier Huang. Engineering Band Gap and Photoconduction in Semiconducting Metal Organic Frameworks: Metal Node Effect. The Journal of Physical Chemistry Letters 2023, 14 (26) , 5960-5965. https://doi.org/10.1021/acs.jpclett.3c00499
  9. Zhi-Ruo Zhang, Zhou-Hong Ren, Chen-Yue Luo, Li-Jun Ma, Jie Dai, Qin-Yu Zhu. Redox-Active Two-Dimensional Tetrathiafulvalene-Copper Metal–Organic Framework with Boosted Electrochemical Performances for Supercapatteries. Inorganic Chemistry 2023, 62 (11) , 4672-4679. https://doi.org/10.1021/acs.inorgchem.3c00140
  10. Zhou-Hong Ren, Zhi-Ruo Zhang, Li-Jun Ma, Chen-Yue Luo, Jie Dai, Qin-Yu Zhu. Oxidatively Doped Tetrathiafulvalene-Based Metal–Organic Frameworks for High Specific Energy of Supercapatteries. ACS Applied Materials & Interfaces 2023, 15 (5) , 6621-6630. https://doi.org/10.1021/acsami.2c17523
  11. Monica A. Gordillo, Paola A. Benavides, Kaikai Ma, Sourav Saha. Transforming an Insulating Metal–Organic Framework (MOF) into Semiconducting MOF/Gold Nanoparticle (AuNP) and MOF/Polymer/AuNP Composites to Gain Electrical Conductivity. ACS Applied Nano Materials 2022, 5 (10) , 13912-13920. https://doi.org/10.1021/acsanm.2c03643
  12. Zhi-Mei Yang, Yu-Yang Li, Xiao-Cheng Zhou, Yi-Fan Liu, Jia-Qian Li, Jian Su, Jing-Lin Zuo. Crystal Structure and Electrochemical and Charge Transfer Properties in Redox-Active Coordination Polymers Based on a Truncated Tetrathiafulvalene Linker. Crystal Growth & Design 2022, 22 (8) , 4941-4947. https://doi.org/10.1021/acs.cgd.2c00490
  13. Deepika Rani, Ajit Singh, Ritu Ladhi, Labhini Singla, Angshuman Roy Choudhury, Kuldeep Kumar Bhasin, Chandan Bera, Monika Singh. Nanochannel Mediated Electrical and Photoconductivity of Metal Organic Nanotubes. ACS Sustainable Chemistry & Engineering 2022, 10 (21) , 6981-6987. https://doi.org/10.1021/acssuschemeng.2c00026
  14. Tianyang Chen, Jin-Hu Dou, Luming Yang, Chenyue Sun, Julius J. Oppenheim, Jian Li, Mircea Dincă. Dimensionality Modulates Electrical Conductivity in Compositionally Constant One-, Two-, and Three-Dimensional Frameworks. Journal of the American Chemical Society 2022, 144 (12) , 5583-5593. https://doi.org/10.1021/jacs.2c00614
  15. Jiaxin Duan, Subhadip Goswami, Sameer Patwardhan, Joseph T. Hupp. Does the Mode of Metal–Organic Framework/Electrode Adhesion Determine Rates for Redox-Hopping-Based Charge Transport within Thin-Film Metal–Organic Frameworks?. The Journal of Physical Chemistry C 2022, 126 (9) , 4601-4611. https://doi.org/10.1021/acs.jpcc.1c09812
  16. Kent O. Kirlikovali, Subhadip Goswami, Mohammad Rasel Mian, Matthew D. Krzyaniak, Michael R. Wasielewski, Joseph T. Hupp, Peng Li, Omar K. Farha. An Electrically Conductive Tetrathiafulvalene-Based Hydrogen-Bonded Organic Framework. ACS Materials Letters 2022, 4 (1) , 128-135. https://doi.org/10.1021/acsmaterialslett.1c00628
  17. Ching-Kit Ho, Chi-Ying Vanessa Li, Liang Gao, Kwong-Yu Chan, Jiawei Chen, Jinyao Tang, Joseph F. Olorunyomi, Changzhong Liao, Tianshou Zhao. Protonated Emeraldine Polyaniline Threaded MIL-101 as a Conductive High Surface Area Nanoporous Electrode. ACS Energy Letters 2021, 6 (11) , 3769-3779. https://doi.org/10.1021/acsenergylett.1c01313
  18. Sungwon Yoon, A. Alec Talin, Vitalie Stavila, Austin M. Mroz, Thomas D. Bennett, Yuping He, David A. Keen, Christopher H. Hendon, Mark D. Allendorf, Monica C. So. From n- to p-Type Material: Effect of Metal Ion on Charge Transport in Metal–Organic Materials. ACS Applied Materials & Interfaces 2021, 13 (44) , 52055-52062. https://doi.org/10.1021/acsami.1c09130
  19. Alexandra I. Zvyagina, Alexey E. Aleksandrov, Alexander G. Martynov, Alexey R. Tameev, Alexander E. Baranchikov, Alexander A. Ezhov, Yulia G. Gorbunova, Maria A. Kalinina. Ion-Driven Self-Assembly of Lanthanide Bis-phthalocyaninates into Conductive Quasi-MOF Nanowires: an Approach toward Easily Recyclable Organic Electronics. Inorganic Chemistry 2021, 60 (20) , 15509-15518. https://doi.org/10.1021/acs.inorgchem.1c02147
  20. Yan Zhou, Shengtang Liu, Yuming Gu, Ge-Hua Wen, Jing Ma, Jing-Lin Zuo, Mengning Ding. In(III) Metal–Organic Framework Incorporated with Enzyme-Mimicking Nickel Bis(dithiolene) Ligand for Highly Selective CO2 Electroreduction. Journal of the American Chemical Society 2021, 143 (35) , 14071-14076. https://doi.org/10.1021/jacs.1c06797
  21. Kaushik Naskar, Arka Dey, Suvendu Maity, Partha Pratim Ray, Chittaranjan Sinha. Charge Transportation in Zn(II)/Cd(II)-Based 2D MOFs of 5-Nitro-isophthalate with Isonicotinic Hydrazide. Crystal Growth & Design 2021, 21 (9) , 4847-4856. https://doi.org/10.1021/acs.cgd.1c00018
  22. Saheli Ghosh, Mrinmay Das, Susanta Dinda, Goutam Pahari, Partha Pratim Ray, Debajyoti Ghoshal. Multifunctional Porous Coordination Polymers Synthesized by the Variation of Chain Length and Flexibility of Dicarboxylates and Size of the Metal Ions. Crystal Growth & Design 2021, 21 (9) , 4892-4903. https://doi.org/10.1021/acs.cgd.1c00297
  23. Egbert Zojer, Christian Winkler. Maximizing the Carrier Mobilities of Metal–Organic Frameworks Comprising Stacked Pentacene Units. The Journal of Physical Chemistry Letters 2021, 12 (29) , 7002-7009. https://doi.org/10.1021/acs.jpclett.1c01892
  24. Yun-Xiang Ma, Bin Gao, Yongxin Li, Wei Wei, Yanli Zhao, Jian-Fang Ma. Macrocycle-Based Metal–Organic Frameworks with NO2-Driven On/Off Switch of Conductivity. ACS Applied Materials & Interfaces 2021, 13 (23) , 27066-27073. https://doi.org/10.1021/acsami.1c05481
  25. Sanggyu Chong, Dongsung T. Park, Jihan Kim. Exploring Guest-Dependent Photoconductivity in a Donor-Containing Metal–Organic Framework. The Journal of Physical Chemistry C 2021, 125 (19) , 10198-10206. https://doi.org/10.1021/acs.jpcc.0c11190
  26. Dardan Ukaj, Hana Bunzen, Jan Berger, Gregor Kieslich, Roland A. Fischer. Charge-Transfer-Induced Electrical Conductivity in a Tetrathiafulvalene-Based Metal–Organic Framework. Chemistry of Materials 2021, 33 (7) , 2532-2542. https://doi.org/10.1021/acs.chemmater.0c04897
  27. Yan Zhou, Qin Hu, Fei Yu, Guang-Ying Ran, Hai-Ying Wang, Nicholas D. Shepherd, Deanna M. D’Alessandro, Mohamedally Kurmoo, Jing-Lin Zuo. A Metal–Organic Framework Based on a Nickel Bis(dithiolene) Connector: Synthesis, Crystal Structure, and Application as an Electrochemical Glucose Sensor. Journal of the American Chemical Society 2020, 142 (48) , 20313-20317. https://doi.org/10.1021/jacs.0c09009
  28. Bingqian Liu, V. Sara Thoi. Improving Charge Transfer in Metal–Organic Frameworks through Open Site Functionalization and Porosity Selection for Li–S Batteries. Chemistry of Materials 2020, 32 (19) , 8450-8459. https://doi.org/10.1021/acs.chemmater.0c02438
  29. Zi-You Zhang, Yan Su, Lin-Xi Shi, Shu-Fang Li, Florence Fabunmi, Shun-Li Li, Tao Yu, Zhong-Ning Chen, Zhi Su, Hong-Ke Liu. Coordination-Bond-Driven Dissolution–Recrystallization Structural Transformation with the Expansion of Cuprous Halide Aggregate. Inorganic Chemistry 2020, 59 (18) , 13326-13334. https://doi.org/10.1021/acs.inorgchem.0c01698
  30. Ashok Yadav, Dillip K. Panda, Shiyu Zhang, Wei Zhou, Sourav Saha. Electrically Conductive 3D Metal–Organic Framework Featuring π-Acidic Hexaazatriphenylene Hexacarbonitrile Ligands with Anion−π Interaction and Efficient Charge-Transport Capabilities. ACS Applied Materials & Interfaces 2020, 12 (36) , 40613-40619. https://doi.org/10.1021/acsami.0c12388
  31. Shuo Dou, Xiaogang Li, Xin Wang. Rational Design of Metal–Organic Frameworks towards Efficient Electrocatalysis. ACS Materials Letters 2020, 2 (9) , 1251-1267. https://doi.org/10.1021/acsmaterialslett.0c00229
  32. Jenna L. Mancuso, Austin M. Mroz, Khoa N. Le, Christopher H. Hendon. Electronic Structure Modeling of Metal–Organic Frameworks. Chemical Reviews 2020, 120 (16) , 8641-8715. https://doi.org/10.1021/acs.chemrev.0c00148
  33. Lilia S. Xie, Grigorii Skorupskii, Mircea Dincă. Electrically Conductive Metal–Organic Frameworks. Chemical Reviews 2020, 120 (16) , 8536-8580. https://doi.org/10.1021/acs.chemrev.9b00766
  34. Miao Jiang, Yi-Gang Weng, Zi-Yao Zhou, Chen-Yi Ge, Qin-Yu Zhu, Jie Dai. Cobalt Metal–Organic Frameworks Incorporating Redox-Active Tetrathiafulvalene Ligand: Structures and Effect of LLCT within the MOF on Photoelectrochemical Properties. Inorganic Chemistry 2020, 59 (15) , 10727-10735. https://doi.org/10.1021/acs.inorgchem.0c01185
  35. Jannik Benecke, Erik Svensson Grape, Alexander Fuß, Stephan Wöhlbrandt, Tobias A. Engesser, A. Ken Inge, Norbert Stock, Helge Reinsch. Polymorphous Indium Metal–Organic Frameworks Based on a Ferrocene Linker: Redox Activity, Porosity, and Structural Diversity. Inorganic Chemistry 2020, 59 (14) , 9969-9978. https://doi.org/10.1021/acs.inorgchem.0c01124
  36. Ramandeep Kaur, Sajal Sen, Mads Christian Larsen, Luciana Tavares, Jakob Kjelstrup-Hansen, Masatoshi Ishida, Anna Zieleniewska, Vincent M. Lynch, Steffen Bähring, Dirk M. Guldi, Jonathan L. Sessler, Atanu Jana. Semiconducting Supramolecular Organic Frameworks Assembled from a Near-Infrared Fluorescent Macrocyclic Probe and Fullerenes. Journal of the American Chemical Society 2020, 142 (26) , 11497-11505. https://doi.org/10.1021/jacs.0c03699
  37. Allison C. Hinckley, Jihye Park, Joseph Gomes, Evan Carlson, Zhenan Bao. Air-Stability and Carrier Type in Conductive M3(Hexaaminobenzene)2, (M = Co, Ni, Cu). Journal of the American Chemical Society 2020, 142 (25) , 11123-11130. https://doi.org/10.1021/jacs.0c03500
  38. Arturo Gamonal, Chen Sun, A. Lorenzo Mariano, Estefania Fernandez-Bartolome, Elena Guerrero-SanVicente, Bess Vlaisavljevich, Javier Castells-Gil, Carlos Marti-Gastaldo, Roberta Poloni, Reinhold Wannemacher, Juan Cabanillas-Gonzalez, Jose Sanchez Costa. Divergent Adsorption-Dependent Luminescence of Amino-Functionalized Lanthanide Metal–Organic Frameworks for Highly Sensitive NO2 Sensors. The Journal of Physical Chemistry Letters 2020, 11 (9) , 3362-3368. https://doi.org/10.1021/acs.jpclett.0c00457
  39. Grigorii Skorupskii, Mircea Dincă. Electrical Conductivity in a Porous, Cubic Rare-Earth Catecholate. Journal of the American Chemical Society 2020, 142 (15) , 6920-6924. https://doi.org/10.1021/jacs.0c01713
  40. Monica A. Gordillo, Paola A. Benavides, Dillip K. Panda, Sourav Saha. The Advent of Electrically Conducting Double-Helical Metal–Organic Frameworks Featuring Butterfly-Shaped Electron-Rich π-Extended Tetrathiafulvalene Ligands. ACS Applied Materials & Interfaces 2020, 12 (11) , 12955-12961. https://doi.org/10.1021/acsami.9b20234
  41. Ryuichi Murase, Christopher J. Commons, Timothy A. Hudson, Guy N. L. Jameson, Chris D. Ling, Keith S. Murray, Wasinee Phonsri, Richard Robson, Qingbo Xia, Brendan F. Abrahams, Deanna M. D’Alessandro. Effects of Mixed Valency in an Fe-Based Framework: Coexistence of Slow Magnetic Relaxation, Semiconductivity, and Redox Activity. Inorganic Chemistry 2020, 59 (6) , 3619-3630. https://doi.org/10.1021/acs.inorgchem.9b03172
  42. Feifan Wang, Jue Wang, Sebastian F. Maehrlein, Yingzi Ma, Fang Liu, X.-Y. Zhu. Broad-Band Near-Infrared Doublet Emission in a Tetrathiafulvalene-Based Metal–Organic Framework. The Journal of Physical Chemistry Letters 2020, 11 (3) , 762-766. https://doi.org/10.1021/acs.jpclett.9b03383
  43. Amandine Cadiau, Lilia S. Xie, Nikita Kolobov, Aleksander Shkurenko, Muhammad Qureshi, Mohamed R. Tchalala, Sarah S. Park, Anastasiya Bavykina, Mohamed Eddaoudi, Mircea Dincă, Christopher H. Hendon, Jorge Gascon. Toward New 2D Zirconium-Based Metal–Organic Frameworks: Synthesis, Structures, and Electronic Properties. Chemistry of Materials 2020, 32 (1) , 97-104. https://doi.org/10.1021/acs.chemmater.9b02462
  44. Andrew J. Clough, Nicholas M. Orchanian, Jonathan M. Skelton, Abbey J. Neer, Sebastian A. Howard, Courtney A. Downes, Louis F. J. Piper, Aron Walsh, Brent C. Melot, Smaranda C. Marinescu. Room Temperature Metallic Conductivity in a Metal–Organic Framework Induced by Oxidation. Journal of the American Chemical Society 2019, 141 (41) , 16323-16330. https://doi.org/10.1021/jacs.9b06898
  45. Amina Khatun, Dillip K. Panda, Nickolas Sayresmith, Michael G. Walter, Sourav Saha. Thiazolothiazole-Based Luminescent Metal–Organic Frameworks with Ligand-to-Ligand Energy Transfer and Hg2+-Sensing Capabilities. Inorganic Chemistry 2019, 58 (19) , 12707-12715. https://doi.org/10.1021/acs.inorgchem.9b01595
  46. Eun Ji Lee, Jinhee Bae, Kyung Min Choi, Nak Cheon Jeong. Exploiting Microwave Chemistry for Activation of Metal–Organic Frameworks. ACS Applied Materials & Interfaces 2019, 11 (38) , 35155-35161. https://doi.org/10.1021/acsami.9b12201
  47. Hui Li, Jianhong Chang, Shanshan Li, Xinyu Guan, Daohao Li, Cuiyan Li, Lingxue Tang, Ming Xue, Yushan Yan, Valentin Valtchev, Shilun Qiu, Qianrong Fang. Three-Dimensional Tetrathiafulvalene-Based Covalent Organic Frameworks for Tunable Electrical Conductivity. Journal of the American Chemical Society 2019, 141 (34) , 13324-13329. https://doi.org/10.1021/jacs.9b06908
  48. Hai-Ying Wang, Jian Su, Jian-Ping Ma, Fei Yu, Chanel F. Leong, Deanna M. D’Alessandro, Mohamedally Kurmoo, Jing-Lin Zuo. Concomitant Use of Tetrathiafulvalene and 7,7,8,8-Tetracyanoquinodimethane within the Skeletons of Metal–Organic Frameworks: Structures, Magnetism, and Electrochemistry. Inorganic Chemistry 2019, 58 (13) , 8657-8664. https://doi.org/10.1021/acs.inorgchem.9b01000
  49. Brian Pattengale, Jens Neu, Sarah Ostresh, Gongfang Hu, Jacob A. Spies, Ryotaro Okabe, Gary W. Brudvig, Charles A. Schmuttenmaer. Metal–Organic Framework Photoconductivity via Time-Resolved Terahertz Spectroscopy. Journal of the American Chemical Society 2019, 141 (25) , 9793-9797. https://doi.org/10.1021/jacs.9b04338
  50. Qin Yu, Jian Su, Jian-Ping Ma, Chanel F. Leong, Deanna M. D’Alessandro, Hai-Ying Wang, Mohamedally Kurmoo, Jing-Lin Zuo. Progressive Structure Designing and Property Tuning of Manganese(II) Coordination Polymers with the Tetra(4-pyridyl)-tetrathiafulvalene Ligand. Crystal Growth & Design 2019, 19 (5) , 3012-3018. https://doi.org/10.1021/acs.cgd.9b00239
  51. Liyuan Qu, Hiroaki Iguchi, Shinya Takaishi, Faiza Habib, Chanel F. Leong, Deanna M. D’Alessandro, Takefumi Yoshida, Hitoshi Abe, Eiji Nishibori, Masahiro Yamashita. Porous Molecular Conductor: Electrochemical Fabrication of Through-Space Conduction Pathways among Linear Coordination Polymers. Journal of the American Chemical Society 2019, 141 (17) , 6802-6806. https://doi.org/10.1021/jacs.9b01717
  52. Jian Su, Tian-Hao Hu, Ryuichi Murase, Hai-Ying Wang, Deanna M. D’Alessandro, Mohamedally Kurmoo, Jing-Lin Zuo. Redox Activities of Metal–Organic Frameworks Incorporating Rare-Earth Metal Chains and Tetrathiafulvalene Linkers. Inorganic Chemistry 2019, 58 (6) , 3698-3706. https://doi.org/10.1021/acs.inorgchem.8b03299
  53. Monica A. Gordillo, Dillip K. Panda, Sourav Saha. Efficient MOF-Sensitized Solar Cells Featuring Solvothermally Grown [100]-Oriented Pillared Porphyrin Framework-11 Films on ZnO/FTO Surfaces. ACS Applied Materials & Interfaces 2019, 11 (3) , 3196-3206. https://doi.org/10.1021/acsami.8b17807
  54. Manuel Souto, Jorge Romero, Joaquín Calbo, Iñigo J. Vitórica-Yrezábal, José L. Zafra, Juan Casado, Enrique Ortí, Aron Walsh, Guillermo Mínguez Espallargas. Breathing-Dependent Redox Activity in a Tetrathiafulvalene-Based Metal–Organic Framework. Journal of the American Chemical Society 2018, 140 (33) , 10562-10569. https://doi.org/10.1021/jacs.8b05890
  55. Renhao Dong, Tao Zhang, Xinliang Feng. Interface-Assisted Synthesis of 2D Materials: Trend and Challenges. Chemical Reviews 2018, 118 (13) , 6189-6235. https://doi.org/10.1021/acs.chemrev.8b00056
  56. Jesse G. Park, Michael L. Aubrey, Julia Oktawiec, Khetpakorn Chakarawet, Lucy E. Darago, Fernande Grandjean, Gary J. Long, Jeffrey R. Long. Charge Delocalization and Bulk Electronic Conductivity in the Mixed-Valence Metal–Organic Framework Fe(1,2,3-triazolate)2(BF4)x. Journal of the American Chemical Society 2018, 140 (27) , 8526-8534. https://doi.org/10.1021/jacs.8b03696
  57. Lilia S. Xie, Lei Sun, Ruomeng Wan, Sarah S. Park, Jordan A. DeGayner, Christopher H. Hendon, Mircea Dincă. Tunable Mixed-Valence Doping toward Record Electrical Conductivity in a Three-Dimensional Metal–Organic Framework. Journal of the American Chemical Society 2018, 140 (24) , 7411-7414. https://doi.org/10.1021/jacs.8b03604
  58. Ben A. Johnson, Asamanjoy Bhunia, Honghan Fei, Seth M. Cohen, and Sascha Ott . Development of a UiO-Type Thin Film Electrocatalysis Platform with Redox-Active Linkers. Journal of the American Chemical Society 2018, 140 (8) , 2985-2994. https://doi.org/10.1021/jacs.7b13077
  59. Michael E. Ziebel, Lucy E. Darago, and Jeffrey R. Long . Control of Electronic Structure and Conductivity in Two-Dimensional Metal–Semiquinoid Frameworks of Titanium, Vanadium, and Chromium. Journal of the American Chemical Society 2018, 140 (8) , 3040-3051. https://doi.org/10.1021/jacs.7b13510
  60. Liubov M. Lifshits, Matthias Zeller, Charles F. Campana, and Jeremy K. Klosterman . Metal–Organic Frameworks as Supramolecular Templates for Directing Aromatic Packing Motifs. Crystal Growth & Design 2017, 17 (10) , 5449-5457. https://doi.org/10.1021/acs.cgd.7b00954
  61. Zhiyong Guo, Dillip K. Panda, Monica A. Gordillo, Amina Khatun, Hui Wu, Wei Zhou, and Sourav Saha . Lowering Band Gap of an Electroactive Metal–Organic Framework via Complementary Guest Intercalation. ACS Applied Materials & Interfaces 2017, 9 (38) , 32413-32417. https://doi.org/10.1021/acsami.7b07292
  62. Jinhee Bae, Jae Sun Choi, Sunhyun Hwang, Won Seok Yun, Dahae Song, JaeDong Lee, and Nak Cheon Jeong . Multiple Coordination Exchanges for Room-Temperature Activation of Open-Metal Sites in Metal–Organic Frameworks. ACS Applied Materials & Interfaces 2017, 9 (29) , 24743-24752. https://doi.org/10.1021/acsami.7b07299
  63. Christopher H. Hendon, Adam J. Rieth, Maciej D. Korzyński, and Mircea Dincă . Grand Challenges and Future Opportunities for Metal–Organic Frameworks. ACS Central Science 2017, 3 (6) , 554-563. https://doi.org/10.1021/acscentsci.7b00197
  64. Kaushik Naskar, Arka Dey, Basudeb Dutta, Faruk Ahmed, Chandana Sen, Mohammad Hedayetullah Mir, Partha Pratim Roy, and Chittaranjan Sinha . Intercatenated Coordination Polymers (ICPs) of Carboxylato Bridged Zn(II)-Isoniazid and Their Electrical Conductivity. Crystal Growth & Design 2017, 17 (6) , 3267-3276. https://doi.org/10.1021/acs.cgd.7b00251
  65. Christopher H. Hendon, Keith T. Butler, Alex M. Ganose, Yuriy Román-Leshkov, David O. Scanlon, Geoffrey A. Ozin, and Aron Walsh . Electroactive Nanoporous Metal Oxides and Chalcogenides by Chemical Design. Chemistry of Materials 2017, 29 (8) , 3663-3670. https://doi.org/10.1021/acs.chemmater.7b00464
  66. Danny E. P. Vanpoucke . Linker Functionalization in MIL-47(V)-R Metal–Organic Frameworks: Understanding the Electronic Structure. The Journal of Physical Chemistry C 2017, 121 (14) , 8014-8022. https://doi.org/10.1021/acs.jpcc.7b01491
  67. Ekaterina A. Dolgopolova, Amy J. Brandt, Otega A. Ejegbavwo, Audrey S. Duke, Thathsara D. Maddumapatabandi, Randima P. Galhenage, Bryon W. Larson, Obadiah G. Reid, Salai C. Ammal, Andreas Heyden, Mvs Chandrashekhar, Vitalie Stavila, Donna A. Chen, and Natalia B. Shustova . Electronic Properties of Bimetallic Metal–Organic Frameworks (MOFs): Tailoring the Density of Electronic States through MOF Modularity. Journal of the American Chemical Society 2017, 139 (14) , 5201-5209. https://doi.org/10.1021/jacs.7b01125
  68. Airi Kawamura, Arin R. Greenwood, Alexander S. Filatov, Audrey T. Gallagher, Giulia Galli, and John S. Anderson . Incorporation of Pyrazine and Bipyridine Linkers with High-Spin Fe(II) and Co(II) in a Metal–Organic Framework. Inorganic Chemistry 2017, 56 (6) , 3349-3356. https://doi.org/10.1021/acs.inorgchem.6b02883
  69. Sarah S. Park, Christopher H. Hendon, Alistair J. Fielding, Aron Walsh, Michael O’Keeffe, and Mircea Dincă . The Organic Secondary Building Unit: Strong Intermolecular π Interactions Define Topology in MIT-25, a Mesoporous MOF with Proton-Replete Channels. Journal of the American Chemical Society 2017, 139 (10) , 3619-3622. https://doi.org/10.1021/jacs.6b13176
  70. Hayden A. Evans, John G. Labram, Sara R. Smock, Guang Wu, Michael L. Chabinyc, Ram Seshadri, and Fred Wudl . Mono- and Mixed-Valence Tetrathiafulvalene Semiconductors (TTF)BiI4 and (TTF)4BiI6 with 1D and 0D Bismuth-Iodide Networks. Inorganic Chemistry 2017, 56 (1) , 395-401. https://doi.org/10.1021/acs.inorgchem.6b02287
  71. Ting Chen, Peng Huo, Jin-Le Hou, Jing Xu, Qin-Yu Zhu, and Jie Dai . Confinement Effects of Metal–Organic Framework on the Formation of Charge-Transfer Tetrathiafulvalene Dimers. Inorganic Chemistry 2016, 55 (24) , 12758-12765. https://doi.org/10.1021/acs.inorgchem.6b02062
  72. Hoon Ji, Sunhyun Hwang, Keonmok Kim, CheolGi Kim, and Nak Cheon Jeong . Direct in Situ Conversion of Metals into Metal–Organic Frameworks: A Strategy for the Rapid Growth of MOF Films on Metal Substrates. ACS Applied Materials & Interfaces 2016, 8 (47) , 32414-32420. https://doi.org/10.1021/acsami.6b12755
  73. Lei Sun, Sarah S. Park, Dennis Sheberla, and Mircea Dincă . Measuring and Reporting Electrical Conductivity in Metal–Organic Frameworks: Cd2(TTFTB) as a Case Study. Journal of the American Chemical Society 2016, 138 (44) , 14772-14782. https://doi.org/10.1021/jacs.6b09345
  74. Li’an Guo, Chao Huang, Lu Liu, Zhichao Shao, Yue Tong, Hongwei Hou, and Yaoting Fan . Homocoupling Reaction of Aryl Halides Catalyzed by Metal Cations in Isostructural Coordination Polymers. Crystal Growth & Design 2016, 16 (9) , 4926-4933. https://doi.org/10.1021/acs.cgd.6b00494
  75. Benjamin Le Ouay, Mickael Boudot, Takashi Kitao, Takeshi Yanagida, Susumu Kitagawa, and Takashi Uemura . Nanostructuration of PEDOT in Porous Coordination Polymers for Tunable Porosity and Conductivity. Journal of the American Chemical Society 2016, 138 (32) , 10088-10091. https://doi.org/10.1021/jacs.6b05552
  76. Barun Dhara, Sanjog S. Nagarkar, Jitender Kumar, Vikash Kumar, Plawan Kumar Jha, Sujit K. Ghosh, Sunil Nair, and Nirmalya Ballav . Increase in Electrical Conductivity of MOF to Billion-Fold upon Filling the Nanochannels with Conducting Polymer. The Journal of Physical Chemistry Letters 2016, 7 (15) , 2945-2950. https://doi.org/10.1021/acs.jpclett.6b01236
  77. Christopher H. Hendon, Aron Walsh, and Mircea Dincă . Frontier Orbital Engineering of Metal–Organic Frameworks with Extended Inorganic Connectivity: Porous Alkaline-Earth Oxides. Inorganic Chemistry 2016, 55 (15) , 7265-7269. https://doi.org/10.1021/acs.inorgchem.6b00979
  78. Michael E. Foster, Karl Sohlberg, Catalin D. Spataru, and Mark D. Allendorf . Proposed Modification of the Graphene Analogue Ni3(HITP)2 To Yield a Semiconducting Material. The Journal of Physical Chemistry C 2016, 120 (27) , 15001-15008. https://doi.org/10.1021/acs.jpcc.6b05746
  79. Juncong Jiang, Yingbo Zhao, and Omar M. Yaghi . Covalent Chemistry beyond Molecules. Journal of the American Chemical Society 2016, 138 (10) , 3255-3265. https://doi.org/10.1021/jacs.5b10666
  80. Zhongyue Zhang, Hirofumi Yoshikawa, and Kunio Awaga . Discovery of a “Bipolar Charging” Mechanism in the Solid-State Electrochemical Process of a Flexible Metal–Organic Framework. Chemistry of Materials 2016, 28 (5) , 1298-1303. https://doi.org/10.1021/acs.chemmater.5b04075
  81. Lorenzo Maserati, Stephen M. Meckler, Changyi Li, and Brett A. Helms . Minute-MOFs: Ultrafast Synthesis of M2(dobpdc) Metal–Organic Frameworks from Divalent Metal Oxide Colloidal Nanocrystals. Chemistry of Materials 2016, 28 (5) , 1581-1588. https://doi.org/10.1021/acs.chemmater.6b00494
  82. Lucy E. Darago, Michael L. Aubrey, Chung Jui Yu, Miguel I. Gonzalez, and Jeffrey R. Long . Electronic Conductivity, Ferrimagnetic Ordering, and Reductive Insertion Mediated by Organic Mixed-Valence in a Ferric Semiquinoid Metal–Organic Framework. Journal of the American Chemical Society 2015, 137 (50) , 15703-15711. https://doi.org/10.1021/jacs.5b10385
  83. Michael G. Campbell, Sophie F. Liu, Timothy M. Swager, and Mircea Dincă . Chemiresistive Sensor Arrays from Conductive 2D Metal–Organic Frameworks. Journal of the American Chemical Society 2015, 137 (43) , 13780-13783. https://doi.org/10.1021/jacs.5b09600
  84. Sameer Patwardhan and George C. Schatz . Theoretical Investigation of Charge Transfer in Metal Organic Frameworks for Electrochemical Device Applications. The Journal of Physical Chemistry C 2015, 119 (43) , 24238-24247. https://doi.org/10.1021/acs.jpcc.5b06065
  85. Michael L. Aubrey and Jeffrey R. Long . A Dual−Ion Battery Cathode via Oxidative Insertion of Anions in a Metal–Organic Framework. Journal of the American Chemical Society 2015, 137 (42) , 13594-13602. https://doi.org/10.1021/jacs.5b08022
  86. Muhammad Usman, Shruti Mendiratta, Sainbileg Batjargal, Golam Haider, Michitoshi Hayashi, Narsinga Rao Gade, Jenq-Wei Chen, Yang-Fang Chen, and Kuang-Lieh Lu . Semiconductor Behavior of a Three-Dimensional Strontium-Based Metal–Organic Framework. ACS Applied Materials & Interfaces 2015, 7 (41) , 22767-22774. https://doi.org/10.1021/acsami.5b07228
  87. Deok Yeon Lee, Eun-Kyung Kim, Nabeen K. Shrestha, Danil W. Boukhvalov, Joong Kee Lee, and Sung-Hwan Han . Charge Transfer-Induced Molecular Hole Doping into Thin Film of Metal–Organic Frameworks. ACS Applied Materials & Interfaces 2015, 7 (33) , 18501-18507. https://doi.org/10.1021/acsami.5b04771
  88. Sanliang Ling and Ben Slater . Unusually Large Band Gap Changes in Breathing Metal–Organic Framework Materials. The Journal of Physical Chemistry C 2015, 119 (29) , 16667-16677. https://doi.org/10.1021/acs.jpcc.5b04050
  89. Jun He, Peng Cao, Chao Wu, Jiahong Huang, Jian Huang, Yonghe He, Lin Yu, Matthias Zeller, Allen D. Hunter, and Zhengtao Xu . Highly Polarizable Triiodide Anions (I3–) as Cross-Linkers for Coordination Polymers: Closing the Semiconductive Band Gap. Inorganic Chemistry 2015, 54 (13) , 6087-6089. https://doi.org/10.1021/acs.inorgchem.5b00958
  90. Lei Sun, Christopher H. Hendon, Mikael A. Minier, Aron Walsh, and Mircea Dincă . Million-Fold Electrical Conductivity Enhancement in Fe2(DEBDC) versus Mn2(DEBDC) (E = S, O). Journal of the American Chemical Society 2015, 137 (19) , 6164-6167. https://doi.org/10.1021/jacs.5b02897
  91. Christopher H. Hendon, Kate E. Wittering, Teng-Hao Chen, Watchareeya Kaveevivitchai, Ilya Popov, Keith T. Butler, Chick C. Wilson, Dyanne L. Cruickshank, Ognjen Š. Miljanić, and Aron Walsh . Absorbate-Induced Piezochromism in a Porous Molecular Crystal. Nano Letters 2015, 15 (3) , 2149-2154. https://doi.org/10.1021/acs.nanolett.5b00144
  92. Jingyi Zhou, Xiao Han, Tian Ke, Jasper M. van Baten, Zongbi Bao, Zhiguo Zhang, Rajamani Krishna, Qilong Ren, Qiwei Yang. Engineering pore limiting diameter of metal–organic frameworks for benchmark separation of mono- and di-branched hexane isomers. Chemical Engineering Journal 2024, 488 , 150833. https://doi.org/10.1016/j.cej.2024.150833
  93. Athira Krishnan, S. Rijith, V. S. Sumi, T. C. Bhagya. Metal–Organic Framework‐Based Electrocatalytic Materials. 2024, 165-193. https://doi.org/10.1002/9781119901310.ch7
  94. Rongmei Zhu, Limei Liu, Guangxun Zhang, Yi Zhang, Yuxuan Jiang, Huan Pang. Advances in electrochemistry of intrinsic conductive metal-organic frameworks and their composites: Mechanisms, synthesis and applications. Nano Energy 2024, 122 , 109333. https://doi.org/10.1016/j.nanoen.2024.109333
  95. Mengjia Zhou, Yanzhou Li, Gang Xu. Advances in microporous framework materials as chemiresistive gas sensors. TrAC Trends in Analytical Chemistry 2024, 119 , 117679. https://doi.org/10.1016/j.trac.2024.117679
  96. Xue Zhang, Xuelei Tian, Na Wu, Shanyu Zhao, Yutian Qin, Fei Pan, Shengying Yue, Xinyu Ma, Jing Qiao, Wei Xu, Wei Liu, Jiurong Liu, Meiting Zhao, Kostya (Ken) Ostrikov, Zhihui Zeng. Metal-organic frameworks with fine-tuned interlayer spacing for microwave absorption. Science Advances 2024, 10 (11) https://doi.org/10.1126/sciadv.adl6498
  97. Mustafa Farajzadeh, Fatemeh Rahnemaye Rahsepar. A Review of the Recent Advances in Development of Noble Metal‐Free Materials as Electrocatalysts for Hydrogen and Oxygen Evolution Reactions. ChemElectroChem 2024, 11 (6) https://doi.org/10.1002/celc.202300516
  98. Nicolas Zigon, Federica Solano, Pascale Auban-Senzier, Stéphane Grolleau, Thomas Devic, Pavel N. Zolotarev, Davide M. Proserpio, Bolesław Barszcz, Iwona Olejniczak, Narcis Avarvari. A redox active rod coordination polymer from tetrakis(4-carboxylic acid biphenyl)tetrathiafulvalene. Dalton Transactions 2024, 53 (10) , 4805-4813. https://doi.org/10.1039/D3DT04280D
  99. Akashdeep Sharma, Sunil Babu Eadi, Hemanth Noothalapati, Michal Otyepka, Hi-Deok Lee, Kolleboyina Jayaramulu. Porous materials as effective chemiresistive gas sensors. Chemical Society Reviews 2024, 53 (5) , 2530-2577. https://doi.org/10.1039/D2CS00761D
  100. Pan Duan, Wenlei Dai, Zixuan Wang, Ming Chen, Liang Niu, Taizheng Wu, Liang Zeng, Guang Feng. Conductive MOFs: Synthesis and Applications in Supercapacitors and Batteries. Batteries & Supercaps 2024, 7 (3) https://doi.org/10.1002/batt.202300536
Load more citations
  • Abstract

    Figure 1

    Figure 1. (a) Calculated band structure and projected density of states of Zn2(TTFTB). The work function, ϕ, and absolute energy scale are aligned to vacuum according to ref 20. The coordinates of the reciprocal space points are Γ = (0, 0, 0) and A = (0, 0, 1/2). Corresponding pictorial representation of the valence band orbitals in Zn2(TTFTB) (b) and one of the TTF cores (c). Zn atoms and their coordination sphere are represented by black polyhedra. Gold, red, black, and white spheres represent S, O, C, and H atoms, respectively.

    Figure 2

    Figure 2. Helical TTF stack with a depiction of the shortest intermolecular S···S contacts (dashed red line): (a) view along the ab plane; (b) view down the c axis. Yellow and gray spheres represent S and C atoms, respectively. Phenyl rings and metal atoms were omitted for clarity.

    Figure 3

    Figure 3. Histograms with the distribution of single crystal electrical conductivities for Cd2(TTFTB), Mn2(TTFTB), Zn2(TTFTB), and Co2(TTFTB).

    Figure 4

    Figure 4. Correlation between S···S distance and electrical conductivity in M2(TTFTB).

  • References

    ARTICLE SECTIONS
    Jump To

    This article references 26 other publications.

    1. 1
      (a) Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. Science 2013, 341, 1230444
      (b) He, Y.; Zhou, W.; Qian, G.; Chen, B. Chem. Soc. Rev. 2014, 43, 5657
      (c) Sumida, K.; Rogow, D. L.; Mason, J. A.; Mcdonald, T. M.; Bloch, E. D.; Herm, Z. R.; Bae, T.-H.; Long, J. R. Chem. Rev. 2012, 112, 724
      (d) Suh, M. P.; Park, H. J.; Prasad, T. K.; Lim, D.-W. Chem. Rev. 2012, 112, 782
      (e) Wu, H.; Gong, Q.; Olson, D. H.; Li, J. Chem. Rev. 2012, 112, 836
      (f) Li, J.-R.; Sculley, J.; Zhou, H.-C. Chem. Rev. 2012, 112, 869
      (g) Murray, L. J.; Dincă, M.; Long, J. R. Chem. Soc. Rev. 2009, 38, 1294
    2. 2
      (a) Jin, S.; Son, H.-J.; Farha, O. K.; Wiederrecht, G. P.; Hupp, J. T. J. Am. Chem. Soc. 2013, 135, 955
      (b) Coronado, E.; Espallargas, G. M. Chem. Soc. Rev. 2013, 42, 1525
      (c) Ameloot, R.; Aubrey, M.; Wiers, B. M.; Gómora-Figueroa, A. P.; Patel, S. N.; Balsara, N. P.; Long, J. R. Chem.—Eur. J. 2013, 19, 5533
      (d) Bag, S.; Gaudette, A. F.; Bussell, M. E.; Kanatzidis, M. G. Nat. Chem. 2009, 1, 217
      (e) Zheng, N.; Bu, X.; Feng, P. Nature 2003, 426, 428
      (f) Dechambenoit, P.; Long, J. R. Chem. Soc. Rev. 2011, 40, 3249
    3. 3
      (a) Stavila, V.; Talin, A. A.; Allendorf, M. D. Chem. Soc. Rev. 2014, 43, 5994
      (b) Allendorf, M. D.; Schwartzberg, A.; Stavila, V.; Talin, A. A. Chem.—Eur. J. 2011, 17, 11372
    4. 4
      (a) Avendano, C.; Zhang, Z.; Ota, A.; Zhao, H.; Dunbar, K. R. Angew. Chem., Int. Ed. 2011, 50, 6543
      (b) Cui, J.; Xu, Z. Chem. Commun. 2014, 50, 3986
      (c) Hmadeh, M.; Lu, Z.; Liu, Z.; Gándara, F.; Furukawa, H.; Wan, S.; Augustyn, V.; Chang, R.; Liao, L.; Zhou, F.; Perre, E.; Ozolins, V.; Suenaga, K.; Duan, X.; Dunn, B.; Yamamto, Y.; Terasaki, O.; Yaghi, O. M. Chem. Mater. 2012, 24, 3511
      (d) Takaishi, S.; Hosoda, M.; Kajiwara, T.; Miyasaka, H.; Yamashita, M.; Nakanishi, Y.; Kitagawa, Y.; Yamaguchi, K.; Kobayashi, A.; Kitagawa, H. Inorg. Chem. 2009, 48, 9048
      (e) Kambe, T.; Sakamoto, R.; Hoshiko, K.; Takada, K.; Miyachi, M.; Ryu, J.-H.; Sasaki, S.; Kim, J.; Nakazato, K.; Takata, M.; Nishihara, H. J. Am. Chem. Soc. 2013, 135, 2462
      (f) Sun, L.; Miyakai, T.; Seki, S.; Dincă, M. J. Am. Chem. Soc. 2013, 135, 8185
    5. 5
      (a) Wiers, B. M.; Foo, M.-L.; Balsara, N. P.; Long, J. R. J. Am. Chem. Soc. 2011, 133, 14522
      (b) Talin, A. A.; Centrone, A.; Ford, A. C.; Foster, M. E.; Stavila, V.; Haney, P.; Kinney, R. A.; Szalai, V.; Gabaly, F. E.; Yoon, H. P.; Léonard, F.; Allendorf, M. D. Science 2014, 343, 66
    6. 6
      (a) Dong, H.; Fu, X.; Liu, J.; Wang, Z.; Hu, W. Adv. Mater. 2013, 25, 6158
      (b) Grozema, F. C.; Siebbeles, L. D. A. In Charge and Exciton Transport through Molecular Wires; Siebbeles, L. D. A.; Grozema, F. C., Eds.; Wiley-VCH; Weinheim, Germany, 2011; Chapter 9.
    7. 7
      Hoffmann, R. Acc. Chem. Res. 1971, 4, 1
    8. 8
      Batra, A.; Kladnik, G.; Vázquez, H.; Meisner, J. S.; Floreano, L.; Nuckolls, C.; Cvetko, D.; Morgante, A.; Venkataraman, L. Nat. Commun. 2012, 3, 1086
    9. 9
      Sirringhaus, H.; Brown, P. J.; Friend, R. H.; Nielsen, M. M.; Bechgaard, K.; Langeveld-Voss, B. M. W.; Spiering, A. J. H.; Janssen, R. A. J.; Meljer, E. W.; Herwig, P.; de Leeuw, D. M. Nature 1999, 401, 685
    10. 10
      Yoshizawa, K. Acc. Chem. Res. 2012, 45, 1612
    11. 11
      (a) Marcus, R. A. Angew. Chem., Int. Ed. Engl. 1993, 32, 1111
      (b) Winkler, J. R.; Gray, H. B. J. Am. Chem. Soc. 2014, 136, 2930
    12. 12
      (a) Narayan, T. C.; Miyakai, T.; Seki, S.; Dincă, M. J. Am. Chem. Soc. 2012, 134, 12932
      (b) Saeki, A.; Koizumi, Y.; Aida, T.; Seki, S. Acc. Chem. Res. 2012, 45, 1193
    13. 13
      Gándara, F.; Uribe-Romo, F. J.; Britt, D. K.; Furukawa, H.; Lei, L.; Cheng, R.; Duan, X.; O’Keeffe, M.; Yaghi, O. M. Chem.—Eur. J. 2012, 18, 10595
    14. 14
      Kobayashi, Y.; Jacobs, B.; Allendorf, M. D.; Long, J. R. Chem. Mater. 2010, 22, 4120
    15. 15
      (a) Sproules, S.; Wieghardt, K. Coord. Chem. Rev. 2011, 255, 837
      (b) Eisenberg, R.; Gray, H. B. Inorg. Chem. 2011, 50, 9741
      (c) Cui, J.; Xu, Z. Chem. Commun. 2014, 50, 3986
      (d) Hmadeh, M.; Lu, Z.; Liu, Z.; Gándara, F.; Furukawa, H.; Wan, S.; Augustyn, V.; Chang, R.; Liao, L.; Zhou, F.; Perre, E.; Ozolins, V.; Suenaga, K.; Duan, X.; Dunn, B.; Yamamto, Y.; Terasaki, O.; Yaghi, O. M. Chem. Mater. 2012, 24, 3511
    16. 16
      Sheberla, D.; Sun, L.; Blood-Forythe, M. A.; Er, S.; Wade, C. R.; Brozek, C. K.; Aspuru-Guzik, A.; Dincă, M. J. Am. Chem. Soc. 2014, 136, 8859
    17. 17
      Hoffmann, R. Angew. Chem., Int. Ed. Engl. 1987, 26, 846
    18. 18
      (a) Pham, H. Q.; Mai, T.; Pham-Tran, N.-N. J. Phys. Chem. C 2014, 118, 4567
      (b) Musho, T.; Li, J.; Wu, N. Phys. Chem. Chem. Phys. 2014, 16, 23646
      (c) Yang, L.-M.; Fang, G.-Y.; Ma, J.; Ganz, E.; Han, S. S. Cryst. Growth Des. 2014, 14, 2532
    19. 19
      Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T. Chem. Rev. 2012, 112, 1105
    20. 20
      Butler, K. T.; Hendon, C. H.; Walsh, A. J. Am. Chem. Soc. 2014, 136, 2703
    21. 21
      Shannon, R. D. Acta Crystallogr. 1976, A32, 751
    22. 22
      Blessing, R. H.; Coppens, P. Solid State Commun. 1974, 15, 215
    23. 23
      Aumüller, A.; Erk, P.; Hünig, S.; von Schütz, J. U.; Werner, H.-P.; Wolf, H. C.; Klebe, G. Chem. Ber. 1991, 124, 1445
    24. 24
      Williams, R.; Lowe, M. C.; Samson, S.; Khanna, S. K.; Somoano, R. B. J. Chem. Phys. 1980, 72, 3781
    25. 25
      (a) Pop, F.; Auban-Senzier, P.; Frąckowiak, A.; Ptaszyński, K.; Olejniczak, I.; Wallis, J. D.; Canadell, E.; Avarvari, N. J. Am. Chem. Soc. 2013, 135, 17176
      (b) Augusto, D.; Marzotto, A. J. Mater. Chem. 1996, 6, 941
    26. 26
      Givaja, G.; Amo-Ocha, P.; Gómez-García, C. J.; Zamora, F. Chem. Soc. Rev. 2012, 41, 115
  • Supporting Information

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Detailed experimental procedures and computational details, X-ray crystal data (PXRD and single crystal), N2 adsorption isotherms, conductivity measurements, and TGAs. This material is available free of charge via the Internet at http://pubs.acs.org.


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect