ACS Publications. Most Trusted. Most Cited. Most Read
Enhanced Photovoltaic Performance of CH3NH3PbI3 Perovskite Solar Cells through Interfacial Engineering Using Self-Assembling Monolayer
My Activity

Figure 1Loading Img
    Article

    Enhanced Photovoltaic Performance of CH3NH3PbI3 Perovskite Solar Cells through Interfacial Engineering Using Self-Assembling Monolayer
    Click to copy article linkArticle link copied!

    View Author Information
    State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2015, 137, 7, 2674–2679
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja512518r
    Published February 4, 2015
    Copyright © 2015 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Morphology control is critical to achieve high efficiency CH3NH3PbI3 perovskite solar cells (PSC). The surface properties of the substrates on which crystalline perovskite thin films form are expected to affect greatly the crystallization and, thus, the resulting morphology. However, this topic is seldom examined in PSC. Here we developed a facile but efficient method of modifying the ZnO-coated substrates with 3-aminopropanioc acid (C3-SAM) to direct the crystalline evolution and achieve the optimal morphology of CH3NH3PbI3 perovskite film. With incorporation of the C3-SAM, highly crystalline CH3NH3PbI3 films were formed with reduced pin-holes and trap states density. In addition, the work function of the cathode was better aligned with the conduction band minimum of perovskite for efficient charge extraction and electronic coupling. As a result, the PSC performance remarkably increased from 9.81(±0.99)% (best 11.96%) to 14.25(±0.61)% (best 15.67%). We stress the importance of morphology control through substrate surface modification to obtain the optimal morphology and device performance of PSC, which should generate an impact on developing highly efficient PSC and future commercialization.

    Copyright © 2015 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Figure S1 showing the EQE spectra of perovskite solar cells with or without C3-SAM modification. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 622 publications.

    1. Wanhai Wang, Xiaofeng Li, Liang Gao, Gaoqi Liu, Li Yang, Wei Zhou, Jianfei Hu, Yinhu Gao, Yuliang Che, Zhijun Ning, Jinbao Zhang, Weihua Tang. Thermal Cross-Linking Hole-Transport Self-Assembled Monolayers for Perovskite Solar Cells. ACS Energy Letters 2025, 10 (5) , 2250-2258. https://doi.org/10.1021/acsenergylett.5c00457
    2. Xiankan Zeng, Qiming Yin, Lunyao Pan, Yongjian Chen, Chenglong Li, Maolin Mu, Qungui Wang, Wen Li, Weiqing Yang. Hole Delayed-Release Effect of Inorganic Interfacial Dipole Layer on Charge Balance for Boosting CsCu2I3 Light-Emitting Diodes. ACS Nano 2025, 19 (12) , 11878-11890. https://doi.org/10.1021/acsnano.4c14429
    3. Kai-Ping Wang, Xue Dong, Ji-Zhe Yuan, Bo Wen, Jun He, Chuan-Jia Tong, Oleg V. Prezhdo. Self-Passivation at the SnO2/Perovskite Interface. ACS Energy Letters 2025, 10 (3) , 1466-1473. https://doi.org/10.1021/acsenergylett.5c00521
    4. Bing’e Li, Jiangping Xing, Valeriya Budnik, Chuangping Liu, Qinghua Cao, Fobao Xie, Xiaoli Zhang, Hui Liu, Andrei Stsiapanau, Xiao Wei Sun. Micromolecule Postdeposition Process for Highly Efficient Inverted Perovskite Solar Cells. ACS Applied Materials & Interfaces 2025, 17 (9) , 14269-14277. https://doi.org/10.1021/acsami.4c22563
    5. Juan Zhu, Jinfeng Xia, Yaowen Li, Yongfang Li. Perspective on Flexible Organic Solar Cells for Self-Powered Wearable Applications. ACS Applied Materials & Interfaces 2025, 17 (4) , 5595-5608. https://doi.org/10.1021/acsami.4c12238
    6. Chengjun Fang, Shiqi Shan, Jiajun Wang, Tie Zhang, Yingwu Tao, Zhichuan Wang, Wansheng Zong, Hongzheng Chen, Lijian Zuo. Unlocking the Role of the Bifacial Dipole of the Interlayer for High-Performance Perovskite Photovoltaics. ACS Energy Letters 2025, 10 (1) , 78-84. https://doi.org/10.1021/acsenergylett.4c02836
    7. Ya-Shuan Wu, Wei-Cheng Chen, Yi-Sa Lin, Cheng-Liang Liu, Yan-Cheng Lin, Wen-Chang Chen. Revealing the Effect of Crystalline Self-Assembled Monolayer in Biomimetic Photosynapse with Ultraviolet Light Protection Capability. ACS Applied Materials & Interfaces 2024, 16 (50) , 69645-69659. https://doi.org/10.1021/acsami.4c14221
    8. Luca Gregori, Daniele Meggiolaro, Filippo De Angelis. Quantifying the Effect of Interfacial Dipoles on the Energy Level Alignment of Metal-Halide Perovskites. ACS Energy Letters 2024, 9 (11) , 5329-5333. https://doi.org/10.1021/acsenergylett.4c01876
    9. Fraser J. Angus, Wai Kin Yiu, Hongbo Mo, Tik Lun Leung, Muhammad Umair Ali, Yin Li, Jingbo Wang, Anita. W. Y. Ho-Baillie, Graeme Cooke, Aleksandra B. Djurišić, Pablo Docampo. Understanding the Impact of SAM Fermi Levels on High Efficiency p-i-n Perovskite Solar Cells. The Journal of Physical Chemistry Letters 2024, 15 (42) , 10686-10695. https://doi.org/10.1021/acs.jpclett.4c02345
    10. Drajad S. Utomo, Lauryna M. Svirskaite, Adi Prasetio, Vida Malinauskiene, Pia Dally, Erkan Aydin, Artem Musiienko, Vytautas Getautis, Tadas Malinauskas, Randi Azmi, Stefaan De Wolf. Nonfullerene Self-Assembled Monolayers As Electron-Selective Contacts for n-i-p Perovskite Solar Cells. ACS Energy Letters 2024, 9 (4) , 1682-1692. https://doi.org/10.1021/acsenergylett.4c00306
    11. Mingliang Li, Ming Liu, Feng Qi, Francis R. Lin, Alex K.-Y. Jen. Self-Assembled Monolayers for Interfacial Engineering in Solution-Processed Thin-Film Electronic Devices: Design, Fabrication, and Applications. Chemical Reviews 2024, 124 (5) , 2138-2204. https://doi.org/10.1021/acs.chemrev.3c00396
    12. Huimin Pang, Mingxuan Guo, Xingtong Chen, Xueqing Xia, Xiaojuan Sun, Wenlin Xia, Hengfei Shi, Yu Chen, Song Chen. Perovskite Solar Cells with an SbX3 (X = Cl, I) Interface Dipole Layer. ACS Materials Letters 2023, 5 (7) , 1962-1968. https://doi.org/10.1021/acsmaterialslett.3c00241
    13. Dan Zhang, Xiang Zhang, Tonghui Guo, Junjun Jin, Junjie Zou, Zhenkun Zhu, Yuan Zhou, Qiang Cao, Jing Zhang, Zhiwei Ren, Qidong Tai. Regulating the Interplay at the Buried Interface for Efficient and Stable Carbon-Based CsPbI2Br Perovskite Solar Cells. ACS Applied Materials & Interfaces 2023, 15 (8) , 10897-10906. https://doi.org/10.1021/acsami.2c21792
    14. Arkita Chakrabarti, Benjamin M. Lefler, Aaron T. Fafarman. Scaffold-Enforced Nanoscale Crystalline Order Supersedes Interfacial Interactions in Driving CsPbI3 Perovskite Phase Stability. The Journal of Physical Chemistry C 2022, 126 (51) , 21708-21715. https://doi.org/10.1021/acs.jpcc.2c05794
    15. Seher Güz, Merve Buldu-Akturk, Hasan Göçmez, Emre Erdem. All-in-One Electric Double Layer Supercapacitors Based on CH3NH3PbI3 Perovskite Electrodes. ACS Omega 2022, 7 (50) , 47306-47316. https://doi.org/10.1021/acsomega.2c06664
    16. Periyamuthu Ramar, Venkatraman Raghavendra, Pachaiyappan Murugan, Debasis Samanta. Immobilization of Polymers to Surfaces by Click Reaction for Photocatalysis with Recyclability. Langmuir 2022, 38 (44) , 13344-13357. https://doi.org/10.1021/acs.langmuir.2c00809
    17. Muthukumar Venu Rajendran, Saraswathi Ganesan, Vidya Sudhakaran Menon, Rohith Kumar Raman, Ananthan Alagumalai, Sangeetha Ashok Kumar, Ananthanarayanan Krishnamoorthy. Manganese Dopant-Induced Isoelectric Point Tuning of ZnO Electron Selective Layer Enable Improved Interface Stability in Cesium–Formamidinium-Based Planar Perovskite Solar Cells. ACS Applied Energy Materials 2022, 5 (6) , 6671-6686. https://doi.org/10.1021/acsaem.2c00170
    18. Jiahui Bao, Peng Wang, Weihao Zhang, Benyi Li, Xiaoping Wu, Lingbo Xu, Ping Lin, Haiyan He, Xuegong Yu, Can Cui. Multifunctional Thiophene-Based Interfacial Passivating Layer for High-Performance Perovskite Solar Cells. ACS Applied Energy Materials 2022, 5 (6) , 6823-6832. https://doi.org/10.1021/acsaem.2c00435
    19. Xiaomin Liu, Yuetian Chen, Yanfeng Miao, Ning Wei, Haoran Chen, Zhixiao Qin, Menglei Feng, Yao Wang, Xingtao Wang, Yixin Zhao. Stable Pure Iodide MA0.95Cs0.05PbI3 Perovskite toward Efficient 1.6 eV Bandgap Photovoltaics. The Journal of Physical Chemistry Letters 2022, 13 (23) , 5088-5093. https://doi.org/10.1021/acs.jpclett.2c01356
    20. Razieh Keshtmand, Mohammad-Reza Zamani-Meymian, Milad Fallah. Enhanced Performance of Planar Perovskite Solar Cells Using Thioacetamide-Treated SnS2 Electron Transporting Layer Based on Molecular Ink. Energy & Fuels 2022, 36 (11) , 5897-5909. https://doi.org/10.1021/acs.energyfuels.2c00423
    21. Guilin Bai, Yatao Zou, Ya Li, Lei Cai, Botong Chen, Jiaqing Zang, Zhiwei Hong, Jiangyu Chen, Zhewei Chen, Steffen Duhm, Tao Song, Baoquan Sun. Revealing a Zinc Oxide/Perovskite Luminescence Quenching Mechanism Targeting Low-Roll-off Light-Emitting Diodes. The Journal of Physical Chemistry Letters 2022, 13 (13) , 3121-3129. https://doi.org/10.1021/acs.jpclett.2c00564
    22. Hedi Kouki, Sylvain Pitié, Asma Torkhani, Faiza Mamèche, Philippe Decorse, Mahamadou Seydou, Fayçal Kouki, Philippe Lang. Tailor-Made Amino-Based Self-Assembled Monolayers Grafted on Electron Transport ZnO Layers: Perovskite Solar Cell Performance and Modified Interface Relationship. ACS Applied Energy Materials 2022, 5 (2) , 1635-1645. https://doi.org/10.1021/acsaem.1c03050
    23. Hang Zhong, Wenbo Li, Yin Huang, Duoling Cao, Congqiang Zhang, Huaxi Bao, Zhiguang Guo, Li Wan, Xu Zhang, Xiuhua Zhang, Yuebin Li, Xiaoming Ren, Xianbao Wang, Dominik Eder, Kai Wang, Shengzhong Frank Liu, Shimin Wang. All-Inorganic Perovskite Solar Cells with Tetrabutylammonium Acetate as the Buffer Layer between the SnO2 Electron Transport Film and CsPbI3. ACS Applied Materials & Interfaces 2022, 14 (4) , 5183-5193. https://doi.org/10.1021/acsami.1c18375
    24. Deyu Gao, Mengjia Li, Liqun Yang, Chenglin Wang, Xueni Shang, Xiaohui Ma, Cuncun Wu, Boxue Zhang, Hongwei Song, Cong Chen. 3-Ammonium Propionic Acid: A Cation Tailoring Crystal Structure of Hybrid Perovskite for Improving Photovoltaic Performance. ACS Applied Energy Materials 2021, 4 (12) , 14662-14670. https://doi.org/10.1021/acsaem.1c03296
    25. Xiang Yao, Huaxiu Geng, Yunzhi Gu, Hongbo Cui, Guijian Guan, Mingyong Han. Heterojunction Doping of Poly(triarylamine) with Cesium-Doped Vanadium Oxide via Interfacial Electron Transfer toward High-Performance Perovskite Solar Cells. The Journal of Physical Chemistry C 2021, 125 (42) , 23474-23482. https://doi.org/10.1021/acs.jpcc.1c06931
    26. Ran Yin, Ke-Xiang Wang, Shuang Cui, Bing-Bing Fan, Jing-Wen Liu, Yu-Kun Gao, Ting-Ting You, Peng-Gang Yin. Dual-Interface Modification with BMIMPF6 for High-Efficiency and Stable Carbon-Based CsPbI2Br Perovskite Solar Cells. ACS Applied Energy Materials 2021, 4 (9) , 9294-9303. https://doi.org/10.1021/acsaem.1c01521
    27. Seo Yeon Kim, Hungu Kang, Kiseok Chang, Hyo Jae Yoon. Case Studies on Structure–Property Relations in Perovskite Light-Emitting Diodes via Interfacial Engineering with Self-Assembled Monolayers. ACS Applied Materials & Interfaces 2021, 13 (26) , 31236-31247. https://doi.org/10.1021/acsami.1c03797
    28. José Santos, Joaquín Calbo, Rafael Sandoval-Torrientes, Inés García-Benito, Hiroyuki Kanda, Iwan Zimmermann, Juan Aragó, Mohammad Khaja Nazeeruddin, Enrique Ortí, Nazario Martín. Hole-Transporting Materials for Perovskite Solar Cells Employing an Anthradithiophene Core. ACS Applied Materials & Interfaces 2021, 13 (24) , 28214-28221. https://doi.org/10.1021/acsami.1c05890
    29. Jiwei Tang, Kai Ren, Yan Zhang, Wei Shen, Rongxing He, Ming Li. Regulating Interfacial Coupling and Electron Transport for Efficient Electron-Transporting Materials. The Journal of Physical Chemistry C 2021, 125 (18) , 10140-10150. https://doi.org/10.1021/acs.jpcc.1c02225
    30. Tangyue Xue, Gangshu Chen, Xiaotian Hu, Meng Su, Zengqi Huang, Xiangchuan Meng, Ze Jin, Jiale Ma, Yiqiang Zhang, Yanlin Song. Mechanically Robust and Flexible Perovskite Solar Cells via a Printable and Gelatinous Interface. ACS Applied Materials & Interfaces 2021, 13 (17) , 19959-19969. https://doi.org/10.1021/acsami.1c00813
    31. Yiqiu Xia, Chen Wang, Biao Dong, Ge Wang, Yi Chen, Roderick C. I. MacKenzie, Wei Dong, Shengping Ruan, Yizhan Liu, Shanpeng Wen. Molecular Doping Inhibits Charge Trapping in Low-Temperature-Processed ZnO toward Flexible Organic Solar Cells. ACS Applied Materials & Interfaces 2021, 13 (12) , 14423-14432. https://doi.org/10.1021/acsami.0c23087
    32. Jiawei Zheng, Jiangzhao Chen, Dan Ouyang, Zhanfeng Huang, Xinjun He, Jinwook Kim, Wallace C. H. Choy. Critical Role of Functional Groups in Defect Passivation and Energy Band Modulation in Efficient and Stable Inverted Perovskite Solar Cells Exceeding 21% Efficiency. ACS Applied Materials & Interfaces 2020, 12 (51) , 57165-57173. https://doi.org/10.1021/acsami.0c18862
    33. Duha S. Ahmed, Mustafa K. A. Mohammed, Sadeer M. Majeed. Green Synthesis of Eco-Friendly Graphene Quantum Dots for Highly Efficient Perovskite Solar Cells. ACS Applied Energy Materials 2020, 3 (11) , 10863-10871. https://doi.org/10.1021/acsaem.0c01896
    34. Qi Chen, Cheng Wang, Yaowen Li, Liwei Chen. Interfacial Dipole in Organic and Perovskite Solar Cells. Journal of the American Chemical Society 2020, 142 (43) , 18281-18292. https://doi.org/10.1021/jacs.0c07439
    35. Xiaomei Lian, Jiehuan Chen, Shiqi Shan, Gang Wu, Hongzheng Chen. Polymer Modification on the NiOx Hole Transport Layer Boosts Open-Circuit Voltage to 1.19 V for Perovskite Solar Cells. ACS Applied Materials & Interfaces 2020, 12 (41) , 46340-46347. https://doi.org/10.1021/acsami.0c11731
    36. Konstantina Gkini, Nikolaos Balis, Michael Papadakis, Apostolis Verykios, Maria-Christina Skoulikidou, Charalampos Drivas, Stella Kennou, Matthias Golomb, Aron Walsh, Athanassios G. Coutsolelos, Maria Vasilopoulou, Polycarpos Falaras. Manganese Porphyrin Interface Engineering in Perovskite Solar Cells. ACS Applied Energy Materials 2020, 3 (8) , 7353-7363. https://doi.org/10.1021/acsaem.0c00710
    37. Jiangzhao Chen, Nam-Gyu Park. Materials and Methods for Interface Engineering toward Stable and Efficient Perovskite Solar Cells. ACS Energy Letters 2020, 5 (8) , 2742-2786. https://doi.org/10.1021/acsenergylett.0c01240
    38. Deli Li, Lingfeng Chao, Changshun Chen, Xueqin Ran, Yue Wang, Tingting Niu, Shaoshen Lv, Hui Wu, Yingdong Xia, Chenxin Ran, Lin Song, Shi Chen, Yonghua Chen, Wei Huang. In Situ Interface Engineering for Highly Efficient Electron-Transport-Layer-Free Perovskite Solar Cells. Nano Letters 2020, 20 (8) , 5799-5806. https://doi.org/10.1021/acs.nanolett.0c01689
    39. Kyeong Su Kim, In Su Jin, Sang Hyun Park, Seung Ju Lim, Jae Woong Jung. Methylammonium Iodide-Mediated Controlled Crystal Growth of CsPbI2Br Films for Efficient and Stable All-Inorganic Perovskite Solar Cells. ACS Applied Materials & Interfaces 2020, 12 (32) , 36228-36236. https://doi.org/10.1021/acsami.0c11047
    40. Rui Xue, Xiaowen Zhou, Shuai Peng, Pengfei Xu, Siliang Wang, Chao Xu, Wei Zeng, Yi Xiong, Dong Liang. Architecturing Lattice-Matched Bismuthene–SnO2 Heterojunction for Effective Perovskite Solar Cells. ACS Sustainable Chemistry & Engineering 2020, 8 (29) , 10714-10725. https://doi.org/10.1021/acssuschemeng.0c01794
    41. Tian Zheng, Lisheng Fan, Hang Zhou, Yang Zhao, Bo Jin, Rufang Peng. Engineering of Electron Extraction and Defect Passivation via Anion-Doped Conductive Fullerene Derivatives as Interlayers for Efficient Invert Perovskite Solar Cells. ACS Applied Materials & Interfaces 2020, 12 (22) , 24747-24755. https://doi.org/10.1021/acsami.0c04315
    42. Yaokang Zhang, Sze-Wing Ng, Xi Lu, Zijian Zheng. Solution-Processed Transparent Electrodes for Emerging Thin-Film Solar Cells. Chemical Reviews 2020, 120 (4) , 2049-2122. https://doi.org/10.1021/acs.chemrev.9b00483
    43. Liang Kuai, Junnan Li, Yajuan Li, Yusheng Wang, Pandeng Li, Yuanshuai Qin, Tao Song, Yingguo Yang, Zhuoying Chen, Xingyu Gao, Baoquan Sun. Revealing Crystallization Dynamics and the Compositional Control Mechanism of 2D Perovskite Film Growth by In Situ Synchrotron-Based GIXRD. ACS Energy Letters 2020, 5 (1) , 8-16. https://doi.org/10.1021/acsenergylett.9b02366
    44. Tao Zhu, Jun Su, Frédéric Labat, Ilaria Ciofini, Thierry Pauporté. Interfacial Engineering through Chloride-Functionalized Self-Assembled Monolayers for High-Performance Perovskite Solar Cells. ACS Applied Materials & Interfaces 2020, 12 (1) , 744-752. https://doi.org/10.1021/acsami.9b18034
    45. Jingna Jia, Kena Fu, Shifeng Hou, Bin Zhang, Li Fu, Hsien-Yi Hsu, Guizheng Zou. Enhanced Charge Injection and Recombination of CsPbBr3 Perovskite Nanocrystals upon Internal Heterovalent Substitution. The Journal of Physical Chemistry C 2019, 123 (49) , 29916-29921. https://doi.org/10.1021/acs.jpcc.9b10449
    46. Hossein Taherianfard, Guan-Woo Kim, Firouzeh Ebadi, Tobias Abzieher, Kyoungwon Choi, Ulrich W. Paetzold, Bryce S. Richards, Abed Alrhman Eliwi, Fariba Tajabadi, Nima Taghavinia, Mahdi Malekshahi Byranvand. Perovskite/Hole Transport Layer Interface Improvement by Solvent Engineering of Spiro-OMeTAD Precursor Solution. ACS Applied Materials & Interfaces 2019, 11 (47) , 44802-44810. https://doi.org/10.1021/acsami.9b10828
    47. Haixia Liang, Yi-Chen Hu, Yiran Tao, Binghui Wu, Yiying Wu, Jing Cao. Existence of Ligands within Sol–Gel-Derived ZnO Films and Their Effect on Perovskite Solar Cells. ACS Applied Materials & Interfaces 2019, 11 (46) , 43116-43121. https://doi.org/10.1021/acsami.9b13278
    48. Tiantian Cao, Kang Chen, Qiaoyun Chen, Yi Zhou, Ning Chen, Yongfang Li. Fullerene Derivative-Modified SnO2 Electron Transport Layer for Highly Efficient Perovskite Solar Cells with Efficiency over 21%. ACS Applied Materials & Interfaces 2019, 11 (37) , 33825-33834. https://doi.org/10.1021/acsami.9b09238
    49. Ala’a O. El-Ballouli, Osman M. Bakr, Omar F. Mohammed. Compositional, Processing, and Interfacial Engineering of Nanocrystal- and Quantum-Dot-Based Perovskite Solar Cells. Chemistry of Materials 2019, 31 (17) , 6387-6411. https://doi.org/10.1021/acs.chemmater.9b01268
    50. Lianqi Tang, Jingjing Qiu, Qi Wei, Hao Gu, Bin Du, Haiyan Du, Wei Hui, Yingdong Xia, Yonghua Chen, Wei Huang. Enhanced Performance of Perovskite Light-Emitting Diodes via Diamine Interface Modification. ACS Applied Materials & Interfaces 2019, 11 (32) , 29132-29138. https://doi.org/10.1021/acsami.9b11866
    51. Yang Liu, Boa Jin, Hao Zhang, Yuping Zhang, Yonghyun Kim, Chen Wang, Shanpeng Wen, Bin Xu, Chan Im, Wenjing Tian. Efficiency of MAPbI3-Based Planar Solar Cell Analyzed by Its Thickness-Dependent Exciton Formation, Morphology, and Crystallinity. ACS Applied Materials & Interfaces 2019, 11 (16) , 14810-14820. https://doi.org/10.1021/acsami.9b01952
    52. Abhishek Thote, Il Jeon, Hao-Sheng Lin, Sergei Manzhos, Takafumi Nakagawa, Donguk Suh, Junho Hwang, Makoto Kashiwagi, Junichiro Shiomi, Shigeo Maruyama, Hirofumi Daiguji, Yutaka Matsuo. High-Working-Pressure Sputtering of ZnO for Stable and Efficient Perovskite Solar Cells. ACS Applied Electronic Materials 2019, 1 (3) , 389-396. https://doi.org/10.1021/acsaelm.8b00105
    53. P. O’Keeffe, D. Catone, A. Paladini, F. Toschi, S. Turchini, L. Avaldi, F. Martelli, A. Agresti, S. Pescetelli, A. E. Del Rio Castillo, F. Bonaccorso, A. Di Carlo. Graphene-Induced Improvements of Perovskite Solar Cell Stability: Effects on Hot-Carriers. Nano Letters 2019, 19 (2) , 684-691. https://doi.org/10.1021/acs.nanolett.8b03685
    54. Gopalraman Anantharaj, Narayanan Lakshminarasimhan. Interfacial Modification of Photoanode|Electrolyte Interface Using Oleic Acid Enhancing the Efficiency of Dye-Sensitized Solar Cells. ACS Omega 2018, 3 (12) , 18285-18294. https://doi.org/10.1021/acsomega.8b02648
    55. Nikolaos Balis, Alaa A. Zaky, Dorothea Perganti, Andreas Kaltzoglou, Lamprini Sygellou, Fotios Katsaros, Thomas Stergiopoulos, Athanassios G. Kontos, Polycarpos Falaras. Dye Sensitization of Titania Compact Layer for Efficient and Stable Perovskite Solar Cells. ACS Applied Energy Materials 2018, 1 (11) , 6161-6171. https://doi.org/10.1021/acsaem.8b01221
    56. Yutong He, Wenhui Wang, Limin Qi. HPbI3 as a Bifunctional Additive for Morphology Control and Grain Boundary Passivation toward Efficient Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces 2018, 10 (45) , 38985-38993. https://doi.org/10.1021/acsami.8b15513
    57. Randi Azmi, Un-Hak Lee, Febrian Tri Adhi Wibowo, Seung Hun Eom, Sung Cheol Yoon, Sung-Yeon Jang, In Hwan Jung. Performance Improvement in Low-Temperature-Processed Perovskite Solar Cells by Molecular Engineering of Porphyrin-Based Hole Transport Materials. ACS Applied Materials & Interfaces 2018, 10 (41) , 35404-35410. https://doi.org/10.1021/acsami.8b10170
    58. Chong Geng, Fangfang Li, Yuemei Fan, Lijing Zhang, Shuangshuang Shi, Zi-Hui Zhang, Yonghui Zhang, Shu Xu, Wengang Bi. Fabrication and Growth Mechanism of Uniform Suspended Perovskite Thin Films. Crystal Growth & Design 2018, 18 (10) , 5770-5779. https://doi.org/10.1021/acs.cgd.8b00149
    59. Meihui Hou, Haijuan Zhang, Ze Wang, Yingdong Xia, Yonghua Chen, Wei Huang. Enhancing Efficiency and Stability of Perovskite Solar Cells via a Self-Assembled Dopamine Interfacial Layer. ACS Applied Materials & Interfaces 2018, 10 (36) , 30607-30613. https://doi.org/10.1021/acsami.8b10332
    60. Hao Li, Jianfeng Lu, Tao Zhang, Yan Shen, Mingkui Wang. Cation-Assisted Restraint of a Wide Quantum Well and Interfacial Charge Accumulation in Two-Dimensional Perovskites. ACS Energy Letters 2018, 3 (8) , 1815-1823. https://doi.org/10.1021/acsenergylett.8b00683
    61. Cuiping Zhang, Zhipeng Li, Juan Liu, Yunchuan Xin, Zhipeng Shao, Guanglei Cui, Shuping Pang. MAPbCl3-Mediated Decomposition Process to Tune Cl/PbI2 Distribution in MAPbI3 Films. ACS Energy Letters 2018, 3 (8) , 1801-1807. https://doi.org/10.1021/acsenergylett.8b00837
    62. Matthew R. Alpert, J. Scott Niezgoda, Alexander Z. Chen, Benjamin J. Foley, Shelby Cuthriell, Lucy U. Yoon, Joshua J. Choi. Colloidal Nanocrystals as a Platform for Rapid Screening of Charge Trap Passivating Molecules for Metal Halide Perovskite Thin Films. Chemistry of Materials 2018, 30 (14) , 4515-4526. https://doi.org/10.1021/acs.chemmater.8b00414
    63. Nikolaos Balis, Apostolis Verykios, Anastasia Soultati, Vassilios Constantoudis, Michael Papadakis, Fotis Kournoutas, Charalampos Drivas, Maria-Christina Skoulikidou, Spyros Gardelis, Mihalis Fakis, Stella Kennou, Athanassios G. Kontos, Athanassios G. Coutsolelos, Polycarpos Falaras, Maria Vasilopoulou. Triazine-Substituted Zinc Porphyrin as an Electron Transport Interfacial Material for Efficiency Enhancement and Degradation Retardation in Planar Perovskite Solar Cells. ACS Applied Energy Materials 2018, 1 (7) , 3216-3229. https://doi.org/10.1021/acsaem.8b00447
    64. Randi Azmi, Sunbin Hwang, Wenping Yin, Tae-Wook Kim, Tae Kyu Ahn, Sung-Yeon Jang. High Efficiency Low-Temperature Processed Perovskite Solar Cells Integrated with Alkali Metal Doped ZnO Electron Transport Layers. ACS Energy Letters 2018, 3 (6) , 1241-1246. https://doi.org/10.1021/acsenergylett.8b00493
    65. Xin Li, Xingyue Zhao, Feng Hao, Xuewen Yin, Zhibo Yao, Yu Zhou, Heping Shen, Hong Lin. Bifacial Modified Charge Transport Materials for Highly Efficient and Stable Inverted Perovskite Solar Cells. ACS Applied Materials & Interfaces 2018, 10 (21) , 17861-17870. https://doi.org/10.1021/acsami.8b02035
    66. Ka Kan Wong, Azhar Fakharuddin, Philipp Ehrenreich, Thomas Deckert, Mojtaba Abdi-Jalebi, Richard H. Friend, Lukas Schmidt-Mende. Interface-Dependent Radiative and Nonradiative Recombination in Perovskite Solar Cells. The Journal of Physical Chemistry C 2018, 122 (20) , 10691-10698. https://doi.org/10.1021/acs.jpcc.8b00998
    67. UnJin Ryu, Seohyeon Jee, Joon-Suh Park, Il Ki Han, Ju Ho Lee, Minwoo Park, Kyung Min Choi. Nanocrystalline Titanium Metal–Organic Frameworks for Highly Efficient and Flexible Perovskite Solar Cells. ACS Nano 2018, 12 (5) , 4968-4975. https://doi.org/10.1021/acsnano.8b02079
    68. V. Leandri, W. Yang, J. M. Gardner, G. Boschloo, S. Ott. Rapid Microwave-Assisted Self-Assembly of a Carboxylic-Acid-Terminated Dye on a TiO2 Photoanode. ACS Applied Energy Materials 2018, 1 (1) , 202-210. https://doi.org/10.1021/acsaem.7b00088
    69. Xinwei Wang, Hong Liu, Feng Zhou, Jeremy Dahan, Xin Wang, Zhengping Li, and Wenzhong Shen . Temperature Gradient-Induced Instability of Perovskite via Ion Transport. ACS Applied Materials & Interfaces 2018, 10 (1) , 835-844. https://doi.org/10.1021/acsami.7b17798
    70. Zhaosheng Zhang, Run Long, Marina V. Tokina, and Oleg V. Prezhdo . Interplay between Localized and Free Charge Carriers Can Explain Hot Fluorescence in the CH3NH3PbBr3 Perovskite: Time-Domain Ab Initio Analysis. Journal of the American Chemical Society 2017, 139 (48) , 17327-17333. https://doi.org/10.1021/jacs.7b06401
    71. Chuanxiao Xiao, Changlei Wang, Weijun Ke, Brian P. Gorman, Jichun Ye, Chun-Sheng Jiang, Yanfa Yan, and Mowafak M. Al-Jassim . Junction Quality of SnO2-Based Perovskite Solar Cells Investigated by Nanometer-Scale Electrical Potential Profiling. ACS Applied Materials & Interfaces 2017, 9 (44) , 38373-38380. https://doi.org/10.1021/acsami.7b08582
    72. Hao Li, Leiming Tao, Feihong Huang, Qiang Sun, Xiaojuan Zhao, Junbo Han, Yan Shen, and Mingkui Wang . Enhancing Efficiency of Perovskite Solar Cells via Surface Passivation with Graphene Oxide Interlayer. ACS Applied Materials & Interfaces 2017, 9 (44) , 38967-38976. https://doi.org/10.1021/acsami.7b10773
    73. Weihai Zhang, Juan Xiong, Li Jiang, Jianying Wang, Tao Mei, Xianbao Wang, Haoshuang Gu, Walid A. Daoud, and Jinhua Li . Thermal Stability-Enhanced and High-Efficiency Planar Perovskite Solar Cells with Interface Passivation. ACS Applied Materials & Interfaces 2017, 9 (44) , 38467-38476. https://doi.org/10.1021/acsami.7b10994
    74. Soumyo Chatterjee, Uttiya Dasgupta, and Amlan J. Pal . Sequentially Deposited Antimony-Doped CH3NH3PbI3 Films in Inverted Planar Heterojunction Solar Cells with a High Open-Circuit Voltage. The Journal of Physical Chemistry C 2017, 121 (37) , 20177-20187. https://doi.org/10.1021/acs.jpcc.7b06963
    75. Xiaodong Li, Ying-Chiao Wang, Liping Zhu, Wenjun Zhang, Hai-Qiao Wang, and Junfeng Fang . Improving Efficiency and Reproducibility of Perovskite Solar Cells through Aggregation Control in Polyelectrolytes Hole Transport Layer. ACS Applied Materials & Interfaces 2017, 9 (37) , 31357-31361. https://doi.org/10.1021/acsami.7b11977
    76. Yu-han Zhao, Kai-cheng Zhang, Zhao-wei Wang, Peng Huang, Kai Zhu, Zhen-dong Li, Da-hua Li, Li-gang Yuan, Yi Zhou, and Bo Song . Comprehensive Study of Sol–Gel versus Hydrolysis–Condensation Methods To Prepare ZnO Films: Electron Transport Layers in Perovskite Solar Cells. ACS Applied Materials & Interfaces 2017, 9 (31) , 26234-26241. https://doi.org/10.1021/acsami.7b04833
    77. Yunlong Guo, Wataru Sato, Kazutaka Shoyama, Henry Halim, Yuki Itabashi, Rui Shang, and Eiichi Nakamura . Citric Acid Modulated Growth of Oriented Lead Perovskite Crystals for Efficient Solar Cells. Journal of the American Chemical Society 2017, 139 (28) , 9598-9604. https://doi.org/10.1021/jacs.7b03856
    78. Xufeng Ling, Jianyu Yuan, Dongyang Liu, Yongjie Wang, Yannan Zhang, Si Chen, Haihua Wu, Feng Jin, Fupeng Wu, Guozheng Shi, Xun Tang, Jiawei Zheng, Shengzhong (Frank) Liu, Zhike Liu, and Wanli Ma . Room-Temperature Processed Nb2O5 as the Electron-Transporting Layer for Efficient Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces 2017, 9 (27) , 23181-23188. https://doi.org/10.1021/acsami.7b05113
    79. Hao Li, Weina Shi, Wenchao Huang, En-Ping Yao, Junbo Han, Zhifan Chen, Shuangshuang Liu, Yan Shen, Mingkui Wang, and Yang Yang . Carbon Quantum Dots/TiOx Electron Transport Layer Boosts Efficiency of Planar Heterojunction Perovskite Solar Cells to 19%. Nano Letters 2017, 17 (4) , 2328-2335. https://doi.org/10.1021/acs.nanolett.6b05177
    80. Qianqian Lin, Wei Jiang, Shanshan Zhang, Ravi Chandra Raju Nagiri, Hui Jin, Paul L. Burn, and Paul Meredith . A Triarylamine-Based Anode Modifier for Efficient Organohalide Perovskite Solar Cells. ACS Applied Materials & Interfaces 2017, 9 (10) , 9096-9101. https://doi.org/10.1021/acsami.6b15147
    81. Guohua Dong, Debin Xia, Yulin Yang, Li Shenga, Tengling Ye, and Ruiqing Fan . Keggin-Type PMo11V as a P-type Dopant for Enhancing the Efficiency and Reproducibility of Perovskite Solar Cells. ACS Applied Materials & Interfaces 2017, 9 (3) , 2378-2386. https://doi.org/10.1021/acsami.6b12938
    82. Lijian Zuo, Qi Chen, Nicholas De Marco, Yao-Tsung Hsieh, Huajun Chen, Pengyu Sun, Sheng-Yung Chang, Hongxiang Zhao, Shiqi Dong, and Yang Yang . Tailoring the Interfacial Chemical Interaction for High-Efficiency Perovskite Solar Cells. Nano Letters 2017, 17 (1) , 269-275. https://doi.org/10.1021/acs.nanolett.6b04015
    83. Qiliang Wu, Weiran Zhou, Qing Liu, Pengcheng Zhou, Tao Chen, Yalin Lu, Qiquan Qiao, and Shangfeng Yang . Solution-Processable Ionic Liquid as an Independent or Modifying Electron Transport Layer for High-Efficiency Perovskite Solar Cells. ACS Applied Materials & Interfaces 2016, 8 (50) , 34464-34473. https://doi.org/10.1021/acsami.6b12683
    84. Lijian Zuo, Shiqi Dong, Nicholas De Marco, Yao-Tsung Hsieh, Sang-Hoon Bae, Pengyu Sun, and Yang Yang . Morphology Evolution of High Efficiency Perovskite Solar Cells via Vapor Induced Intermediate Phases. Journal of the American Chemical Society 2016, 138 (48) , 15710-15716. https://doi.org/10.1021/jacs.6b09656
    85. Jing Cao, Xiaojing Jing, Juanzhu Yan, Chengyi Hu, Ruihao Chen, Jun Yin, Jing Li, and Nanfeng Zheng . Identifying the Molecular Structures of Intermediates for Optimizing the Fabrication of High-Quality Perovskite Films. Journal of the American Chemical Society 2016, 138 (31) , 9919-9926. https://doi.org/10.1021/jacs.6b04924
    86. Qingxia Fu, Xianglan Tang, Licheng Tan, Yong Zhang, Yawen Liu, Lie Chen, and Yiwang Chen . Versatile Molybdenum Isopropoxide for Efficient Mesoporous Perovskite Solar Cells: Simultaneously Optimized Morphology and Interfacial Engineering. The Journal of Physical Chemistry C 2016, 120 (28) , 15089-15095. https://doi.org/10.1021/acs.jpcc.6b04625
    87. Tiantian Cao, Zhaowei Wang, Yijun Xia, Bo Song, Yi Zhou, Ning Chen, and Yongfang Li . Facilitating Electron Transportation in Perovskite Solar Cells via Water-Soluble Fullerenol Interlayers. ACS Applied Materials & Interfaces 2016, 8 (28) , 18284-18291. https://doi.org/10.1021/acsami.6b04895
    88. Zonghao Liu, Qi Chen, Ziruo Hong, Huanping Zhou, Xiaobao Xu, Nicholas De Marco, Pengyu Sun, Zhixin Zhao, Yi-Bing Cheng, and Yang Yang . Low-Temperature TiOx Compact Layer for Planar Heterojunction Perovskite Solar Cells. ACS Applied Materials & Interfaces 2016, 8 (17) , 11076-11083. https://doi.org/10.1021/acsami.5b12123
    89. Yunlong Guo, Wataru Sato, Kazutaka Shoyama, and Eiichi Nakamura . Sulfamic Acid-Catalyzed Lead Perovskite Formation for Solar Cell Fabrication on Glass or Plastic Substrates. Journal of the American Chemical Society 2016, 138 (16) , 5410-5416. https://doi.org/10.1021/jacs.6b02130
    90. Run Long, Jin Liu, and Oleg V. Prezhdo . Unravelling the Effects of Grain Boundary and Chemical Doping on Electron–Hole Recombination in CH3NH3PbI3 Perovskite by Time-Domain Atomistic Simulation. Journal of the American Chemical Society 2016, 138 (11) , 3884-3890. https://doi.org/10.1021/jacs.6b00645
    91. Chuyi Huang, Weifei Fu, Chang-Zhi Li, Zhongqiang Zhang, Weiming Qiu, Minmin Shi, Paul Heremans, Alex K.-Y. Jen, and Hongzheng Chen . Dopant-Free Hole-Transporting Material with a C3h Symmetrical Truxene Core for Highly Efficient Perovskite Solar Cells. Journal of the American Chemical Society 2016, 138 (8) , 2528-2531. https://doi.org/10.1021/jacs.6b00039
    92. Yulei Wu, Xiaohui Liu, Xiaodong Li, Wenjun Zhang, Hai-Qiao Wang, and Junfeng Fang . High-Performance Polymer Solar Cells with Zinc Sulfide-Phenanthroline Derivatives as the Hybrid Cathode Interlayers. ACS Applied Materials & Interfaces 2016, 8 (4) , 2688-2693. https://doi.org/10.1021/acsami.5b10798
    93. Yunlong Guo, Kazutaka Shoyama, Wataru Sato, Yutaka Matsuo, Kento Inoue, Koji Harano, Chao Liu, Hideyuki Tanaka, and Eiichi Nakamura . Chemical Pathways Connecting Lead(II) Iodide and Perovskite via Polymeric Plumbate(II) Fiber. Journal of the American Chemical Society 2015, 137 (50) , 15907-15914. https://doi.org/10.1021/jacs.5b10599
    94. Yaowen Li, Yue Zhao, Qi Chen, Yang (Michael) Yang, Yongsheng Liu, Ziruo Hong, Zonghao Liu, Yao-Tsung Hsieh, Lei Meng, Yongfang Li, and Yang Yang . Multifunctional Fullerene Derivative for Interface Engineering in Perovskite Solar Cells. Journal of the American Chemical Society 2015, 137 (49) , 15540-15547. https://doi.org/10.1021/jacs.5b10614
    95. Il Jeon, Takaaki Chiba, Clement Delacou, Yunlong Guo, Antti Kaskela, Olivier Reynaud, Esko I. Kauppinen, Shigeo Maruyama, and Yutaka Matsuo . Single-Walled Carbon Nanotube Film as Electrode in Indium-Free Planar Heterojunction Perovskite Solar Cells: Investigation of Electron-Blocking Layers and Dopants. Nano Letters 2015, 15 (10) , 6665-6671. https://doi.org/10.1021/acs.nanolett.5b02490
    96. Xiaohui Liu, Cheng Liu, Ruixue Sun, Kun Liu, Yajie Zhang, Hai-Qiao Wang, Junfeng Fang, and Chunhong Yang . Improved Device Performance of Polymer Solar Cells by Using a Thin Light-harvesting-Complex Modified ZnO Film as the Cathode Interlayer. ACS Applied Materials & Interfaces 2015, 7 (34) , 18904-18908. https://doi.org/10.1021/acsami.5b05969
    97. Jing Cao, Yu-Min Liu, Xiaojing Jing, Jun Yin, Jing Li, Bin Xu, Yuan-Zhi Tan, and Nanfeng Zheng . Well-Defined Thiolated Nanographene as Hole-Transporting Material for Efficient and Stable Perovskite Solar Cells. Journal of the American Chemical Society 2015, 137 (34) , 10914-10917. https://doi.org/10.1021/jacs.5b06493
    98. Chaoyang Kuang, Gang Tang, Tonggang Jiu, Hui Yang, Huibiao Liu, Bairu Li, Weining Luo, Xiaodong Li, Wenjun Zhang, Fushen Lu, Junfeng Fang, and Yuliang Li . Highly Efficient Electron Transport Obtained by Doping PCBM with Graphdiyne in Planar-Heterojunction Perovskite Solar Cells. Nano Letters 2015, 15 (4) , 2756-2762. https://doi.org/10.1021/acs.nanolett.5b00787
    99. Chang Xu, Pengjie Hang, Chenxia Kan, Xiangwei Guo, Xianjiang Song, Chenran Xu, Guofeng You, Wei-Qiang Liao, Haiming Zhu, Dawei Wang, Qi Chen, Zijian Hong, Ren-Gen Xiong, Xuegong Yu, Lijian Zuo, Hongzheng Chen. Molecular ferroelectric self-assembled interlayer for efficient perovskite solar cells. Nature Communications 2025, 16 (1) https://doi.org/10.1038/s41467-025-56182-5
    100. Jiye Han, Keonwoo Park, Shaun Tan, Yana Vaynzof, Jingjing Xue, Eric Wei-Guang Diau, Moungi G. Bawendi, Jin-Wook Lee, Il Jeon. Perovskite solar cells. Nature Reviews Methods Primers 2025, 5 (1) https://doi.org/10.1038/s43586-024-00373-9
    Load more citations

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2015, 137, 7, 2674–2679
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja512518r
    Published February 4, 2015
    Copyright © 2015 American Chemical Society

    Article Views

    13k

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.